

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC2024165211

FCC ID...... 2AJH3-TV-179K

Applicant Dune HD(HK) Limited

Road Central, Central, Hong Kong

Manufacturer...... Dune HD(HK) Limited

Road Central, Central, Hong Kong

Product Name Kartina EVA

Trade Mark Kartina, Kartina TV, Dune HD

Model/Type reference.....: TV-179K

Listed Model(s) /

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample....... Jul. 4, 2024

Date of issue...... Sept. 4, 2024

Result.....: PASS

Compiled by:

(Printed name+signature) Jim Jiang

Zhang

Jim Jiang

Zhang

Zhang

Supervised by:

Approved by:

(Printed name+signature) Eric Zhang

(Printed name+signature) Totti Zhao

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

ANTENNA REQUIREMENT 122

1.1.

1.2.

13

1 4 1.5.

1.6.

2.1.

2.2. 2.3.

24

2.5.

3.1.

3.2.

3.3.

3.4. 3.5.

3.6.

3.7. 3.8.

3.9.

2.

Table of Contents Page TEST SUMMARY3 TEST STANDARDS. GENERAL DESCRIPTION OF EUT6

Report No.: CTC2024165211

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Page 3 of 122 Report No.: CTC2024165211

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

RSS-247 Issue 3: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

<u>ANSI C63.10-2013</u>: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024165211	Sept. 4, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 3					
Test Item	Standard	Section	Result	Test	
rest item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS-247 5.5	Pass	Jim Jiang	
6dB Bandwidth	15.247(a)(2)	RSS-247 5.2 (a)	Pass	Jim Jiang	
Conducted Max Output Power	15.247(b)(3)	RSS-247 5.4 (d)	Pass	Jim Jiang	
Power Spectral Density	15.247(e)	RSS-247 5.2 (b)	Pass	Jim Jiang	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS-247 5.5& RSS-Gen 8.9	Pass	Jim Jiang	

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Page 4 of 122

Report No.: CTC2024165211

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

CTC Laboratories, Inc.

Page 5 of 122

Report No.: CTC2024165211

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

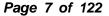
1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

Page 6 of 122

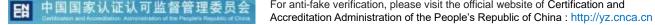
Report No.: CTC2024165211


2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Dune HD(HK) Limited
Address:	10th Floor, Shun On Commercial Building, 112-114 Des Voeux Road Central, Central, Hong Kong
Manufacturer:	Dune HD(HK) Limited
Address:	10th Floor, Shun On Commercial Building, 112-114 Des Voeux Road Central, Central, Hong Kong

2.2. General Description of EUT


Product Name:	Kartina EVA
Trade Mark:	Kartina, Kartina TV, Dune HD
Model/Type reference:	TV-179K
Listed Model(s):	/
Model Difference:	/
Power Supply:	Input: 5V===2A
Hardware Version:	/
Software Version:	/
2.4G WiFi	
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operation Frequency:	802.11b/ g/ n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel Number:	802.11b/ g/ n(HT20): 11 channels 802.11n(HT40): 7 channels
Channel Separation:	5MHz
Antenna 1&2 type:	FPC Antenna
Antenna 1&2 gain:	3.81dBi
Directional Gain:	6.82dBi

2.3. Accessory Equipment Information

Equipment Information					
Name	Model	S/N	Manufacturer		
AC Adapter	TEKA012-0502000EU	/	TEKA		
Cable Information					
Name Shielded Type Ferrite Core Length					
/	/	/	/		
Test Software Information					
Name	Version	/	1		
RtkWiFiTest	2.8.1	/	/		

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Test Mode	Data Rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)/(HT40)	HT-MCS0

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

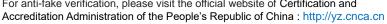
For AC power line conducted emissions:

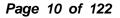
The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

CTC Laboratories, Inc.


Accreditation Administration of the People's Republic of China: http://yz.cnca.cn



2.5. Measurement Instruments List

Tonscend RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
12	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025

Radiate	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026	
7	Test Software	FARA	EZ-EMC	FA-03A2	/	

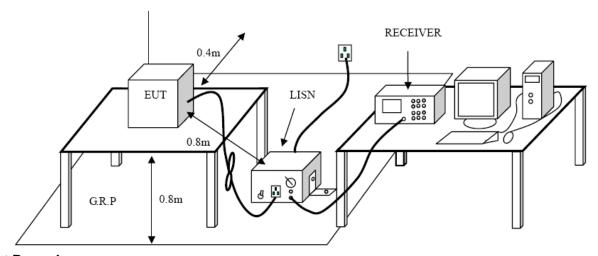
Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 12, 2024
2	LISN	R&S	ENV216	101113	Dec. 12, 2024
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207 / RSS-Gen 8.8

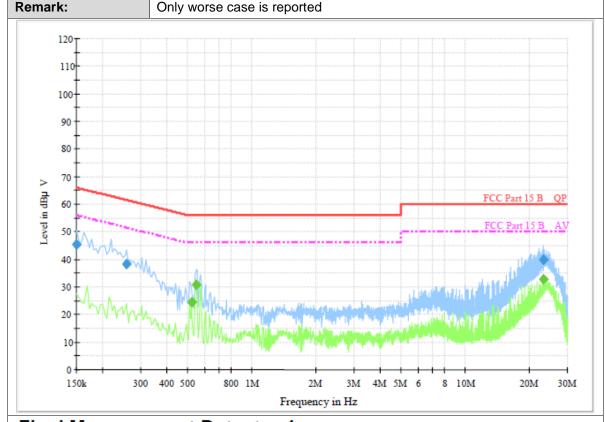
Fraguency (MHz)	Conducte	d Limit (dBµV)
Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 to 56 *	56 to 46 *
0.5 - 5	56	46
5 - 30	60	50

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


Test Mode

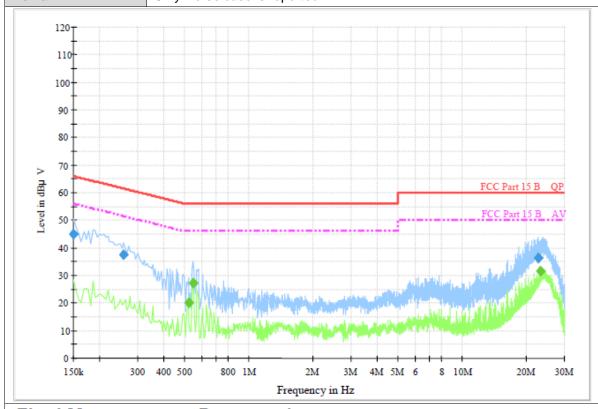
Please refer to the clause 2.4.

Test Result

Test Voltage:	AC 120V/60Hz
Terminal:	Line

Final Measurement Detector 1

Γ	Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
	(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
ı		` ' '	(ms)						`v)	
Γ	0.150000	45.5	1000.00	9.000	On	L1	9.5	20.5	66.0	
Γ	0.258000	38.3	1000.00	9.000	On	L1	9.5	23.2	61.5	
	23.127000	39.7	1000.00	9.000	On	L1	9.7	20.3	60.0	


Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.519000	24.5	1000.00	9.000	On	L1	9.5	21.5	46.0	
0.546000	30.9	1000.00	9.000	On	L1	9.5	15.1	46.0	
23.127000	32.6	1000.00	9.000	On	L1	9.7	17.4	50.0	

Emission Level = Read Level + Correct Factor

Test Voltage:	AC 120V/60Hz
Terminal:	Neutral
Remark:	Only worse case is reported

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
0.150000	45.0	1000.00	9.000	On	N	9.5	21.0	66.0	
0.258000	37.7	1000.00	9.000	On	N	9.4	23.8	61.5	
22.614000	36.4	1000.00	9.000	On	N	9.5	23.6	60.0	

Final Measurement Detector 2

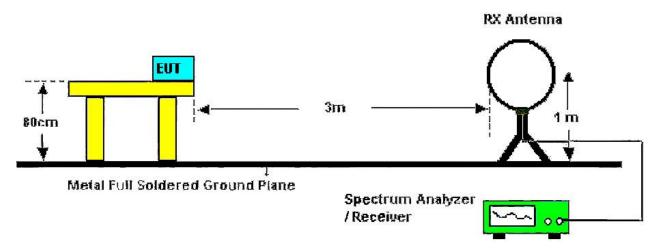
Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.519000	20.2	1000.00	9.000	On	N	9.4	25.8	46.0	
0.546000	27.1	1000.00	9.000	On	N	9.4	18.9	46.0	
23.127000	31.4	1000.00	9.000	On	N	9.5	18.6	50.0	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

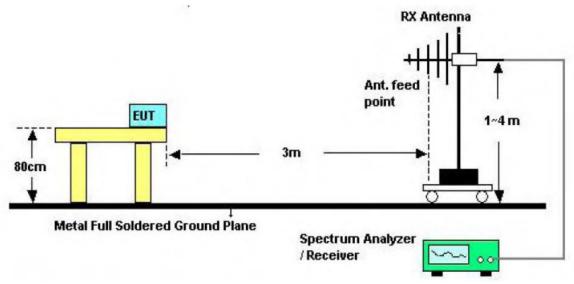
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209 / RSS-Gen 8.9

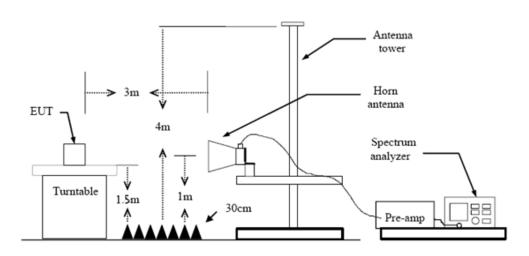

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Fraguency Pango (MHz)	dBµV/m	(at 3 meters)
Frequency Range (MHz)	Peak	Average
Above 1000	74	54

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBμV/m)=20log Emission Level (μV/m).

Test Configuration



Below 30MHz Test Setup

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;

(2) 9k – 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

CTC Laboratories, Inc.

30	D. 000	6	0.00						(MH	z)		30	00.00						1000	.00
10																				
)										_									\dashv	
0	in that the		· [11]	-															\dashv	
_	DALLAND MARKET		PPIAN	W.																
0				A	M	W	Jan Jan Sala	7-7- Y-7-	Alexander April	and the	Art .			hanna properties	and profes					
10					Å			Month			أبسلس	Mary Mark	MAL JA		×	 }* w	M.A	Ĵ.	444	
HU											Š	3			3	4	5	6 X		
10					٦					+									╢	
0													-Margin-I				-		4	
0													FCC Part	15 BE-0	lace F	30-100	пм		\dashv	
'0																			\neg	
*0																				
80															_		_		_	
0.0	ubuv/i																			
	nark:		O	nly	wo	rse	cas	e is r	eport	ed.										
	Mode:								112MI											
	Pol.			oriz						_										
4	Dal		1.1	-:-		۱.														

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	85.8983	46.79	-20.69	26.10	40.00	-13.90	QP
2	266.6089	48.79	-15.83	32.96	46.00	-13.04	QP
3	499.4246	42.38	-10.50	31.88	46.00	-14.12	QP
4	622.8900	39.47	-7.98	31.49	46.00	-14.51	QP
5	724.2607	39.19	-6.49	32.70	46.00	-13.30	QP
6 *	833.3170	38.35	-4.96	33.39	46.00	-12.61	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	. No.			Α	nt 1												
Ant	. Pol.			V	ertic	cal											
Tes	t Mode:			T.	X 8	02.	11b	Мо	de 2412MHz								
Rei	mark:			0	nly	wo	rse	cas	e is reported								
90.0) dBuV/r	n								1 1							7
80																	
70																_	-
60											FCC Part	15 RE-CI	ass B 3	30-10Q	DM	+	-
50											Margin -G						
40	1					Ц				4			į,			6	4
30		ndOllon.	¥			F.		, A	WHAT I THE	Arden dad more	. Α			J-400	marah	1.00	r^
20		Abiada M			hkul _k	May.	Nyon	Mad.	to the first with the week	Arkengar	W/V	- Hope Andrews	physical	,,			-
10																+	-
0																	4
-10																	
3	iā. 000	.000 60.00			(MHz)	3(00.00					10	00.000				
	No.	No. Frequency Reading (MHz) (dBuV)					Factor (dB/m)	Level	Lin (dBu)		Margin (dB)		Detector		or		
	1 *					9.4		-16.69	32.77	32.77 40.00		-7.23		QP		\dashv	
	2	55.8046					3.4		-16.36	30.12	40.		-9.		QP		\dashv

N	О.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	*	39.0245	49.46	-16.69	32.77	40.00	-7.23	QP
2	2	55.8046	46.48	-16.36	30.12	40.00	-9.88	QP
3	3	119.4361	51.15	-19.26	31.89	43.50	-11.61	QP
4	1	266.6089	49.61	-15.83	33.78	46.00	-12.22	QP
Ę	5	499.4247	45.75	-10.50	35.25	46.00	-10.75	QP
6	6	833.3171	39.18	-4.96	34.22	46.00	-11.78	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	49.28	-8.21	41.07	74.00	-32.93	peak
2	1618.833	47.86	-6.90	40.96	74.00	-33.04	peak
3	2966.167	44.92	-2.19	42.73	74.00	-31.27	peak
4	6326.667	39.98	6.77	46.75	74.00	-27.25	peak
5	9056.583	39.50	11.88	51.38	74.00	-22.62	peak
6 *	12084.167	37.97	15.57	53.54	74.00	-20.46	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	53.91	-8.21	45.70	74.00	-28.30	peak
2	1618.833	50.12	-6.90	43.22	74.00	-30.78	peak
3	2966.167	49.79	-2.19	47.60	74.00	-26.40	peak
4	6338.417	39.03	6.81	45.84	74.00	-28.16	peak
5	8441.667	40.26	10.62	50.88	74.00	-23.12	peak
6 *	10721.167	39.08	14.29	53.37	74.00	-20.63	peak

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.00	-8.21	41.79	74.00	-32.21	peak
2	1618.833	48.33	-6.90	41.43	74.00	-32.57	peak
3	2966.167	44.45	-2.19	42.26	74.00	-31.74	peak
4	6029.000	39.03	5.74	44.77	74.00	-29.23	peak
5	9930.000	39.51	13.09	52.60	74.00	-21.40	peak
6 *	11633.750	38.32	15.12	53.44	74.00	-20.56	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.69	-8.21	42.48	74.00	-31.52	peak
2	1618.833	50.89	-6.90	43.99	74.00	-30.01	peak
3	2966.167	49.63	-2.19	47.44	74.00	-26.56	peak
4	7164.833	39.40	9.83	49.23	74.00	-24.77	peak
5 *	9099.667	41.74	12.03	53.77	74.00	-20.23	peak
6	10897.417	38.94	14.56	53.50	74.00	-20.50	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1618.833	48.07	-6.90	41.17	74.00	-32.83	peak
2	2966.167	44.55	-2.19	42.36	74.00	-31.64	peak
3	3906.167	41.91	0.17	42.08	74.00	-31.92	peak
4	5531.583	40.30	3.87	44.17	74.00	-29.83	peak
5	8006.917	38.93	10.85	49.78	74.00	-24.22	peak
6 *	11731.667	38.48	15.11	53.59	74.00	-20.41	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1043.083	52.10	-8.22	43.88	74.00	-30.12	peak
2	1618.833	52.18	-6.90	45.28	74.00	-28.72	peak
3	2966.167	49.84	-2.19	47.65	74.00	-26.35	peak
4	5747.000	40.54	4.71	45.25	74.00	-28.75	peak
5	9283.750	40.19	12.44	52.63	74.00	-21.37	peak
6 *	12401.417	38.09	15.49	53.58	74.00	-20.42	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	48.78	-8.21	40.57	74.00	-33.43	peak
2	1607.083	47.11	-6.92	40.19	74.00	-33.81	peak
3	2966.167	45.17	-2.19	42.98	74.00	-31.02	peak
4	6428.500	39.48	7.14	46.62	74.00	-27.38	peak
5	9808.583	39.69	12.95	52.64	74.00	-21.36	peak
6 *	12393.583	37.74	15.50	53.24	74.00	-20.76	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	51.32	-8.21	43.11	74.00	-30.89	peak
2	1618.833	52.57	-6.90	45.67	74.00	-28.33	peak
3	2966.167	49.16	-2.19	46.97	74.00	-27.03	peak
4	7709.250	40.17	10.26	50.43	74.00	-23.57	peak
5	9268.083	39.68	12.43	52.11	74.00	-21.89	peak
6 *	11281.250	38.71	14.80	53.51	74.00	-20.49	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	52.05	-8.21	43.84	74.00	-30.16	peak
2	1618.833	48.00	-6.90	41.10	74.00	-32.90	peak
3	2966.167	44.43	-2.19	42.24	74.00	-31.76	peak
4	6561.667	38.95	7.48	46.43	74.00	-27.57	peak
5	9201.500	40.01	12.37	52.38	74.00	-21.62	peak
6 *	12162.500	37.88	15.67	53.55	74.00	-20.45	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1031.333	50.72	-8.27	42.45	74.00	-31.55	peak
2	1618.833	50.49	-6.90	43.59	74.00	-30.41	peak
3	2966.167	49.07	-2.19	46.88	74.00	-27.12	peak
4	6405.000	39.97	7.08	47.05	74.00	-26.95	peak
5	9299.417	39.83	12.45	52.28	74.00	-21.72	peak
6 *	12652.083	37.15	16.20	53.35	74.00	-20.65	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1043.083	50.11	-8.22	41.89	74.00	-32.11	peak
2	1618.833	48.72	-6.90	41.82	74.00	-32.18	peak
3	2966.167	44.79	-2.19	42.60	74.00	-31.40	peak
4	4442.750	42.04	1.23	43.27	74.00	-30.73	peak
5	8069.583	39.47	10.69	50.16	74.00	-23.84	peak
6 *	11316.500	38.87	14.82	53.69	74.00	-20.31	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1047.000	50.47	-8.22	42.25	74.00	-31.75	peak
2	1587.500	48.03	-6.92	41.11	74.00	-32.89	peak
3	2942.667	50.16	-2.24	47.92	74.00	-26.08	peak
4	6001.583	40.00	5.65	45.65	74.00	-28.35	peak
5	8833.333	39.93	11.46	51.39	74.00	-22.61	peak
6 *	11798.250	38.42	15.09	53.51	74.00	-20.49	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	49.12	-8.21	40.91	74.00	-33.09	peak
2	1618.833	50.14	-6.90	43.24	74.00	-30.76	peak
3	2966.167	44.98	-2.19	42.79	74.00	-31.21	peak
4	4466.250	41.04	1.29	42.33	74.00	-31.67	peak
5	7403.750	38.96	10.10	49.06	74.00	-24.94	peak
6 *	11304.750	38.38	14.81	53.19	74.00	-20.81	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	51.83	-8.24	43.59	74.00	-30.41	peak
2	1618.833	50.61	-6.90	43.71	74.00	-30.29	peak
3	2966.167	49.35	-2.19	47.16	74.00	-26.84	peak
4	5633.417	41.43	4.25	45.68	74.00	-28.32	peak
5	9287.667	39.74	12.44	52.18	74.00	-21.82	peak
6 *	11755.167	38.46	15.10	53.56	74.00	-20.44	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	50.46	-8.24	42.22	74.00	-31.78	peak
2	1618.833	47.71	-6.90	40.81	74.00	-33.19	peak
3	2966.167	46.33	-2.19	44.14	74.00	-29.86	peak
4	5747.000	40.16	4.71	44.87	74.00	-29.13	peak
5	8053.917	39.48	10.73	50.21	74.00	-23.79	peak
6 *	11159.833	38.74	14.74	53.48	74.00	-20.52	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.82	-8.21	42.61	74.00	-31.39	peak
2	1618.833	51.31	-6.90	44.41	74.00	-29.59	peak
3	2966.167	49.50	-2.19	47.31	74.00	-26.69	peak
4	6432.417	39.61	7.14	46.75	74.00	-27.25	peak
5	8085.250	40.49	10.66	51.15	74.00	-22.85	peak
6 *	11958.833	38.19	15.38	53.57	74.00	-20.43	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1043.083	49.31	-8.22	41.09	74.00	-32.91	peak
2	1618.833	48.31	-6.90	41.41	74.00	-32.59	peak
3	2966.167	44.67	-2.19	42.48	74.00	-31.52	peak
4	6338.417	39.65	6.81	46.46	74.00	-27.54	peak
5	9142.750	39.59	12.18	51.77	74.00	-22.23	peak
6 *	12487.583	37.82	15.74	53.56	74.00	-20.44	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	51.17	-8.21	42.96	74.00	-31.04	peak
2	1618.833	51.77	-6.90	44.87	74.00	-29.13	peak
3	2966.167	48.71	-2.19	46.52	74.00	-27.48	peak
4	6471.583	39.32	7.24	46.56	74.00	-27.44	peak
5	8872.500	39.88	11.51	51.39	74.00	-22.61	peak
6 *	11199.000	38.56	14.76	53.32	74.00	-20.68	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	48.84	-8.21	40.63	74.00	-33.37	peak
2	1618.833	50.20	-6.90	43.30	74.00	-30.70	peak
3	2966.167	44.26	-2.19	42.07	74.00	-31.93	peak
4	6373.667	40.30	6.96	47.26	74.00	-26.74	peak
5	7619.167	40.65	10.10	50.75	74.00	-23.25	peak
6 *	11171.583	38.80	14.75	53.55	74.00	-20.45	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1031.333	51.08	-8.27	42.81	74.00	-31.19	peak
2	1618.833	50.49	-6.90	43.59	74.00	-30.41	peak
3	2966.167	48.99	-2.19	46.80	74.00	-27.20	peak
4	7231.417	39.26	10.03	49.29	74.00	-24.71	peak
5	9659.750	39.96	12.70	52.66	74.00	-21.34	peak
6 *	12037.167	37.95	15.50	53.45	74.00	-20.55	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.23	-8.21	42.02	74.00	-31.98	peak
2	1618.833	49.22	-6.90	42.32	74.00	-31.68	peak
3	2966.167	45.07	-2.19	42.88	74.00	-31.12	peak
4	6369.750	39.71	6.94	46.65	74.00	-27.35	peak
5	7995.167	39.23	10.86	50.09	74.00	-23.91	peak
6 *	10936.583	38.91	14.61	53.52	74.00	-20.48	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1047.000	52.84	-8.22	44.62	74.00	-29.38	peak
2	1618.833	50.01	-6.90	43.11	74.00	-30.89	peak
3	2966.167	49.48	-2.19	47.29	74.00	-26.71	peak
4	4266.500	43.19	0.86	44.05	74.00	-29.95	peak
5	8022.583	40.12	10.80	50.92	74.00	-23.08	peak
6 *	12358.333	38.22	15.53	53.75	74.00	-20.25	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.27	-8.21	42.06	74.00	-31.94	peak
2	1618.833	47.42	-6.90	40.52	74.00	-33.48	peak
3	2966.167	45.58	-2.19	43.39	74.00	-30.61	peak
4	7388.083	40.29	10.09	50.38	74.00	-23.62	peak
5	9507.000	38.81	12.58	51.39	74.00	-22.61	peak
6 *	11680.750	38.34	15.11	53.45	74.00	-20.55	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

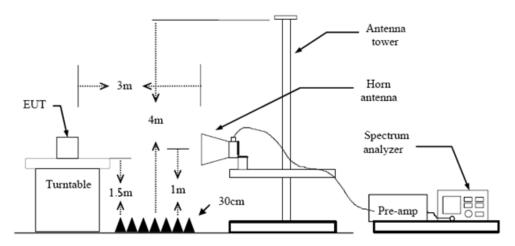
2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2			
Ant. Pol.	Vertical			
Test Mode:	TX 802.11n(HT40) Mode 2452MHz			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	52.22	-8.24	43.98	74.00	-30.02	peak
2	1607.083	51.41	-6.92	44.49	74.00	-29.51	peak
3	2966.167	49.38	-2.19	47.19	74.00	-26.81	peak
4	5245.667	41.00	2.99	43.99	74.00	-30.01	peak
5	7944.250	39.25	10.74	49.99	74.00	-24.01	peak
6 *	10975.750	38.91	14.65	53.56	74.00	-20.44	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

Restricted Frequency Band	(dBµV/m) (at 3m)				
(MHz)	Peak	Average			
2310 ~ 2390	74	54			
2483.5 ~ 2500	74	54			

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

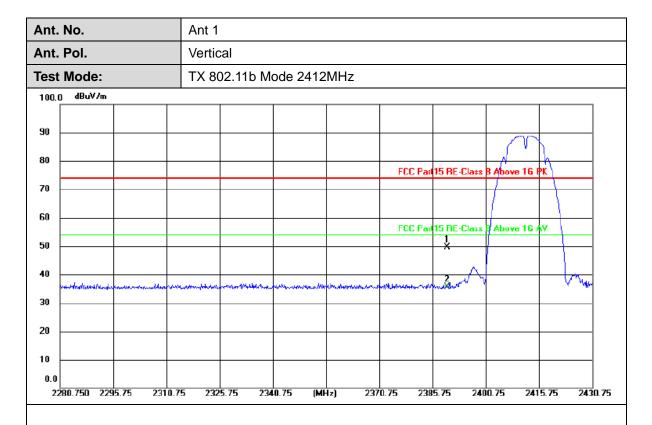
Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Note: Pre-scan all antenna, only show the test data for worse case antenna on the test report.

Test Result

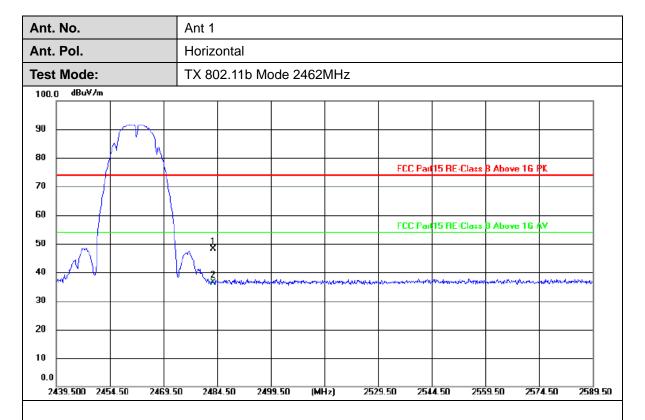

Ant.	No.		Ant 1	Ant 1								
Ant.	Pol.		Horiz	Horizontal								
Test	Mode:		TX 8	02.11	b Mod	le 2412	MHz					
100.0) dBuV/m	,										7
90										m	<u>.</u>	
80								FCC D	15 RE-Class	N NAL 15 I	W\	-
70								FLUFAI	13 HE-Class	B)ADOVE TO		-
60								FCC Par	15 RE-Class	B Above 16 /	v	-
50									* ^		M	-
40	monanonande	idla essa arentessa heriotza de la constanta	and approximate and approx	are referre	orani da mar	wayyaphaceman.	allanged the Assault and	Last of the Control o			U*\	
30												-
20												1
10 0.0												-
	 281.500 2:	296.50 231	1.50 23	26.50	2341.	50 (MI	 - z) 23	/ 71.50 238	 6.50 240	 1.50 24 1	6.50 24	_ 31.50

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	16.82	31.31	48.13	74.00	-25.87	peak
2 *	2390.000	5.64	31.31	36.95	54.00	-17.05	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2389.900	18.37	31.31	49.68	74.00	-24.32	peak
2 *	2390.000	4.29	31.31	35.60	54.00	-18.40	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

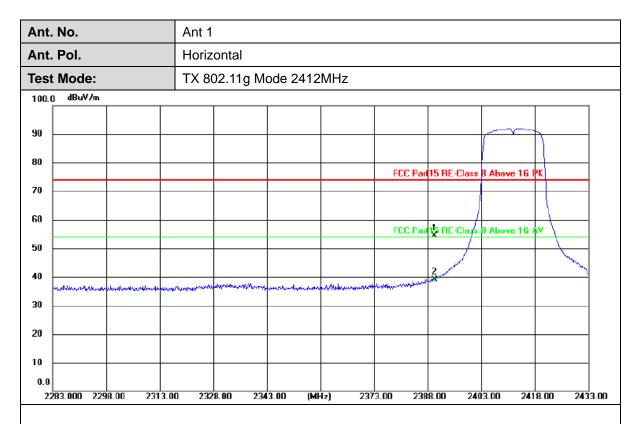
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	16.68	31.48	48.16	74.00	-25.84	peak
2 *	2483.500	4.89	31.48	36.37	54.00	-17.63	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

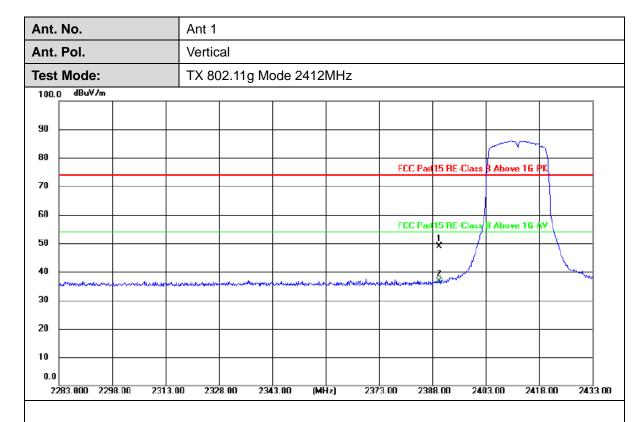

Ant.	No.	Ant 1
Ant.	Pol.	Vertical
Test	Mode:	TX 802.11b Mode 2462MHz
100.0	g dBuV/m	
90		
80		FCC Part 15 RE-Class B Above 16 PK
70		
60		FCC Part 15 RE-Class 3 Above 16 AV
50 40		* Zamanananananananananananananananananana
30		
20		
10 0.0		
24	441.000 2456.00 2471	1.00 2486.00 2501.00 (MHz) 2531.00 2546.00 2561.00 2576.00 2591.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	16.71	31.48	48.19	74.00	-25.81	peak
2 *	2483.500	4.91	31.48	36.39	54.00	-17.61	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

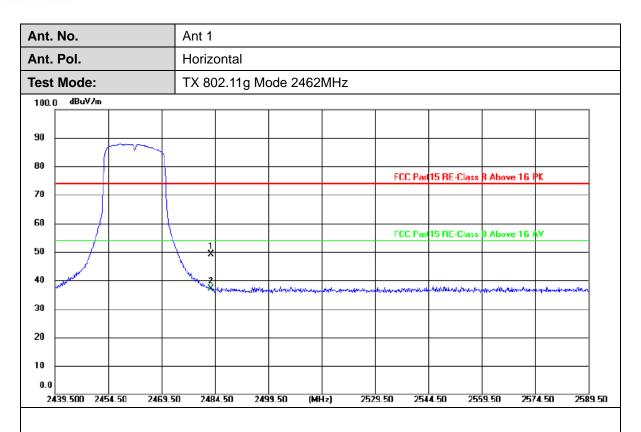
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	22.98	31.31	54.29	74.00	-19.71	peak
2 *	2390.000	7.89	31.31	39.20	54.00	-14.80	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

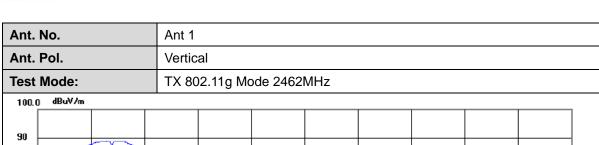
中国国家认证认可监督管理委员会

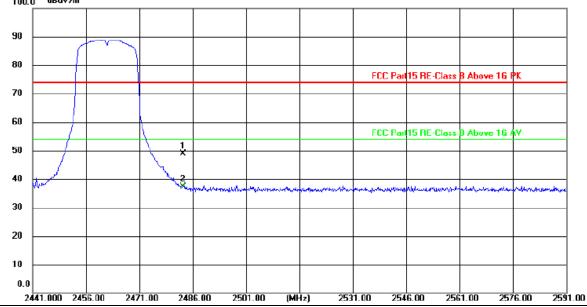


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	17.64	31.31	48.95	74.00	-25.05	peak
2 *	2390.000	5.40	31.31	36.71	54.00	-17.29	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

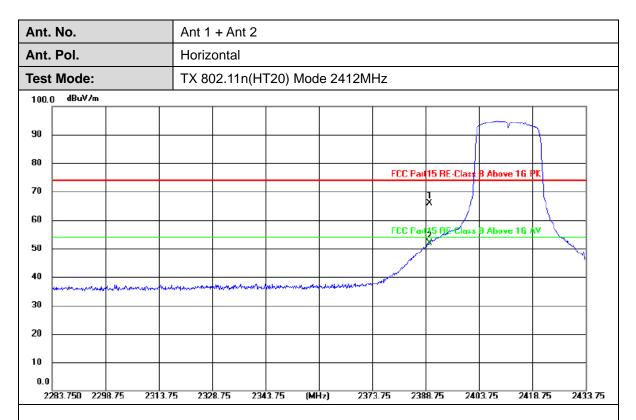



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.72	31.48	49.20	74.00	-24.80	peak
2 *	2483.500	5.71	31.48	37.19	54.00	-16.81	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

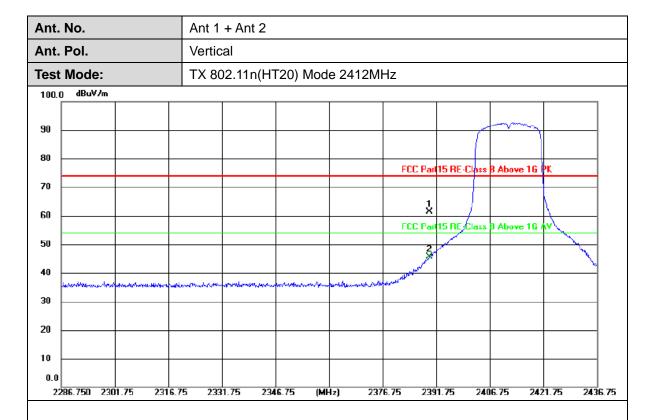
Report No.: CTC2024165211


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.47	31.48	48.95	74.00	-25.05	peak
2 *	2483.500	5.97	31.48	37.45	54.00	-16.55	AVG

Remarks:

 $1. Factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ Factor \ (dB) - Pre-amplifier \ Factor$

2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	34.63	31.31	65.94	74.00	-8.06	peak
2 *	2390.000	20.46	31.31	51.77	54.00	-2.23	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Report No.: CTC2024165211

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	30.02	31.31	61.33	74.00	-12.67	peak
2 *	2390.000	14.38	31.31	45.69	54.00	-8.31	AVG

Remarks:

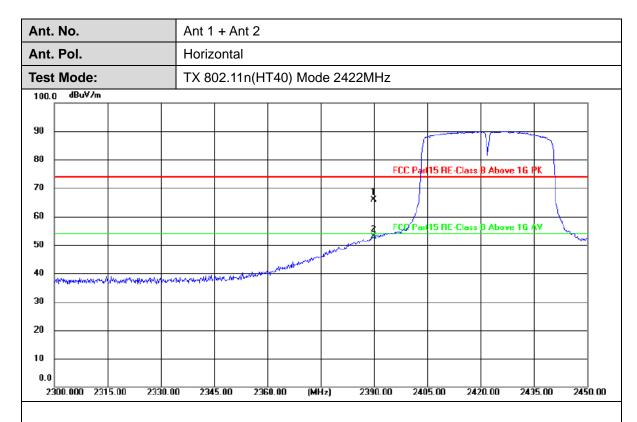
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant.	No.		Ant 1	+ Ant 2							
Ant.	Pol.		Horizo	ontal							
Test	Mode:		TX 80	2.11n(H	IT20) Mo	de 246	2MHz				
100.0	dBu∀∕m										
90	(
80							FI	CC Part15	5 RE-Class	B Above 16	PK
70			1 ×								
60			2				F	CC Part15	i RE-Class	B Above 16	v
50	and to the control of		*	No.							
40				- June	water to be such that the safe	AL-awaren-vyan-	nderstand the state of the stat	والمرابط والمرابط والمرابط	للامداد مورون منهورة	and described and a supply	on the same of the order of the page
30											
20											
10											
0.0	39.500 24	54.50 24	69.50 248	4.50 24	 99.50 (N	(Hz)	2529.50	2544.	50 255	9.50 257	74.50 2589

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
1	2483.500	34.28	31.48	65.76	74.00	-8.24	peak	
2 *	2483.500	20.56	31.48	52.04	54.00	-1.96	AVG	

Romarke:

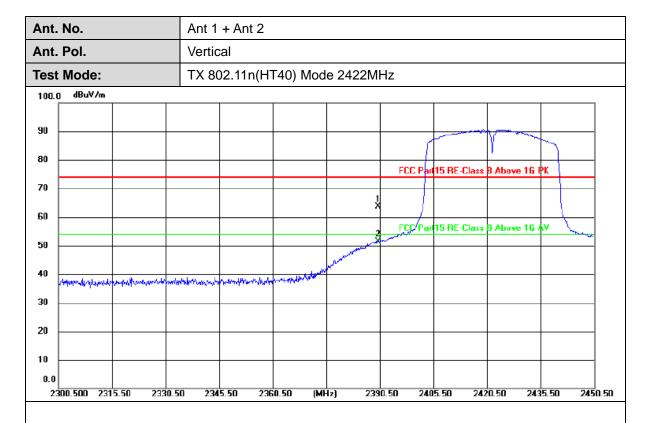
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant.	No.		Ant 1	+ Ant 2	•	•		nt 1 + Ant 2				
Ant.	Pol.		Vertic	'ertical								
Test	Mode:		TX 80)2.11n(H ⁻	Γ20) Mod	e 2462M	Hz					
100.0	0 dBuV/m			1	1				1			
90												
80												
							FCC Part	15 RE-Class	B Above 16 I	PK		
70		/		1 X								
60		,	$\overline{}$				FCC Part	15 RE-Class	B Above 16 /	Av		
50	<i>y</i>		200	Ž.								
40				N. Market Brook of	Sample of the state of the stat							
30					and the state of t	Najiro di della constanti di cons	-(v-pholiphousky)s-d-delai	and the state of t	***********	And the state of t		
20												
10												
0.0												
24	435.750 245	0.75 246	5.75 249	0.75 249	95.75 (MI	lz) 252	5.75 254	0.75 255	55.75 257	70.75 2585		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	32.41	31.48	63.89	74.00	-10.11	peak
2 *	2483.500	15.01	31.48	46.49	54.00	-7.51	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	34.51	31.31	65.82	74.00	-8.18	peak
2 *	2390.000	21.50	31.31	52.81	54.00	-1.19	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	32.25	31.31	63.56	74.00	-10.44	peak
2 *	2390.000	20.18	31.31	51.49	54.00	-2.51	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
100.0 dBuV/m	
90	
80	FCC Part 15 RE-Class B Above 16 PK
70	1 ×
50	Z FCC Pail 15 RE-Class 3 Above 16 AV
40	
30	The second of th
20	
10	
0.0 2420.750 2435.75 2450	.75 2465.75 2480.75 (MHz) 2510.75 2525.75 2540.75 2555.75 2570.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	33.74	31.48	65.22	74.00	-8.78	peak
2 *	2483.500	21.23	31.48	52.71	54.00	-1.29	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

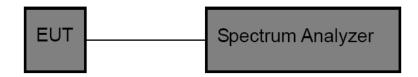
Ant. No.	Ant 1 + Ant 2						
Ant. Pol.	Vertical TX 802.11n(HT40) Mode 2452MHz						
Test Mode:							
100.0 dBuV/m							
90							
80							
	FCC Part 15 RE-Class B Above 16 PK						
70							
60	FCC Parl 15 RE-Class 3 Above 16 AV						
50	The state of the s						
40	Marked Mary and and antiperson has well and a country in many little with highly wound the property of the state of the st						
30							
20							
10							
0.0 2423.000 2438.00 2453.0							

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	33.05	31.48	64.53	74.00	-9.47	peak
2 *	2483.500	20.56	31.48	52.04	54.00	-1.96	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 48 of 122

Report No.: CTC2024165211


3.4. Band Edge and Spurious Emissions (Conducted)

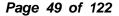
Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d) / RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure


- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

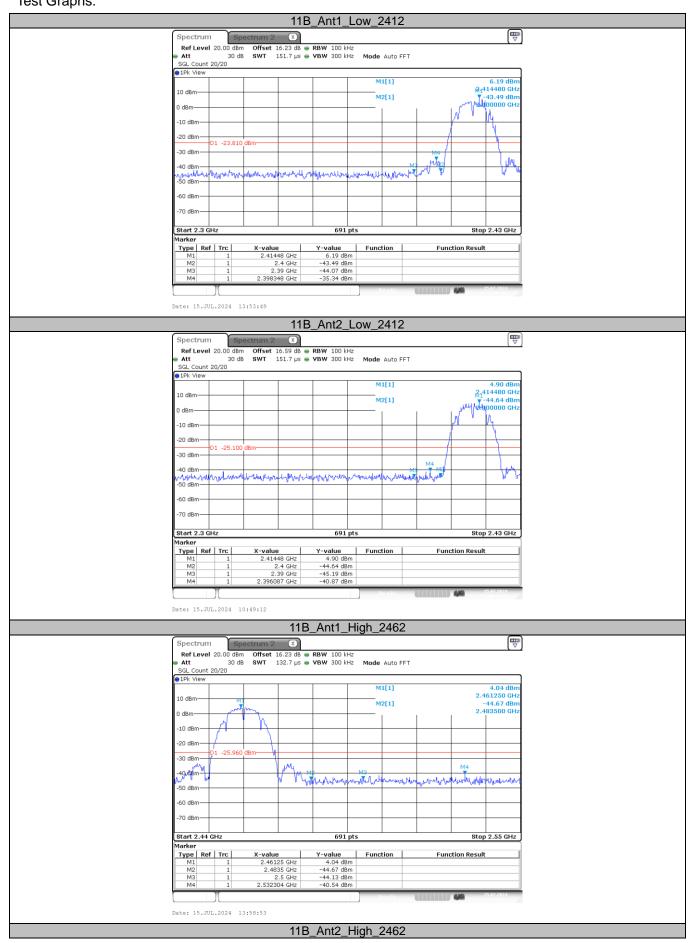
Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

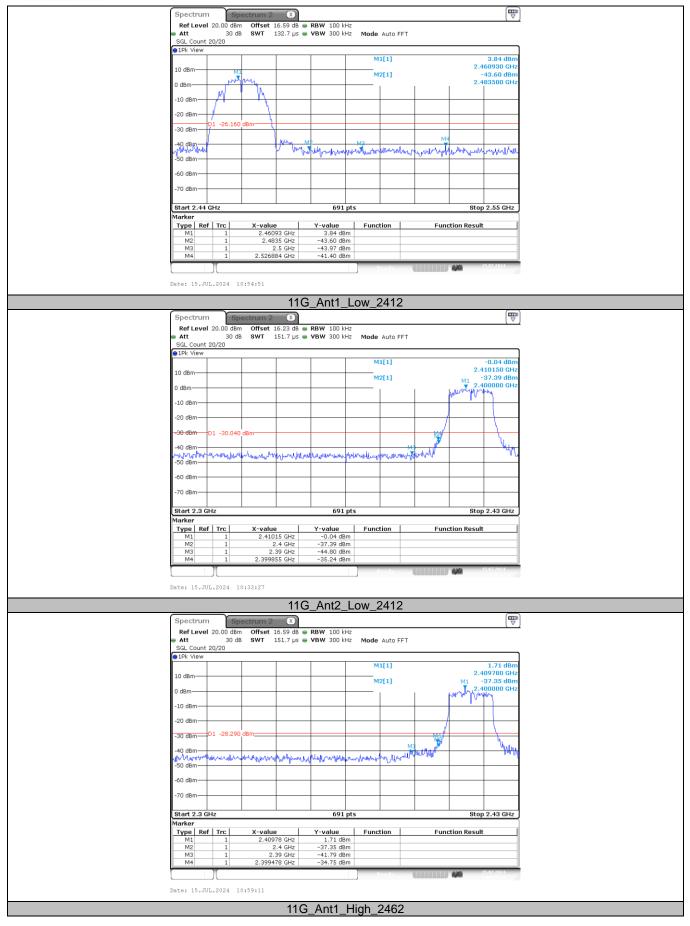
Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Report No.: CTC2024165211

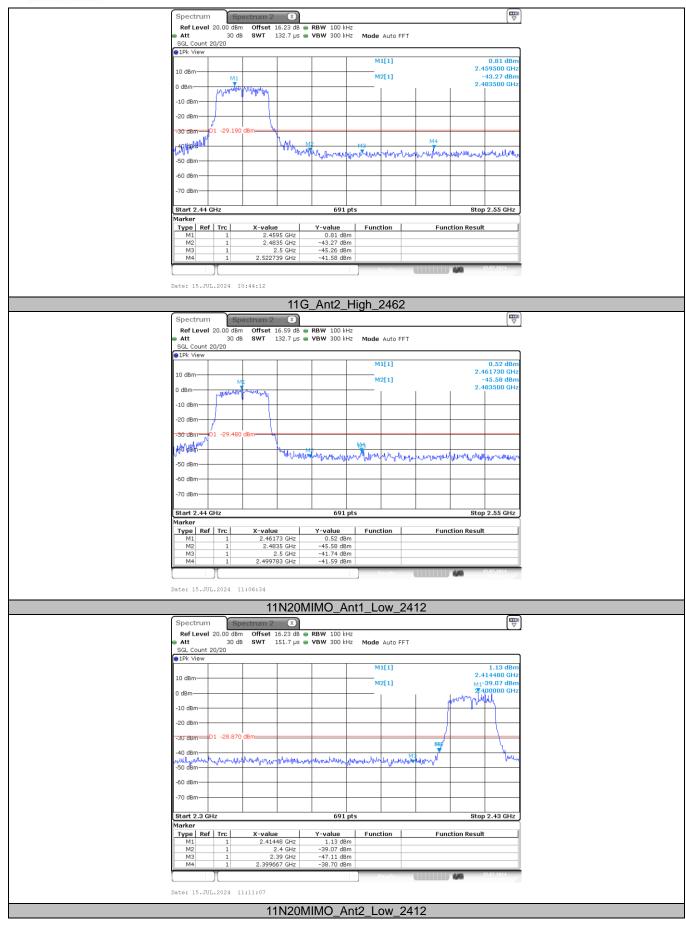

Test Result

Conducted Band edge

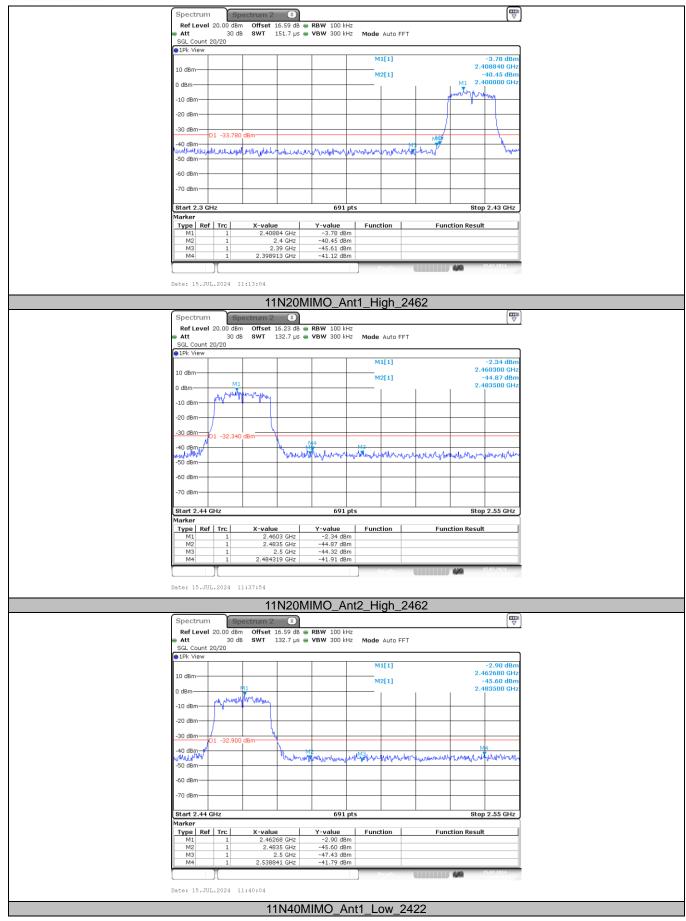
Conductor Band Cago								
Test Mode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict	
	Ant1	Low	2412	6.19	-35.34	≤-23.81	PASS	
11B	Ant2	Low	2412	4.90	-40.87	≤-25.10	PASS	
ПБ	Ant1	High	2462	4.04	-40.54	≤-25.96	PASS	
	Ant2	High	2462	3.84	-41.40	≤-26.16	PASS	
	Ant1	Low	2412	-0.04	-35.24	≤-30.04	PASS	
11G	Ant2	Low	2412	1.71	-34.75	≤-28.29	PASS	
110	Ant1	High	2462	0.81	-41.58	≤-29.19	PASS	
	Ant2	High	2462	0.52	-41.59	≤-29.48	PASS	
	Ant1	Low	2412	1.13	-38.70	≤-28.87	PASS	
11N20MIMO	Ant2	Low	2412	-3.78	-41.12	≤-33.78	PASS	
TTNZUMINO	Ant1	High	2462	-2.34	-41.91	≤-32.34	PASS	
	Ant2	High	2462	-2.90	-41.79	≤-32.90	PASS	
11N40MIMO	Ant1	Low	2422	-4.97	-41.22	≤-34.97	PASS	
	Ant2	Low	2422	-8.34	-41.88	≤-38.34	PASS	
	Ant1	High	2452	-6.34	-41.20	≤-36.34	PASS	
	Ant2	High	2452	-7.77	-41.67	≤-37.77	PASS	

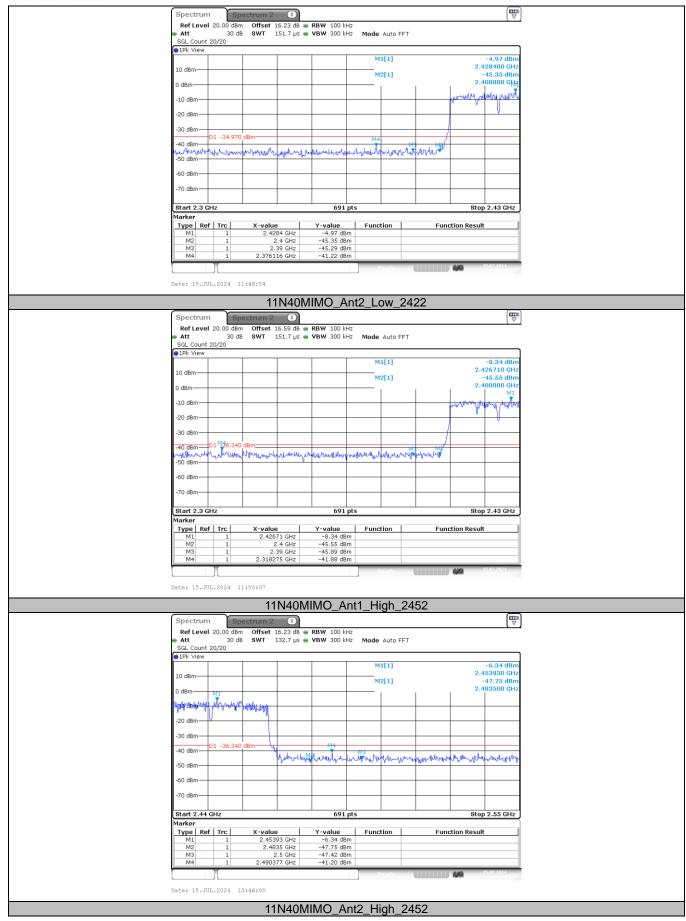


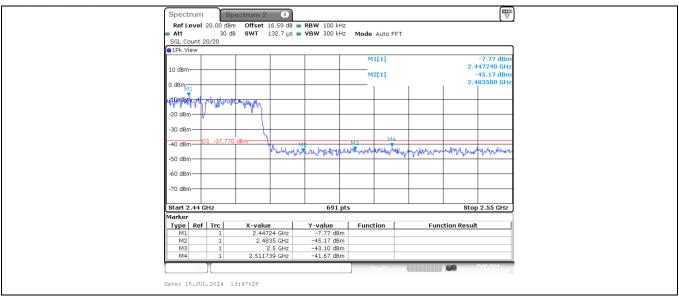
Test Graphs:



CTC Laboratories, Inc.







Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

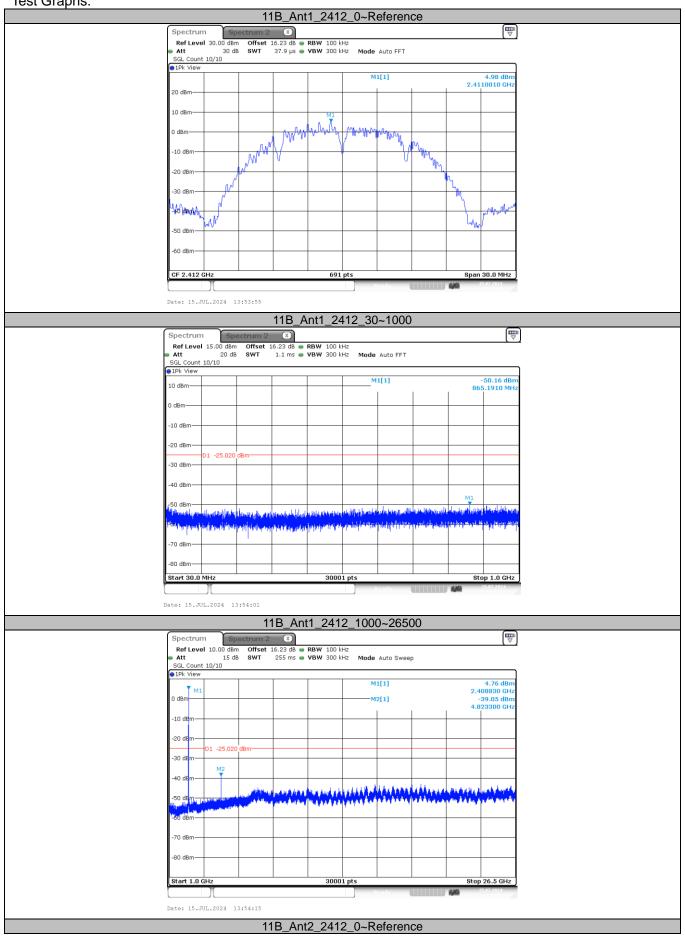
Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Report No.: CTC2024165211

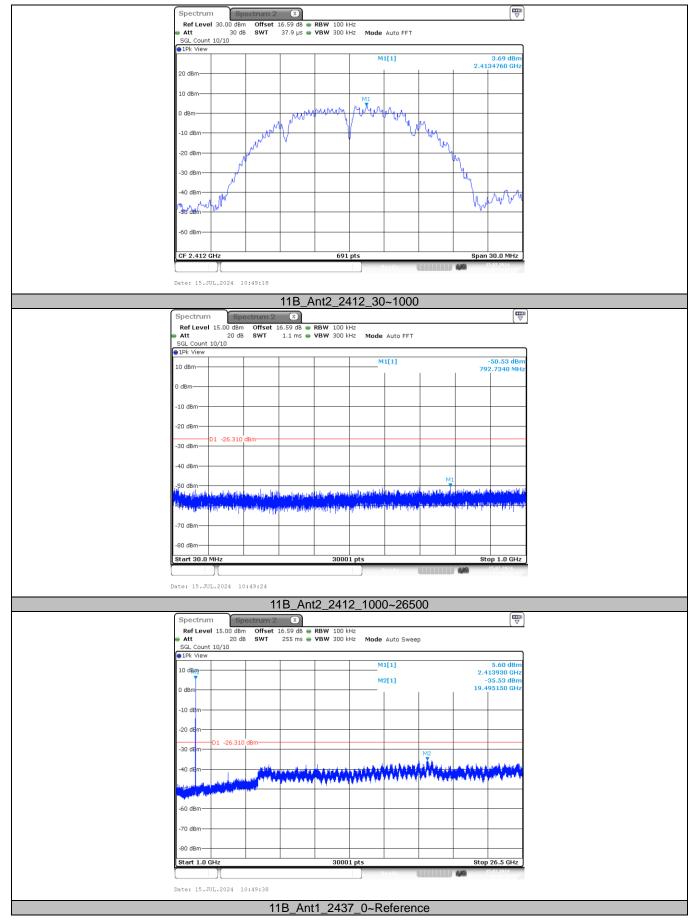
Conducted	<u>Spurious</u>	Emission		-			
Test Mode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
			Reference	4.98	4.98		PASS
	Ant1	2412	30~1000	4.98	-50.16	≤-25.02	PASS
			1000~26500	4.98	-39.05	≤-25.02	PASS
			Reference	3.69	3.69		PASS
	Ant2	2412	30~1000	3.69	-50.53	≤-26.31	PASS
	7 (11)(2	2712	1000~26500	3.69	-35.53	≤-26.31	PASS
			Reference	7.53	7.53	<u></u>	PASS
	Ant1	2437	30~1000	7.53	-50.30	≤-22.47	PASS
	Anti	2431	1000~26500	7.53	-38.37	≤-22.47 ≤-22.47	PASS
11B						≥-22.47	PASS
	A ::-40	0.407	Reference	2.98	2.98	 < 07.00	
	Ant2	2437	30~1000	2.98	-49.77	≤-27.02	PASS
			1000~26500	2.98	-34.77	≤-27.02	PASS
		0.400	Reference	4.46	4.46		PASS
	Ant1	2462	30~1000	4.46	-50.35	≤-25.54	PASS
			1000~26500	4.46	-39.50	≤-25.54	PASS
			Reference	4.18	4.18		PASS
	Ant2	2462	30~1000	4.18	-50.34	≤-25.82	PASS
			1000~26500	4.18	-34.90	≤-25.82	PASS
			Reference	0.26	0.26		PASS
	Ant1	2412	30~1000	0.26	-51.30	≤-29.74	PASS
			1000~26500	0.26	-35.37	≤-29.74	PASS
	Ant2	2412	Reference	0.95	0.95		PASS
			30~1000	0.95	-50.66	≤-29.05	PASS
			1000~26500	0.95	-34.44	≤-29.05	PASS
	Ant1	2437	Reference	-0.24	-0.24		PASS
			30~1000	-0.24	-49.81	≤-30.24	PASS
			1000~26500	-0.24	-35.93	≤-30.24	PASS
11G			Reference	0.71	0.71		PASS
	Ant2	2437			-49.64	≤-29.29	
			30~1000	0.71			PASS
			1000~26500	0.71	-35.13	≤-29.29	PASS
	Ant1	2462	Reference	-0.50	-0.50	1.00.5	PASS
			30~1000	-0.50	-50.34	≤-30.5	PASS
			1000~26500	-0.50	-35.20	≤-30.5	PASS
	Ant2	2462	Reference	-0.09	-0.09		PASS
			30~1000	-0.09	-49.47	≤-30.09	PASS
			1000~26500	-0.09	-34.23	≤-30.09	PASS
	Ant1		Reference	-1.59	-1.59		PASS
		2412	30~1000	-1.59	-50.40	≤-31.59	PASS
			1000~26500	-1.59	-35.37	≤-31.59	PASS
		nt2 2412	Reference	-4.33	-4.33		PASS
	Ant2		30~1000	-4.33	-50.18	≤-34.33	PASS
	7		1000~26500	-4.33	-34.86	≤-34.33	PASS
	Ant1		Reference	-2.01	-2.01		PASS
		2437	30~1000	-2.01	-50.58	≤-32.01	PASS
		2431	1000~26500	-2.01	-35.42	≤-32.01	PASS
11N20MIMO			Reference	-3.64	-3.64		PASS
	Ant2	2437			ł		
			30~1000	-3.64	-50.68	≤-33.64	PASS
	Ant1	2462	1000~26500	-3.64	-35.10	≤-33.64	PASS
			Reference	-2.84	-2.84		PASS
			30~1000	-2.84	-50.31	≤-32.84	PASS
			1000~26500	-2.84	-34.85	≤-32.84	PASS
			Reference	-3.47	-3.47		PASS
	Ant2	2462	30~1000	-3.47	-50.32	≤-33.47	PASS
			1000~26500	-3.47	-35.17	≤-33.47	PASS
			Reference	-3.71	-3.71		PASS
11N40MIMO	Ant1	ant1 2422				< 22 71	
11N40MIMO	Ant1	2422	30~1000	-3.71	-50.21	≤-33.71	PASS

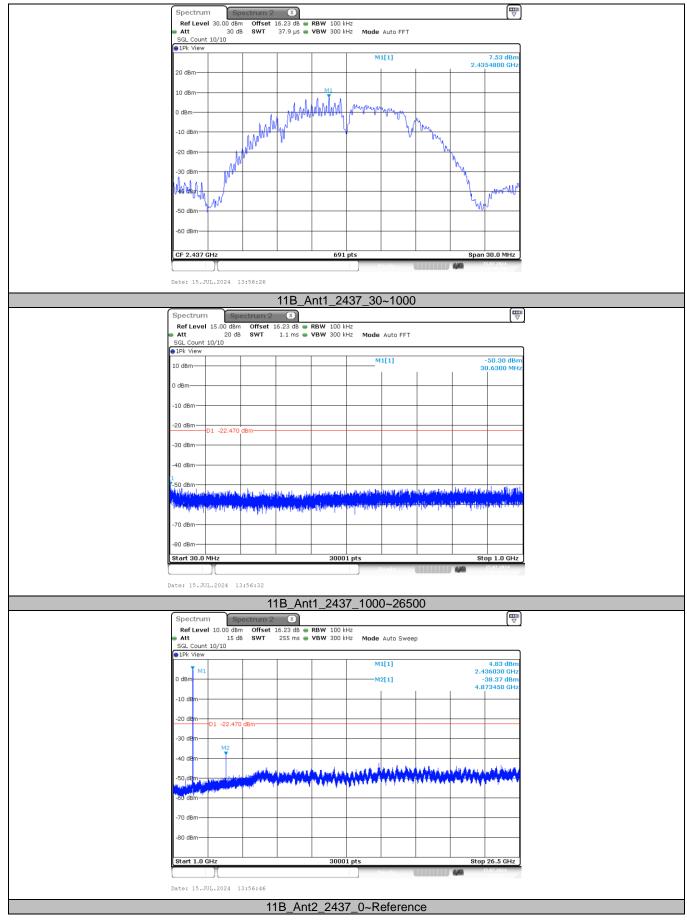
CTC Laboratories, Inc.

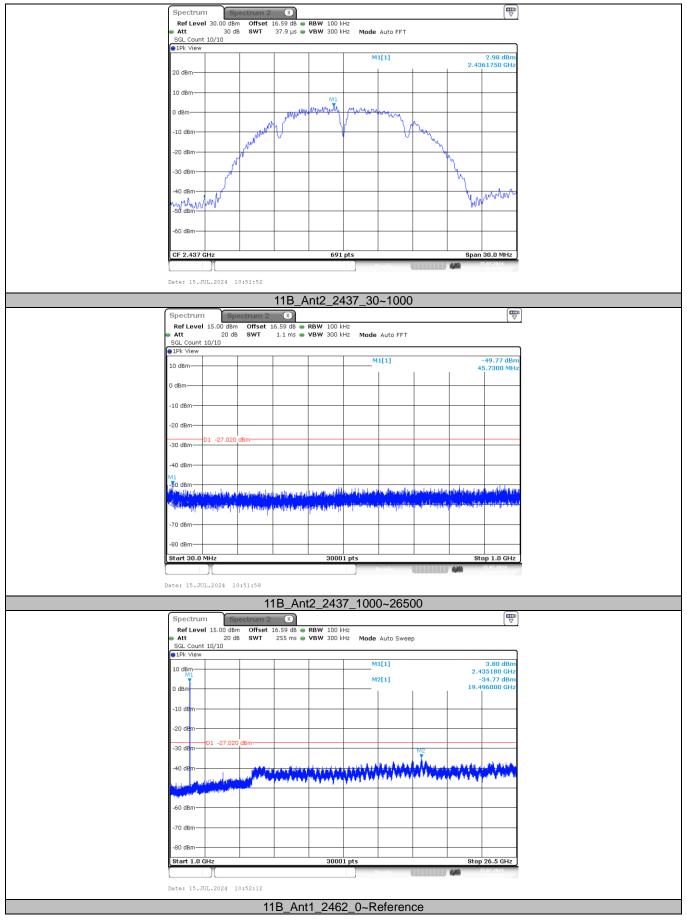
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn
For anti-fake verification, please visit the official website of Certification and

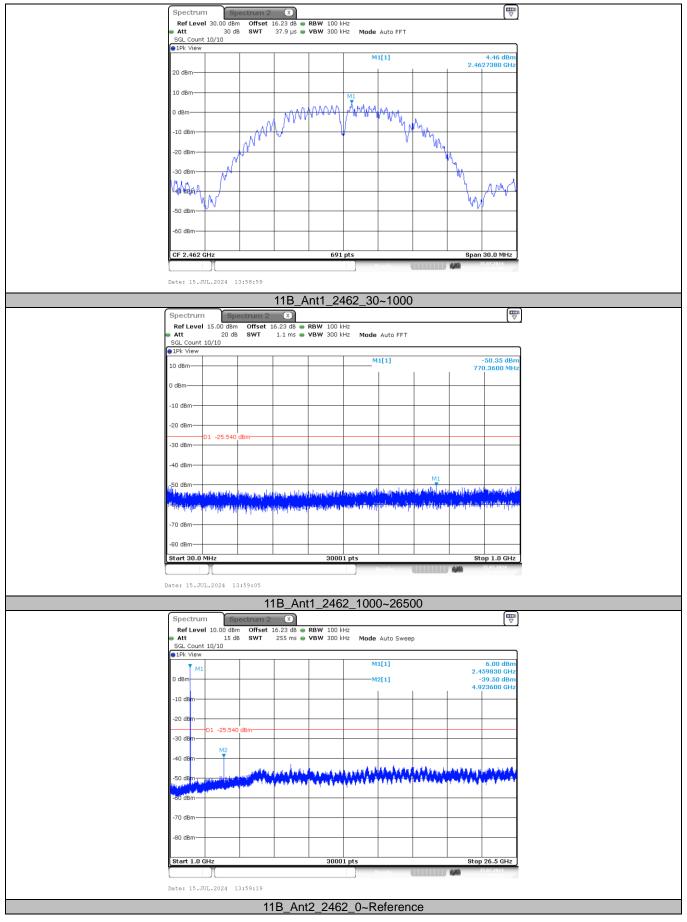

Page 57 of 122

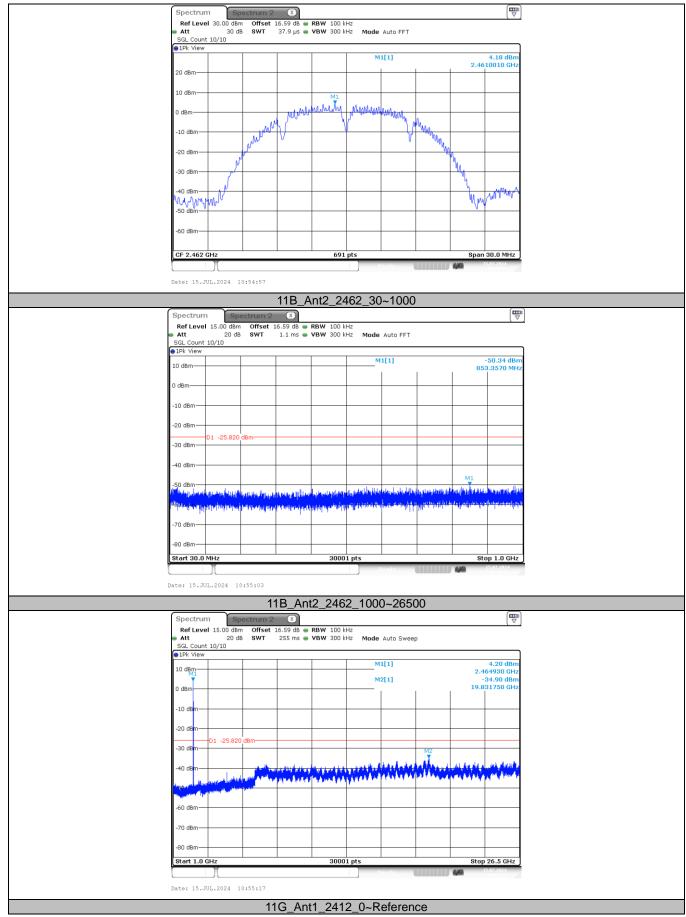
Report No.: CTC2024165211


		Reference	-4.01	-4.01		PASS
Ant2	2422	30~1000	-4.01	-49.05	≤-34.01	PASS
		1000~26500	-4.01	-42.54	≤-34.01	PASS
		Reference	-1.73	-1.73		PASS
Ant1	2437	30~1000	-1.73	-50.40	≤-31.73	PASS
		1000~26500	-1.73	-43.44	≤-31.73	PASS
		Reference	-7.65	-7.65		PASS
Ant2	2437	30~1000	-7.65	-50.12	≤-37.65	PASS
		1000~26500	-7.65	-42.59	≤-37.65	PASS
		Reference	-1.15	-1.15		PASS
Ant1	2452	30~1000	-1.15	-50.09	≤-31.15	PASS
		1000~26500	-1.15	-43.28	≤-31.15	PASS
	Ant2 2452	Reference	-6.65	-6.65		PASS
Ant2		30~1000	-6.65	-49.64	≤-36.65	PASS
		1000~26500	-6 65	-42 17	<-36.65	PASS

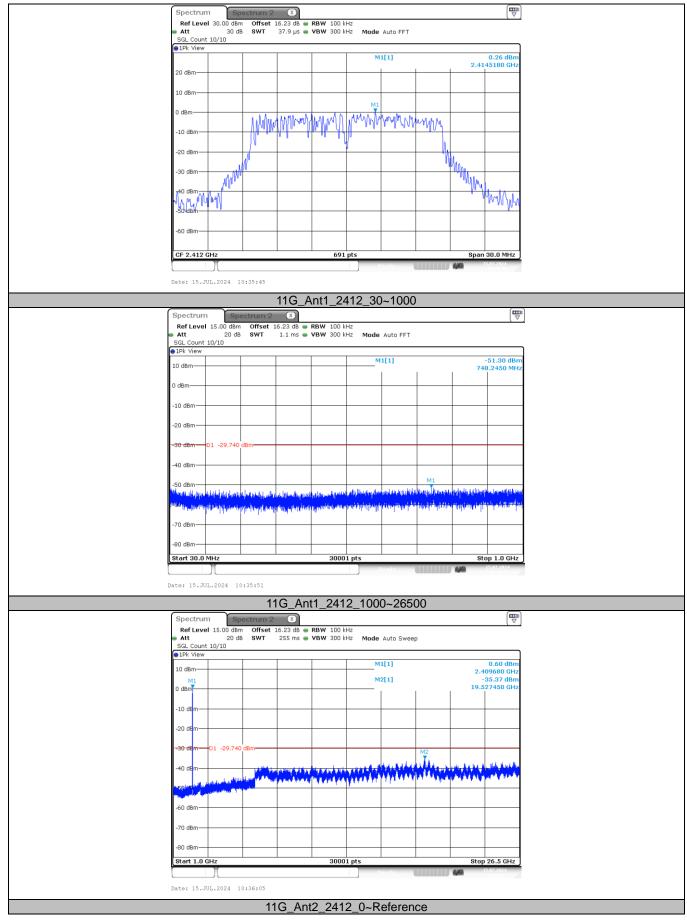

Test Graphs:

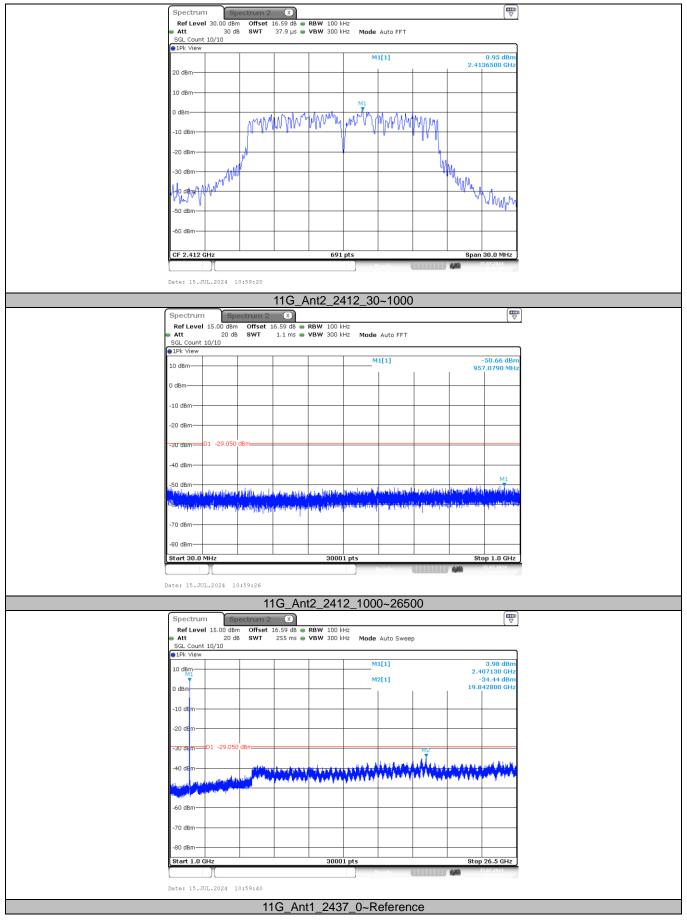


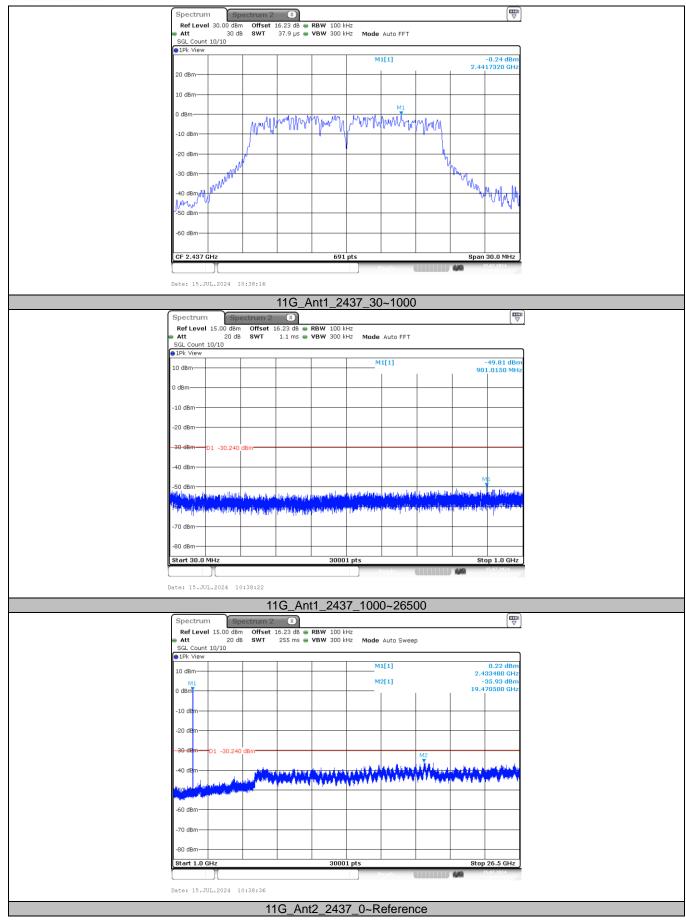




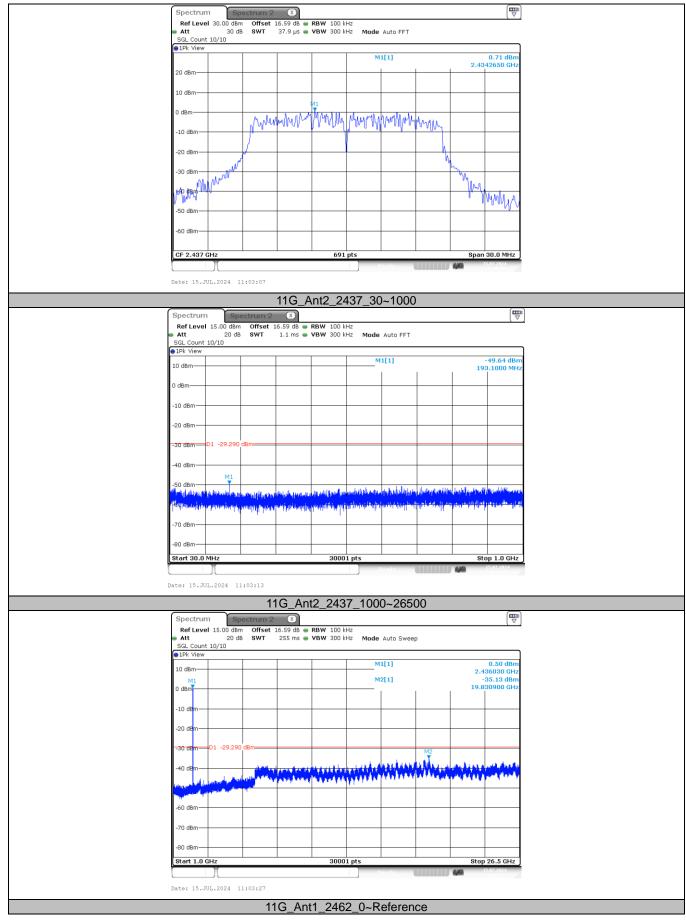
Accreditation Administration of the People's Republic of China: http://yz.cnca.cn







Accreditation Administration of the People's Republic of China: http://yz.cnca.cn



Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn