



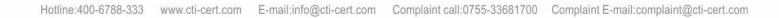
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Version No.	Date	Description	
00	Apr. 23, 2024	Original	

Page 3 of 44

2 Content	
1 VERSION	
2 CONTENT	
3 TEST SUMMARY	
4 GENERAL INFORMATION	5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 	5
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	
6.1 ANTENNA REQUIREMENT	
6.2 CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 DTS BANDWIDTH	
6.5 MAXIMUM POWER SPECTRAL DENSITY 6.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 6.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	N
7 APPENDIX BLUETOOTH LE	
8 PHOTOGRAPHS OF TEST SETUP	
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

3 Test Summary

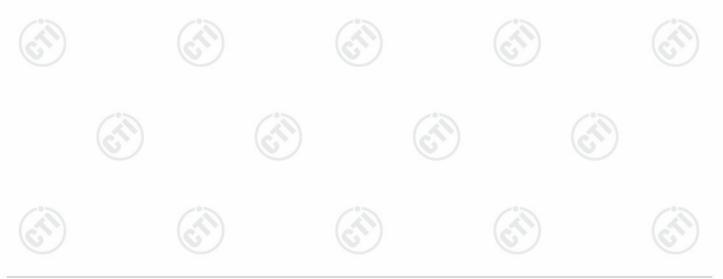


	Toot Doguirement	Decult
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
Domorku		

Remark:

Through Pre-scan, Antenna2 mode was the worst case; only the worst case was in the report. Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information


4.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Factory:	Shenzhen Xinxian Technology Co.,Limited.
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

Page 5 of 44

4.2 General Description of EUT

Product Name:	BM3301-1313
Model No.:	BM3301-1313
Trade mark:	beagleboard.org®
Product Type:	⊠ Mobile □ Portable □ Fixed Location
Operation Frequency:	Bluetooth LE 1Mbps:2402MHz~2480MHz; Bluetooth LE 2Mbps:2404MHz~2478MHz;
Modulation Type:	GFSK
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps
Number of Channel:	40
Antenna Type:	Antenna1:Rod antenna; Antenna2:PCB antenna
Antenna Gain:	Antenna1:2.81dBi; Antenna2:2.87dBi
Power Supply:	DC 3.3V
Test Voltage:	DC 3.3V
Sample Received Date:	Mar. 20, 2024
Sample tested Date:	Mar. 20, 2024 to Apr. 17, 2024

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	e Settings:			
Software:	SWT-2	2.0.11-windows-x64-insta	Iller.exe	(25)
EUT Power Grade:	Defau select	lt (Power level is built-in s ed)	set parameters and o	cannot be changed and
Use test software to transmitting of the I		uency, the middle frequer	ncy and the highest f	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	CH0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480
Mode d	GFSK	2Mbps	CH1	2404
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH38	2478

Page 7 of 44

4.4 Test Environment

	Operating Environment	t:				
60	Radiated Spurious Emi	ssions:				
10	Temperature:	22~25.0 °C	1	(2)		(2)
2	Humidity:	50~55 % RH	/	C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C			(in)	
	Humidity:	50~55 % RH	6)		67)	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:					
20	Temperature:	22~25.0 °C				13
	Humidity:	50~55 % RH)	(23)		(\sim)
	Atmospheric Pressure:	1010mbar		U		U

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

4.5			
1)	suppor	rt equi	pment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	ASUSTek	/	FCC&CE	СТІ
Adapter	М		FCC	СТІ

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2) 4.7 No 0

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
2	Dedicted Coursieurs emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
0		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	06-01-2023	05-31-2024
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(A)	_ (3

	Con	ducted disturba	nce Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024
Temperature/ Humidity Indicator	Defu	TH128	/	05-04-2023	05-03-2024
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024
Barometer	changchun	DYM3	1188	(- 2
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(5)
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-29-2023	06-28-2024
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024
67)		(\mathcal{C})	I	(67)	(6)

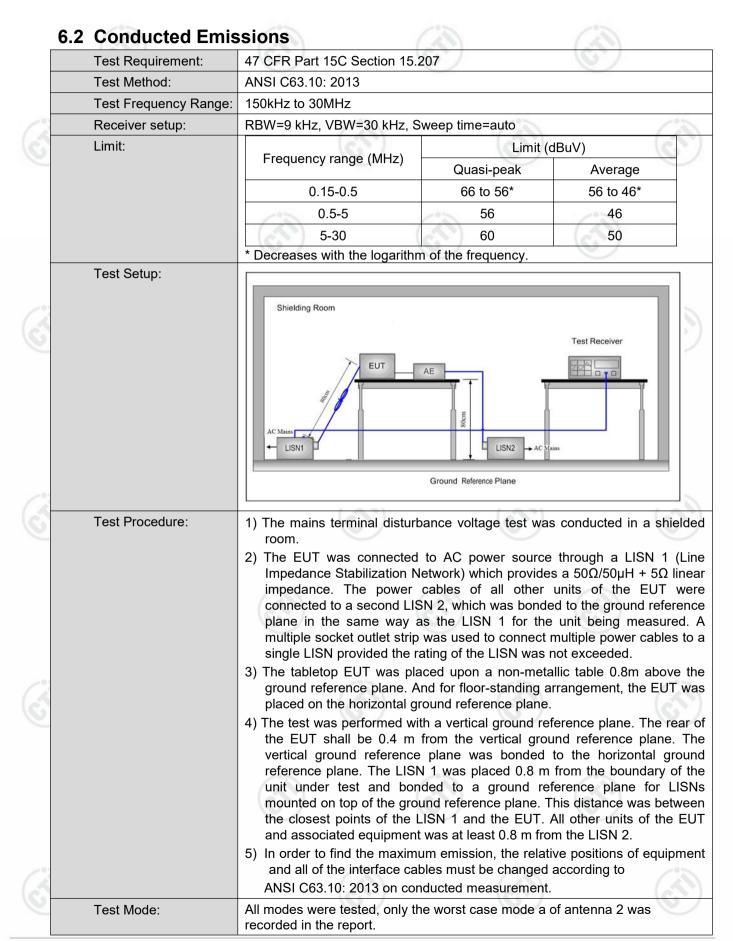
1	6.8			6	10	
	3M Semi-and	echoic Chamber (2))- Radiated disturb	ance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	ток	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021 04/16/2024	04/16/2024 04/15/2025	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05/29/2021	05/28/2024	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/17/2021 04/16/2024	04/16/2024 04/15/2025	
Preamplifier	Agilent	11909A	12-1	03/28/2023 03/22/2024	03/27/2024	
Preamplifier	CD	PAP-1840-60	6041.6042	07/03/2023	07/02/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			
Cable line	Fulai(7M)	SF106	5219/6A	- 6	9 -	
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	(3) -	- (
Cable line	Fulai(3M)	SF106	5217/6A			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

0 11 -5 44

Page 11 of 44

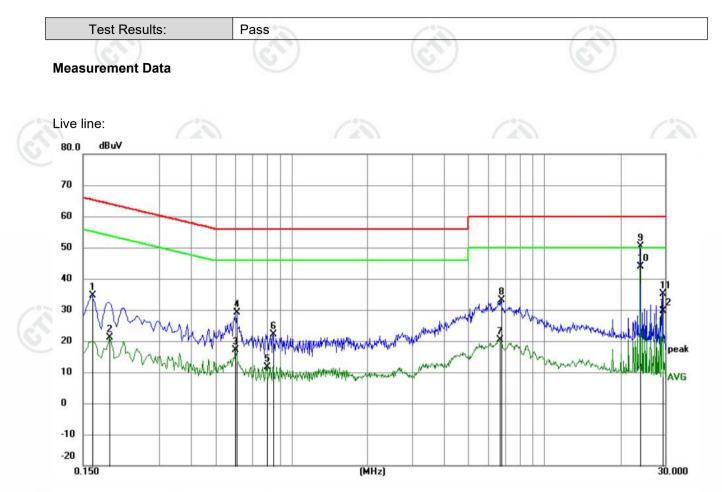
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		0	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-17-2021 04-16-2024	04-16-2024 04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023 04-12-2024	04-12-2024 04-11-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023 04-07-2024	04-10-2024 04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	~~~		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(<u>C</u>)	(6	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	/	a	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(S)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		- 0	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(6)	(C	


6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Pa	art 15C Secti	on 15.203 /2	47(c)						
responsible party shall be antenna that uses a uniq so that a broken antenna electrical connector is pro 15.247(b) (4) requirement The conducted output po antennas with directional section, if transmitting and power from the intentional (b)(2), and (b)(3) of this s	e used with the ue coupling to t a can be replace ohibited. ht: wer limit specifi I gains that do n atennas of direct al radiator shall	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or bited. er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), etion, as appropriate, by the amount in dB that the directional gain of the								
antenna exceeds 6 dBi. EUT Antenna:	Please see	e Internal pho	otos							
ne antenna are Antenna1:Rod antenna, Antenna2:PCB antenna. The best case gain of the antenna a ntenna1:2.81dBi, Antenna2:2.87dBi.										
(e)	S		0		0					

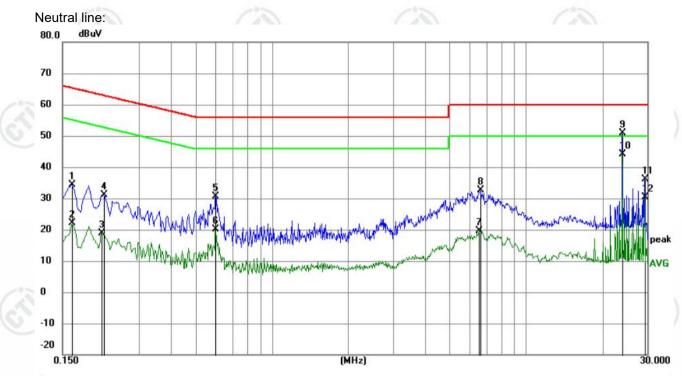
Page 13 of 44



6

Page 14 of 44

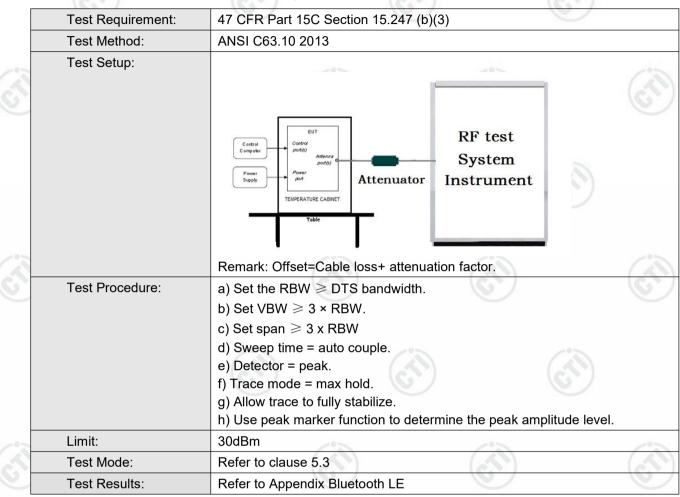
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	24.69	9.88	34.57	65.28	-30.71	QP	
2		0.1905	11.33	9.91	21.24	54.01	-32.77	AVG	
3		0.6000	7.43	9.59	17.02	46.00	-28.98	AVG	
4		0.6090	19.46	9.63	29.09	56.00	-26.91	QP	
5		0.7980	1.97	9.78	11.75	46.00	-34.25	AVG	
6		0.8475	12.32	9.79	22.11	56.00	-33.89	QP	
7		6.6705	10.42	9.85	20.27	50.00	-29.73	AVG	
8		6.7605	23.25	9.85	33.10	60.00	-26.90	QP	
9		23.9685	40.35	9.94	50.29	60.00	-9.71	QP	
10	*	23.9685	34.05	9.94	43.99	50.00	-6.01	AVG	
11		29.2380	25.36	9.81	35.17	60.00	-24.83	QP	
12		29.2380	19.78	9.81	29.59	50.00	-20.41	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. N	<mark>//k</mark> .	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	24.58	9.88	34.46	65.28	-30.82	QP	
2		0.1635	12.30	9.88	22.18	55.28	-33.10	AVG	
3		0.2130	8.99	9.87	18.86	53.09	-34.23	AVG	
4		0.2175	21.19	9.85	31.04	62.91	-31.87	QP	
5		0.6000	21.14	9.59	30.73	56.00	-25.27	QP	
6		0.6000	10.52	9.59	20.11	46.00	-25.89	AVG	
7		6.5265	9.72	9.85	19.57	50.00	-30.43	AVG	
8		6.6030	22.67	9.85	32.52	60.00	-27.48	QP	
9		23.9685	41.00	9.94	50.94	60.00	-9.06	QP	
10 *	*	23.9685	34.24	9.94	44.18	50.00	-5.82	AVG	
11		29.2470	26.28	9.81	36.09	60.00	-23.91	QP	
12		29.2470	20.67	9.81	30.48	50.00	-19.52	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 16 of 44

6.3 Maximum Conducted Output Power

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power porte Power Power TEMPERATURE CABRET Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure.	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 44

6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Computer Power Supply TemPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

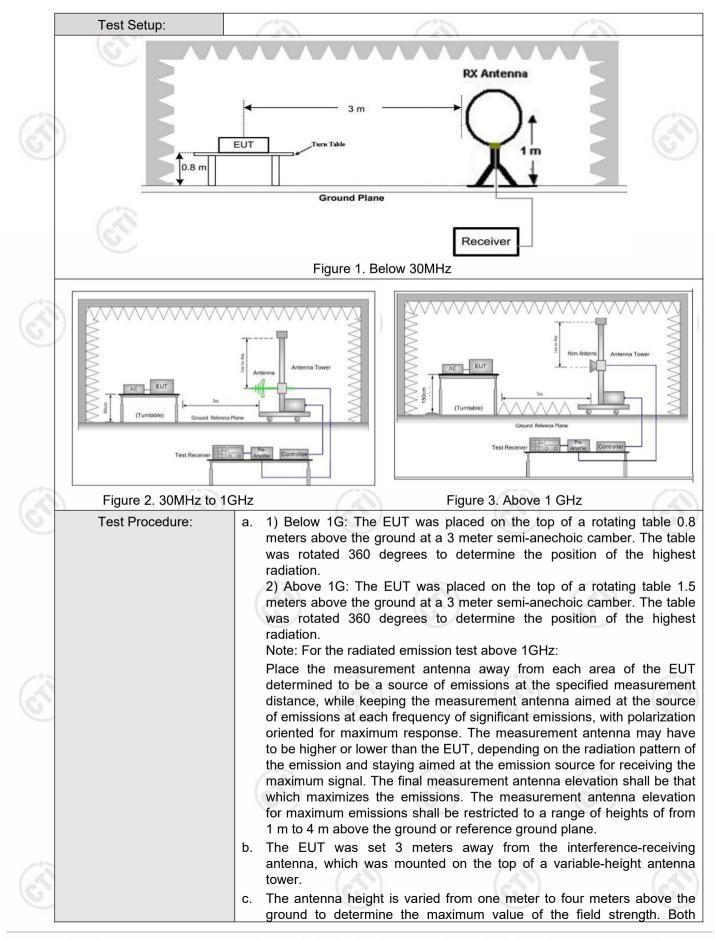


Page 19 of 44

6.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 44

6.7 Radiated Spurious Emission & Restricted bands

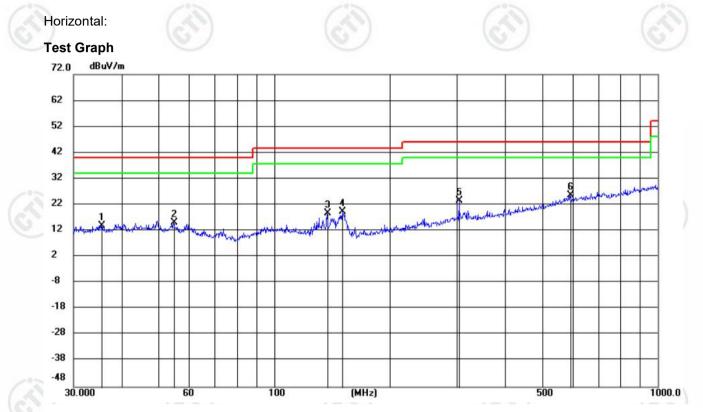

	Test Requirement:	47 CFR Part 15C Secti	on 1	15.209 and 15	.205		C	/
	Test Method:	ANSI C63.10 2013						
	Test Site:	Measurement Distance	: 3n	n (Semi-Anecl	noic Cham	ıbe	r)	
	Receiver Setup:	Frequency	0	Detector	RBW	6	VBW	Remark
S.		0.009MHz-0.090MH	z	Peak	10kH;	z	30kHz	Peak
		0.009MHz-0.090MH	z	Average	10kH;	z	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kH	z	30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kH;	z	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kH;	z	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kH	z	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-peak	. 100 kH	Ιz	300kHz	Quasi-peak
13			2	Peak	1MHz	z	3MHz	Peak
S I		Above 1GHz		Peak	1MHz	2)	10kHz	Average
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measuremer distance (m
		0.009MHz-0.490MHz	2	400/F(kHz)	-		- / 2	300
		0.490MHz-1.705MHz	24	4000/F(kHz)	-			30
		1.705MHz-30MHz		30	-	<u>e</u>		30
		30MHz-88MHz		100	40.0	G)uasi-peak	3
100		88MHz-216MHz		150	43.5	G)uasi-peak	3
		216MHz-960MHz	9	200	46.0	G)uasi-peak	3
S.		960MHz-1GHz)	500	54.0	G)uasi-peak	3
		Above 1GHz		500	54.0		Average	3
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	dB above the oment under t	maximum est. This p	ре	rmitted ave	erage emission

Page 21 of 44

【华测检测

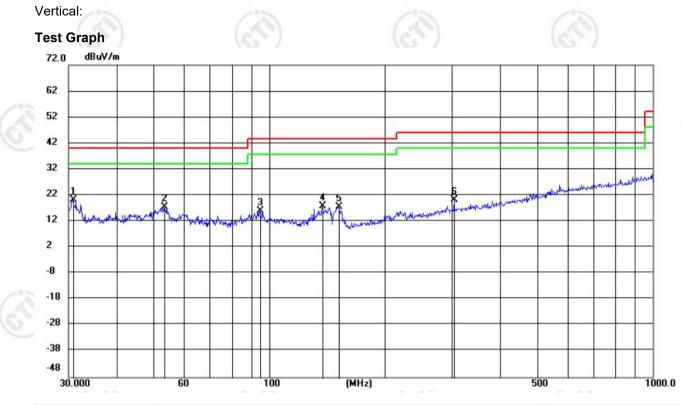
Report No. : EED32Q80348301

horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the f. limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Refer to clause 5.3 Test Mode: Pass Test Results:



Page 22 of 44

Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M of antenna 2 was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		35.3874	0.61	13.38	13.99	40.00	-26.01	QP	199	300	
2		54.7195	1.34	13.75	15.09	40.00	-24.91	QP	100	7	
3		137.5166	9.01	9.71	18.72	43.50	-24.78	QP	100	28	
4		150.8019	9.70	9.75	19.45	43.50	-24.05	QP	199	102	
5		304.1830	6.80	16.75	23.55	46.00	-22.45	QP	100	79	
6	*	592.4261	2.31	23.32	25.63	46.00	-20.37	QP	199	352	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	30.8210	7.47	12.78	20.25	40.00	-19.75	QP	100	164	
2		53.1872	3.60	13.89	17.49	40.00	-22.51	QP	100	196	
3		94.7269	3.37	12.76	16.13	43.50	-27.37	QP	100	59	
4	1	137.4924	8.23	9.71	17.94	43.50	-25.56	QP	100	352	
5	3	152.0764	7.69	9.83	17.52	43.50	-25.98	QP	100	<mark>35</mark> 2	
6		304.2363	3.61	16.75	20.36	46.00	-25.64	QP	200	360	



Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M of antenna 2 was recorded in the report.

		L	BLE GFSK Tra	nsmitting		Channel: 2402 MHz			2
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1207.0207	7.98	20.48	28.46	74.00	45.54	Pass	Н	PK
2	1670.067	8.37	21.95	30.32	74.00	43.68	Pass	Н	PK
3	4873.1249	-13.46	51.01	37.55	74.00	36.45	Pass	Н	PK
4	8157.3438	-3.40	45.72	42.32	74.00	31.68	Pass	Н	PK
5	11145.543	-0.48	45.27	44.79	74.00	29.21	Pass	Н	PK
6	13754.717	4.55	43.30	47.85	74.00	26.15	Pass	Н	PK
7	1275.4275	7.78	21.85	29.63	74.00	44.37	Pass	V	PK
8	1747.0747	8.49	21.45	29.94	74.00	44.06	Pass	V	PK
9	3995.0663	-16.52	55.01	38.49	74.00	35.51	Pass	V	PK
10	5318.1545	-11.89	53.94	42.05	74.00	31.95	Pass	V	PK
11	6639.2426	-8.34	52.77	44.43	74.00	29.57	Pass	V	PK
12	11597.5732	1.03	44.43	45.46	74.00	28.54	Pass	V	PK

п									-	
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2440 MHz	2
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1311.2311	7.78	20.71	28.49	74.00	45.51	Pass	Н	PK
	2	1751.4751	8.49	22.48	30.97	74.00	43.03	Pass	Н	PK
	3	4108.0739	-15.61	51.94	36.33	74.00	37.67	Pass	Н	PK
	4	5288.1525	-11.98	49.46	37.48	74.00	36.52	Pass	Н	PK
	5	7849.3233	-3.98	46.72	42.74	74.00	31.26	Pass	Н	PK
	6	13672.7115	5.41	43.07	48.48	74.00	25.52	Pass	Н	PK
	7	1207.8208	7.98	21.70	29.68	74.00	44.32	Pass	V	PK
	8	1550.255	7.93	21.96	29.89	74.00	44.11	Pass	V	PK
23	9	3327.0218	-18.10	57.17	39.07	74.00	34.93	Pass	V	PK
~	10	5328.1552	-11.85	52.38	40.53	74.00	33.47	Pass	V	PK
-	11	6641.2428	-8.32	54.52	46.20	74.00	27.80	Pass	V	PK
	12	13683.7122	5.28	43.44	48.72	74.00	25.28	Pass	V	PK

Hotline:400-6788-333

www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 44

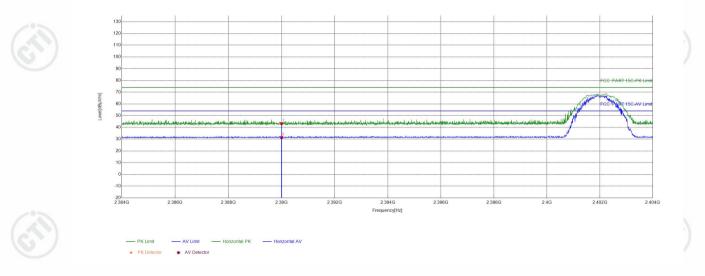
		10		- 0		20 m			- Changel - Chan	
	Mode	:		BLE GFSK Trai	nsmitting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1132.0132	7.27	20.52	27.79	74.00	46.21	Pass	Н	PK
	2	1687.6688	8.45	21.68	30.13	74.00	43.87	Pass	н	PK
	3	4796.1197	-13.45	52.97	39.52	74.00	34.48	Pass	Н	PK
	4	7801.3201	-3.94	47.63	43.69	74.00	30.31	Pass	Н	PK
	5	9504.4336	-0.50	44.12	43.62	74.00	30.38	Pass	н	PK
	6	14191.7461	7.16	41.65	48.81	74.00	25.19	Pass	Н	PK
Ī	7	1269.0269	7.81	21.21	29.02	74.00	44.98	Pass	V	PK
Ī	8	1771.6772	8.48	22.56	31.04	74.00	42.96	Pass	V	PK
	9	3988.0659	-16.55	57.04	40.49	74.00	33.51	Pass	V	PK
Ī	10	6639.2426	-8.34	53.06	44.72	74.00	29.28	Pass	V	PK
3	11	9450.43	-0.92	43.70	42.78	74.00	31.22	Pass	V	PK
	12	13668.7112	5.47	43.27	48.74	74.00	25.26	Pass	V	PK
	/					ā.			•	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

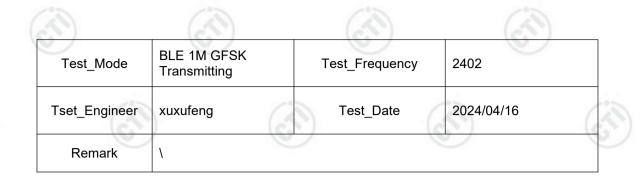

Restricted bands:

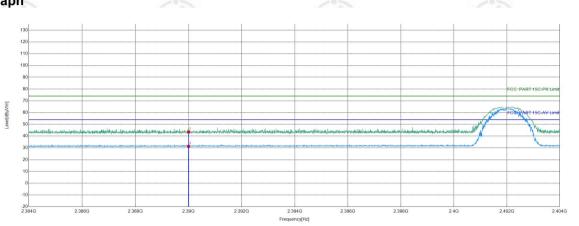
Test plot as follows:

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402	
Tset_Engineer	xuxufeng	Test_Date	2024/04/16	
Remark	1	(A)		

Test Graph

	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	33.28	43.24	74.00	30.76	PASS	Horizontal	PK
[2	2390	9.96	21.48	31.44	74.00	42.56	PASS	Horizontal	AV



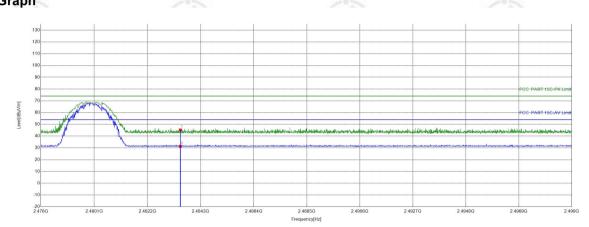


Test Graph

· AV Detector PK Detector

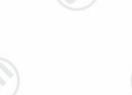
	Suspecte	d List	~~								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390	9.96	33.49	43.45	74.00	30.55	PASS	Vertical	PK	
Ī	2	2390	9.96	21.34	31.30	74.00	42.70	PASS	Vertical	AV	
	S			(\mathbf{G}^{*})	1	(C)			ST)		

Hotline:400-6788-333



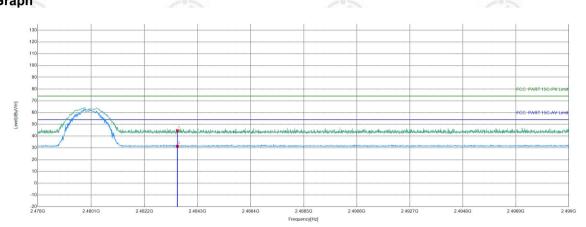
Page 29 of 44

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480	
Tset_Engineer	xuxufeng	Test_Date	2024/04/16	


Test Graph

- PK Limit AV Limit ntal PK - Horizontal AV * AV Detector

req.	Factor				1			
лец. ЛHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
183.5	10.38	34.89	45.27	74.00	28.73	PASS	Horizontal	PK
83.5	10.38	20.92	31.30	74.00	42.70	PASS	Horizontal	AV
+	- 83.5	/HZ] 10.38	Introduction Introduction<	Item Item <th< td=""><td>Item Item <th< td=""><td>AHz] Image: Constraint of the second se</td><td>MHZJ I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<></td><td>AHZ IdBµV IdBµV/m IdBµV/m IdBµV/m IdBµ IdBµ 83.5 10.38 34.89 45.27 74.00 28.73 PASS Horizontal</td></th<></td></th<>	Item Item <th< td=""><td>AHz] Image: Constraint of the second se</td><td>MHZJ I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<></td><td>AHZ IdBµV IdBµV/m IdBµV/m IdBµV/m IdBµ IdBµ 83.5 10.38 34.89 45.27 74.00 28.73 PASS Horizontal</td></th<>	AHz] Image: Constraint of the second se	MHZJ I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	AHZ IdBµV IdBµV/m IdBµV/m IdBµV/m IdBµ IdBµ 83.5 10.38 34.89 45.27 74.00 28.73 PASS Horizontal

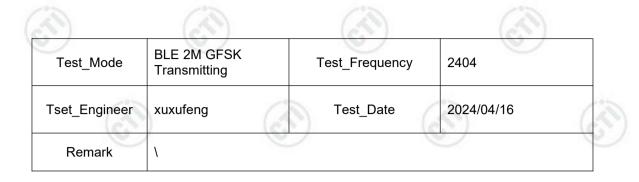


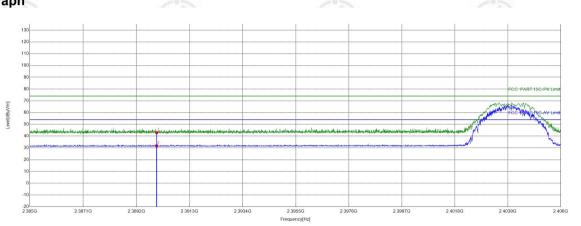
Page 30 of 44

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	xuxufeng	Test_Date	2024/04/16

Test Graph

PK Limit — AV Limit — Vertical PK — Vertical AV AV Detector


Suspect	ed List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	10.38	34.30	44.68	74.00	29.32	PASS	Vertical	PK	
2	2483.5	10.38	21.00	31.38	74.00	42.62	PASS	Vertical	AV	
0	5		61		6			ST)		

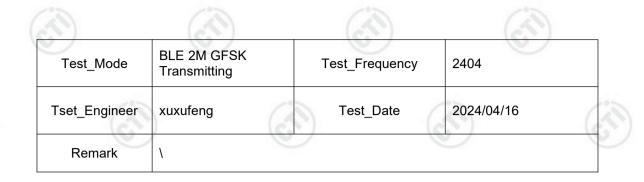


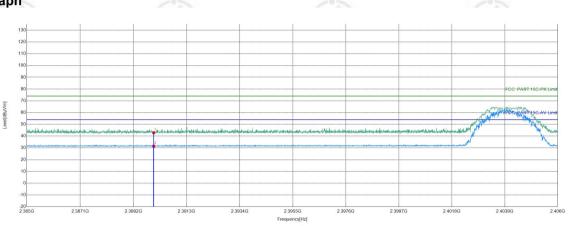
Page 31 of 44

Test Graph

PK Limit AV Limit Horizontal PK Horizontal A PK Detector AV Detector

3	Suspecte	d List	~~~		2°						
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390	9.96	33.04	43.00	74.00	31.00	PASS	Horizontal	PK	
	2	2390	9.96	21.78	31.74	74.00	42.26	PASS	Horizontal	AV	
'	S			(\mathbf{G})	1	(C)			ST)		



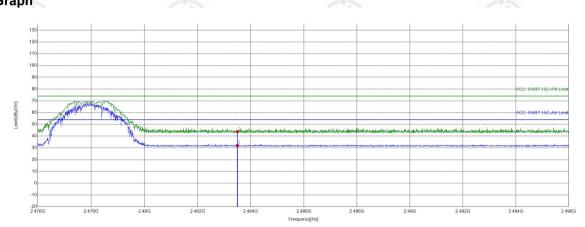


Test Graph

PK Limit AV Limit Vertical PK Vertical AV PK Detector AV Detector

Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2390	9.96	32.92	42.88	74.00	31.12	PASS	Vertical	PK
2390	9.96	21.48	31.44	74.00	42.56	PASS	Vertical	AV
	[MHz] 2390	Freq. [MHz] [dB] 2390 9.96	Freq. [MHz] [dB] Reading [dBμV] 2390 9.96 32.92	Freq. [MHz][dB]Reading [dBµV]Level [dBµV]23909.9632.9242.88	Freq. [MHz][dB]Reading [dBμV]Level [dBμV]Limit [dBμV/m]23909.9632.9242.8874.00	Freq. [MHz][dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dBµ23909.9632.9242.8874.0031.12	Freq. [MHz][dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]Result23909.9632.9242.8874.0031.12PASS	Freq. [MHz][dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity23909.9632.9242.8874.0031.12PASSVertical

Hotline:400-6788-333



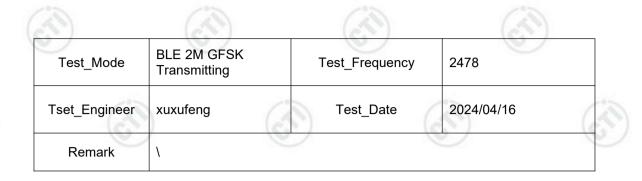
Page 33 of 44

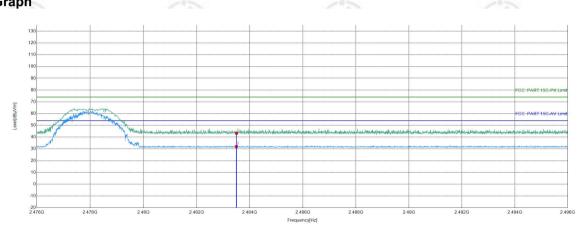
Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2478	
Tset_Engineer	xuxufeng	Test_Date	2024/04/16	

Test Graph

PK Limit — AV Limit — Horizontal PK — Horizontal AV AV Detector

Reading Lev [dBµV] [dBµV		Margin [dB]	Result	Polarity	Remark
33.48 43.8	36 74.00	30.14	PASS	Horizontal	PK
21.63 32.0	01 74.00	41.99	PASS	Horizontal	AV
-					





Page 34 of 44

Test Graph

PK Limit — AV Limit — Vertical PK — Vertical AV AV Detector

Suspected List								
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2483.5	10.38	32.86	43.24	74.00	30.76	PASS	Vertical	PK
2483.5	10.38	21.58	31.96	74.00	42.04	PASS	Vertical	AV
	[MHz] 2483.5	Freq. [MHz] [dB] 2483.5 10.38	Freq. [MHz] [dB] Reading [dBμV] 2483.5 10.38 32.86	Freq. [MHz] [dB] Reading [dBμV] Level [dBμV/m] 2483.5 10.38 32.86 43.24	Freq. [MHz][dB]Reading [dBμV]Level [dBμV]Limit [dBμV/m]2483.510.3832.8643.2474.00	Freq. [MHz][dB]Reading [dB μ V]Level [dB μ V/m]Limit [dB μ V/m]Margin [dB]2483.510.3832.8643.2474.0030.76	Freq. [MHz][dB]Reading [dBμV]Level [dBμV/m]Limit [dBμV/m]Margin [dB]Result2483.510.3832.8643.2474.0030.76PASS	Freq. [MHz][dB]Reading [dBμV]Level [dBμV/m]Limit [dBμV/m]Margin [dB]ResultPolarity2483.510.3832.8643.2474.0030.76PASSVertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com