

| Product Name: Remote Controller                                                                                                                                                             | Report No:ITEZA2-202500003RF  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Product Model: ERF6K66H, ERF6xy66pqrstuvw,x:<br>A-Z; y: A-Z, Blank; p: A-Z, Blank; q: A-Z, Blank;<br>r: (, Blank; s: 0-9, Blank; t: 0-9, Blank; u: 0-9, Blank;<br>v: 0-9, Blank; w:), Blank | Security Classification: Open |
| Version: V1.0                                                                                                                                                                               | Total Page:55                 |

# **TIRT Testing Report**

| Prepared By: | Checked By: | Approved By: | shnology Sea   |
|--------------|-------------|--------------|----------------|
| Aaron Long   | Stone Tang  | Joky Wang    | Let TIP        |
| Aaron long   | Stone Tang  | Joby Wany    | HL shenzhen .0 |



# **FCC Radio Test Report**

# FCC ID: 2AVIGBR0021

According to

## 47 CFR FCC Part 15, Subpart C(Section 15.247)

## ANSI C63.10:2013

| Applicant:    | Hisense Visual Technology Co., Ltd.                                      |
|---------------|--------------------------------------------------------------------------|
| Address:      | No.218 Qianwangang Road, Economy and Technology                          |
| Address.      | Development Zone, Qingdao, China                                         |
| Manufacturer: | Wuxi Funide Digital Co.,Ltd.                                             |
| Address:      | NO.55 You Shen Road, Xishan Zone Wuxi. China                             |
| Sample No:    | 1000041514                                                               |
| Product Name: | Remote Controller                                                        |
| Brand Name:   | N/A                                                                      |
|               | ERF6K66H, ERF6xy66pqrstuvw,x: A-Z; y: A-Z, Blank;                        |
| Model No.:    | p: A-Z, Blank; q: A-Z, Blank; r: (, Blank; s: 0-9, Blank; t: 0-9, Blank; |
|               | u: 0-9, Blank; v: 0-9, Blank; w:), Blank                                 |
| Test No.:     | ERF6K66H                                                                 |

| Date of Receipt: | 2025/01/07            |
|------------------|-----------------------|
| Date of Test:    | 2025/01/07~2025/01/10 |
| Issued Date:     | 2025/01/13            |
| Testing Lab:     | TIRT                  |

**Note:** This report shall not be reproduced except in full, without the written approval of Beijing TIRT Technology Service Co.,Ltd Shenzhen.Laboratory.

This document may be altered or revised by Beijing TIRT Technology Service Co.,Ltd Shenzhen. Laboratory.Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.



| Table of Contents                                     | Page |
|-------------------------------------------------------|------|
| REPORT ISSUED HISTORY                                 | 6    |
| 1 . SUMMARY OF TEST RESULTS                           | 7    |
| 1.1 TEST FACILITY                                     | 8    |
| 1.2 MEASUREMENT UNCERTAINTY                           | 8    |
| 1.3 TEST ENVIRONMENT CONDITIONS                       | 9    |
| 2 . GENERAL INFORMATION                               | 10   |
| 2.1 GENERAL DESCRIPTION OF EUT                        | 10   |
| 2.2 DESCRIPTION OF TEST MODES                         | 11   |
| 2.3 PARAMETERS OF TEST SOFTWARE                       | 12   |
| 2.4. ACCESSORIES OF DEVICE (EUT)                      | 12   |
| 2.5. ANCILLARY EQUIPMENT DETAILS                      | 12   |
| 2.6 BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED | 12   |
| 2.7 SUPPORT UNITS                                     | 12   |
| 3 .AC POWER LINE CONDUCTED EMISSIONS                  | 13   |
| 3.1 LIMIT                                             | 13   |
| 3.2 TEST PROCEDURE                                    | 13   |
| 3.3 DEVIATIONFROMTESTSTANDARD                         | 13   |
| 3.4 TESTSETUP                                         | 14   |
| 3.5 EUT OPERATING CONDITIONS                          | 14   |
| 3.6 TEST RESULTS                                      | 14   |
| 4 . RADIATED EMISSIONS                                | 15   |
| 4.1 LIMIT                                             | 15   |
| 4.2 TEST PROCEDURE                                    | 16   |
| 4.3 DEVIATIONFROMTESTSTANDARD                         | 17   |
| 4.4 TESTSETUP                                         | 17   |
| 4.5 EUT OPERATING CONDITIONS                          | 19   |
| 4.6 TEST RESULT- 9KHZ TO 30MHZ                        | 19   |
| 4.7 TEST RESULT- 30MHZ TO 1000MHZ                     | 19   |
| 4.8 TEST RESULT- ABOVE 1000MHZ                        | 19   |
| 5 .BANDWIDTH                                          | 20   |
| 5.1 LIMIT                                             | 20   |
| 5.2 TEST PROCEDURE                                    | 20   |
| 5.3 DEVIATION FROM STANDARD                           | 20   |
|                                                       |      |



| Table of Contents                              | Page |
|------------------------------------------------|------|
| 5.4 TEST SETUP                                 | 20   |
| 5.5 EUT OPERATION CONDITIONS                   | 20   |
| 5.6 TESTRESULTS                                | 20   |
| 6 .MAXIMUM OUTPUT POWER                        | 21   |
| 6.1 LIMIT                                      | 21   |
| 6.2 TEST PROCEDURE                             | 21   |
| 6.3 DEVIATION FROM STANDARD                    | 21   |
| 6.4 TEST SETUP                                 | 21   |
| 6.5 EUT OPERATION CONDITIONS                   | 21   |
| 6.6 TESTRESULTS                                | 21   |
| 7 .CONDUCTED SPURIOUS EMISSION                 | 22   |
| 7.1 LIMIT                                      | 22   |
| 7.2 TEST PROCEDURE                             | 22   |
| 7.3 DEVIATION FROM STANDARD                    | 22   |
| 7.4 TEST SETUP                                 | 22   |
| 7.5 EUT OPERATION CONDITIONS                   | 22   |
| 7.6 TEST RESULTS                               | 22   |
| 8 .POWER SPECTRAL DENSITY                      | 23   |
| 8.1 LIMIT                                      | 23   |
| 8.2 TEST PROCEDURE                             | 23   |
| 8.3 DEVIATION FROM STANDARD                    | 23   |
| 8.4 TEST SETUP                                 | 23   |
| 8.5 EUT OPERATION CONDITIONS                   | 23   |
| 8.6 TEST RESULTS                               | 23   |
| 9. ANTENNA REQUIREMENT                         | 24   |
| 9.1STANDARD REQUIREMENT                        | 24   |
| 9.2ANTENNA CONNECTED CONSTRUCTION              | 24   |
| 9.3RESULTS                                     | 24   |
| 10. MEASUREMENT INSTRUMENTS LIST               | 25   |
| 11. PHOTOS OF TEST SETUP                       | 26   |
| 12. PHOTOS OF EUT                              | 28   |
| APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS | 33   |



## **Table of Contents**

Page

| APPENDIX B - RADIATED EMISSION -9 KHZ TO 30 MHZ   | 35 |
|---------------------------------------------------|----|
| APPENDIX C - RADIATED EMISSION-30 MHZ TO 1000 MHZ | 36 |
| APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ   | 38 |
| APPENDIX E - BANDWIDTH                            | 40 |
| APPENDIX F - MAXIMUM OUTPUT POWER                 | 44 |
| APPENDIX G - CONDUCTED SPURIOUS EMISSION          | 46 |
| APPENDIX H - POWER SPECTRAL DENSITY               | 52 |
| APPENDIX I: DUTY CYCLE                            | 54 |



## **REPORT ISSUED HISTORY**

| Report No.         | Version | Description      | Issued Date | Note  |
|--------------------|---------|------------------|-------------|-------|
| ITEZA2-202500003RF | V1.0    | Original Report. | 2025.01.13  | Valid |



## **1. SUMMARY OF TEST RESULTS**

Test procedures according to the technical standard(s):

| FCC CFR Title 47, Part 15, Subpart C |                                      |                                        |          |         |
|--------------------------------------|--------------------------------------|----------------------------------------|----------|---------|
| Standard(s) Section                  | Test Item                            | Test Result                            | Judgment | Remark  |
| 15.207                               | AC Power Line Conducted<br>Emissions | APPENDIX A                             | PASS     |         |
| 15.247(d)<br>15.205(a)<br>15.209(a)  | Radiated Emissions                   | APPENDIX B<br>APPENDIX C<br>APPENDIX D | PASS     |         |
| 15.247(a)(2)                         | Bandwidth                            | APPENDIX E                             | PASS     |         |
| 15.247(b)(3)                         | Maximum Output Power                 | APPENDIX F                             | PASS     |         |
| 15.247(d)                            | Conducted Spurious<br>Emission       | APPENDIX G                             | PASS     |         |
| 15.247(e)                            | Power Spectral Density               | APPENDIX H                             | PASS     |         |
| 15.203                               | Antenna Requirement                  |                                        | PASS     | Note(2) |

Note:

(1) "N/A" denotes test is not applicable to this device.

(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.



## **1.1 TEST FACILITY**

| Company:                                  | Beijing TIRT Technology Service Co.,Ltd Shenzhen                                                                                                                                |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:                                  | 104 Building C, Xinmingsheng Industrial Park No.132, Zhangge<br>Old Village East Zone, Zhangge Community, Fucheng Street,<br>Longhua District, Shenzhen, Guangdong, P. R. China |
| CNAS Registration<br>Number:              | CNAS L14158                                                                                                                                                                     |
| A2LA Registration Number:                 | 6049.01                                                                                                                                                                         |
| FCC Accredited<br>Lab.Designation Number: | CN1366                                                                                                                                                                          |
| FCC Test Firm Registration Number:        | 820690                                                                                                                                                                          |
| Telephone:                                | +86-0755-27087573                                                                                                                                                               |

## **1.2 MEASUREMENT UNCERTAINTY**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The measurement uncertainty as below table:

| Uncertainty                                      |             |
|--------------------------------------------------|-------------|
| Parameter                                        | Uncertainty |
| Occupied Channel Bandwidth                       | ±142.12 KHz |
| RF power conducted                               | ±0.74 dB    |
| RF power radiated                                | ±3.25dB     |
| Spurious emissions, conducted                    | ±1.78dB     |
| Spurious emissions, radiated (30MHz $\sim$ 1GHz) | ±4.6dB      |
| Spurious emissions, radiated (1GHz ~ 18GHz)      | ±4.9dB      |
| Conduction Emissions(150kHz~30MHz)               | ±3.1 dB     |
| Humidity                                         | ±4.6%       |
| Temprature                                       | ±0.7°C      |
| Time                                             | ±1.25%      |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.



## **1.3 TEST ENVIRONMENT CONDITIONS**

| Test Item                             | Temperature | Humidity | Test Voltage                                                   | Tested By  |
|---------------------------------------|-------------|----------|----------------------------------------------------------------|------------|
| AC Power Line Conducted Emissions     | 26°C        | 53%      | DC 5V from adapter                                             | Stone Tang |
| Radiated Emissions-9 k z to 30 MHz    | 24°C        | 50%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| Radiated Emissions-30 MHz to 1000 MHz | 24°C        | 53%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| Radiated Emissions-Above 1000 MHz     | 26°C        | 53%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| Bandwidth                             | 25°C        | 56%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| Maximum Output Power                  | 24°C        | 54%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| ConductedSpurious Emission            | 25°C        | 62%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |
| Power Spectral Density                | 26°C        | 60%      | DC 5V from adapter or<br>DC 3.05-4.12V from<br>super-capacitor | Stone Tang |



## 2. GENERAL INFORMATION

## 2.1 GENERAL DESCRIPTION OF EUT

| Equipment               | Remote Controller                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| Brand Name              | N/A                                                                                                               |
| Test Model              | ERF6K66H                                                                                                          |
|                         | ERF6K66H, ERF6xy66pqrstuvw,x: A-Z; y: A-Z, Blank;                                                                 |
| Series Model            | p: A-Z, Blank; q: A-Z, Blank; r: (, Blank; s: 0-9, Blank; t: 0-9, Blank; u: 0-9, Blank; v: 0-9, Blank; w:), Blank |
| Model Difference(s)     | The only difference is the name of model, everything else is exactly the                                          |
| Model Difference(s)     | same                                                                                                              |
| Software Version        | V1.0                                                                                                              |
| Hardware Version        | V1.0                                                                                                              |
| Power Rating            | DC 5V from adapter or DC 3.05-4.12V from super-capacitor                                                          |
| Operation Frequency     | 2402 MHz ~ 2480 MHz                                                                                               |
| Modulation Type         | GFSK                                                                                                              |
| Bit Rate of Transmitter | 1Mbps                                                                                                             |
| Max. Output Power       | 1Mbps: 7.28dBm (0.005346W)                                                                                        |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.



## 2.2 DESCRIPTION OF TEST MODES

The test software was used to control EUT work in Continuous TX mode, and select test channel, wireless mode

| Tested mode, channel, and data rate information |         |                    |  |  |
|-------------------------------------------------|---------|--------------------|--|--|
| Mode                                            | Channel | Frequency<br>(MHz) |  |  |
|                                                 | CH00    | 2402               |  |  |
| GFSK (1M)                                       | CH20    | 2442               |  |  |
|                                                 | CH39    | 2480               |  |  |

#### Channel List:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|
| 00      | 2402               | 20      | 2442               |
| 01      | 2404               | 21      | 2444               |
| 02      | 2406               | 22      | 2446               |
| 03      | 2408               | 23      | 2448               |
| 04      | 2410               | 24      | 2450               |
| 05      | 2412               | 25      | 2452               |
| 06      | 2414               | 26      | 2454               |
| 07      | 2416               | 27      | 2456               |
| 08      | 2418               | 28      | 2458               |
| 09      | 2420               | 29      | 2460               |
| 10      | 2422               | 30      | 2462               |
| 11      | 2424               | 31      | 2464               |
| 12      | 2426               | 32      | 2466               |
| 13      | 2428               | 33      | 2468               |
| 14      | 2430               | 34      | 2470               |
| 15      | 2432               | 35      | 2472               |
| 16      | 2434               | 36      | 2474               |
| 17      | 2436               | 37      | 2476               |
| 18      | 2438               | 38      | 2478               |
| 19      | 2440               | 39      | 2480               |

#### Table for Filed Antenna:

| Ant. | Manufactured | Model<br>Name | Antenna<br>Type | Connector | Gain<br>(dBi) |
|------|--------------|---------------|-----------------|-----------|---------------|
| 1    | N/A          | N/A           | PCB<br>Antenna  | N/A       | 2.7526        |

Note: Antenna information is provided by applicant.

The antenna is for fixed use



## 2.3 PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

| Test Software Version | Button frequency setting |         |         |
|-----------------------|--------------------------|---------|---------|
| Frequency (MHz)       | 2402                     | 2442    | 2480    |
| 1Mbps                 | default                  | default | default |

## 2.4. ACCESSORIES OF DEVICE (EUT)

| Accessories  | / |
|--------------|---|
| Manufacturer | / |
| Model        | / |
| Ratings      | 1 |
|              | 1 |

## 2.5. ANCILLARY EQUIPMENT DETAILS

|     | No.                                         | Description | Manufacturer                                   | Model    | Serial Number | Certification or<br>SDoC |
|-----|---------------------------------------------|-------------|------------------------------------------------|----------|---------------|--------------------------|
|     | 1                                           | adapter     | Shenzhen DOOGEE Hengtong<br>Technology CO.,LTD | TP20C-US | N/A           | N/A                      |
| ot. | to: Adaptors are provided by the laboratory |             |                                                |          |               |                          |

Note: Adapters are provided by the laboratory

## 2.6 BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED

## 2.7 SUPPORT UNITS

| No. | Description | Manufacturer | Model | Note |
|-----|-------------|--------------|-------|------|
| 1   | /           | /            | /     | /    |
| 2   | /           | /            | /     | /    |



## **3.AC POWER LINE CONDUCTED EMISSIONS**

## 3.1LIMIT

| Frequency of Emission (MHz) | Limit (dBµV) |           |  |
|-----------------------------|--------------|-----------|--|
| Frequency of Emission (MHZ) | Quasi-peak   | Average   |  |
| 0.15 -0.5                   | 66 to 56*    | 56 to 46* |  |
| 0.5-5.0                     | 56           | 6         |  |
| 5.0 -30.0                   | 60           | 50        |  |

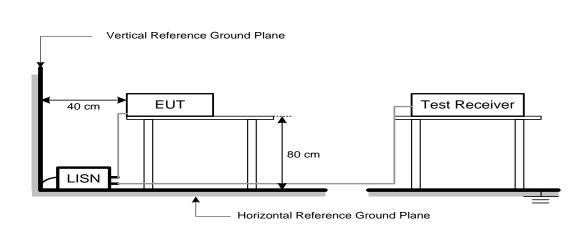
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

## **3.2TEST PROCEDURE**

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipmentpowered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the groundplane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


| Receiver Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 3.3DEVIATIONFROMTESTSTANDARD

No deviation.



## 3.4TESTSETUP



The LISN edge is arranged parallel to the edge of the test table

The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of

the EUT

### **3.5EUT OPERATING CONDITIONS**

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

### 3.6 TEST RESULTS

Please refer to the APPENDIX-A



## 4. RADIATED EMISSIONS

## 4.1LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a)limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000MHz)

| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009-0.490 | 2400/F(kHz)        | 300                  |
| 0.490-1.705 | 24000/F(kHz)       | 30                   |
| 1.705-30.0  | 30                 | 30                   |
| 30-88       | 100                | 3                    |
| 88-216      | 150                | 3                    |
| 216-960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                 | (dBuV/m at 3 m) |         |
|-----------------|-----------------|---------|
| Frequency (MHz) | Peak            | Average |
| Above 1000      | 74              | 54      |

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).



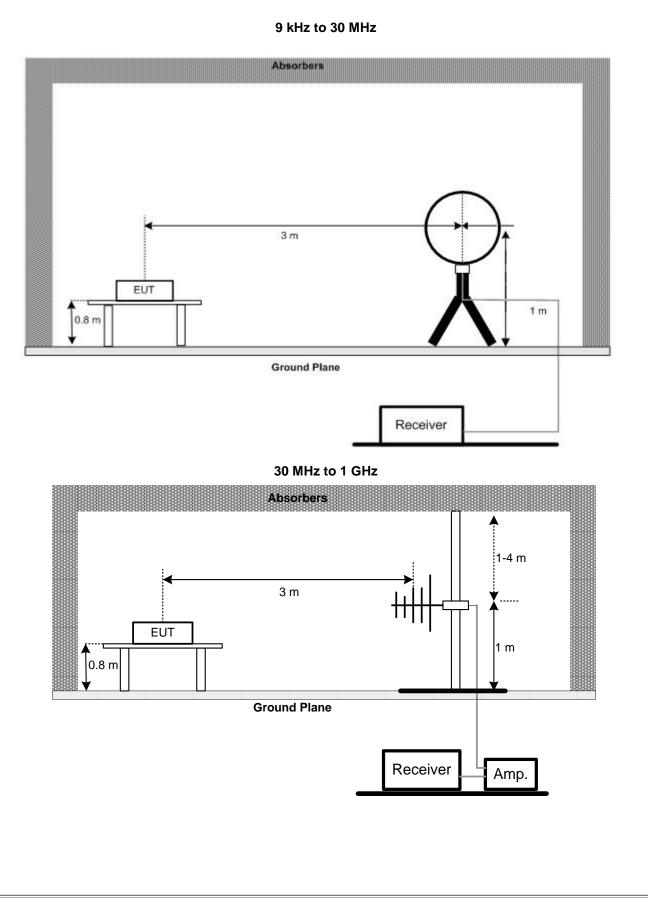
### 4.2TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

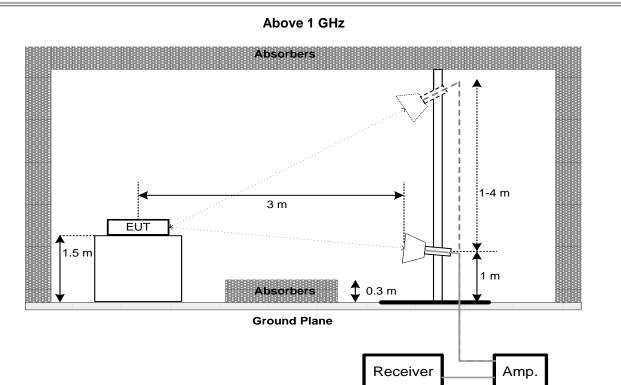
The following table is the setting of the receiver:

| Spectrum Parameters    | Setting                         |  |
|------------------------|---------------------------------|--|
| Start ~ Stop Frequency | 9 kHz~150 kHz for RBW 200 Hz    |  |
| Start ~ Stop Frequency | 0.15 MHz~30 MHz for RBW 9 kHz   |  |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz |  |

| Spectrum Parameters           | Setting                    |
|-------------------------------|----------------------------|
| Start Frequency               | 1000 MHz                   |
| Stop Frequency                | 10th carrier harmonic      |
| RBW / VBW                     | 1MHz / 3MHz for PK value   |
| (Emission in restricted band) | 1MHz / 1/THz for AVG value |


| Spectrum Parameters    | Setting                             |
|------------------------|-------------------------------------|
| Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector    |
| Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector      |
| Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector |
| Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector      |
| Start ~ Stop Frequency | 30MHz~1000MHz for QP detector       |
| Start ~ Stop Frequency | 1 GHz~26.5GHz for PK/AVG detector   |




## 4.3DEVIATIONFROMTESTSTANDARD

No deviation.

## 4.4TESTSETUP









### **4.5EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

## 4.6 TEST RESULT- 9kHz TO 30MHz

Please refer to the APPENDIX-B

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

## 4.7 TEST RESULT- 30MHz TO 1000MHz

Please refer to the APPENDIX-C

#### 4.8 TEST RESULT- ABOVE 1000MHz

Please refer to the APPENDIX-D

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.



## 5.BANDWIDTH

#### 5.1LIMIT

| Section          | Test Item              | Limit      |
|------------------|------------------------|------------|
| FCC 15.247(a)(2) | 6dB Bandwidth          | >= 500 kHz |
|                  | 99% Emission Bandwidth | -          |

#### 5.2TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

#### For 6 dB Bandwidth:

| Spectrum Parameters | Setting                 |  |
|---------------------|-------------------------|--|
| Span Frequency      | > Measurement Bandwidth |  |
| RBW                 | 100 kHz                 |  |
| VBW                 | 300kHz                  |  |
| Detector            | Peak                    |  |
| Trace               | Max Hold                |  |
| Sweep Time          | Auto                    |  |

#### For 99% Emission Bandwidth:

| Spectrum Parameters | Setting                                 |  |
|---------------------|-----------------------------------------|--|
| Span Frequency      | Between 1.5 times and 5.0 times the OBW |  |
| RBW                 | 50 kHz                                  |  |
| VBW                 | 200kHz                                  |  |
| Detector            | Peak                                    |  |
| Trace               | Max Hold                                |  |
| Sweep Time          | Auto                                    |  |

#### **5.3DEVIATION FROM STANDARD**

No deviation.

## **5.4TEST SETUP**



#### **5.5EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

### 5.6TESTRESULTS

Please refer to the APPENDIX-E



## 6.MAXIMUM OUTPUT POWER

## 6.1LIMIT

| Section          | Test Item            | Limit                   |
|------------------|----------------------|-------------------------|
| FCC 15.247(b)(3) | Maximum Output Power | 1.0000 watt or 30.00dBm |

#### **6.2TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting  |
|---------------------|----------|
| Span Frequency      | ≥ 3×RBW  |
| RBW                 | 2 MHz    |
| VBW                 | 5 MHz    |
| Detector            | Peak     |
| Trace               | Max Hold |
| Sweep Time          | Auto     |

## **6.3DEVIATION FROM STANDARD**

No deviation.

## 6.4TEST SETUP



#### **6.5EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

#### 6.6TESTRESULTS

Please refer to the APPENDIX-F



## 7.CONDUCTED SPURIOUS EMISSION

## 7.1LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

## 7.2TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 30 MHz   |
| Stop Frequency      | 26.5 GHz |
| RBW                 | 100 kHz  |
| VBW                 | 300 kHz  |
| Detector            | Peak     |
| Trace               | Max Hold |
| Sweep Time          | Auto     |

#### 7.3DEVIATION FROM STANDARD

No deviation.

## 7.4TEST SETUP



## **7.5EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

#### 7.6 TEST RESULTS

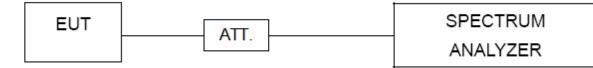
Please refer to the APPENDIX-G



## **8.POWER SPECTRAL DENSITY**

## 8.1LIMIT

| Section       | Test Item              | Limit                   |
|---------------|------------------------|-------------------------|
| FCC 15.247(e) | Power Spectral Density | 8 dBm<br>(in any 3 kHz) |


#### **8.2TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting                         |  |
|---------------------|---------------------------------|--|
| Span Frequency      | 2 MHz (1 Mbps) / 4 MHz (2 Mbps) |  |
| RBW                 | 3 kHz                           |  |
| VBW                 | 10 kHz                          |  |
| Detector            | Peak                            |  |
| Trace               | Max Hold                        |  |
| Sweep Time          | Auto                            |  |

#### **8.3DEVIATION FROM STANDARD** No deviation.

## **8.4TEST SETUP**



#### **8.5EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode. **8.6 TEST RESULTS** 

Please refer to the APPENDIX-H



## 9. ANTENNA REQUIREMENT

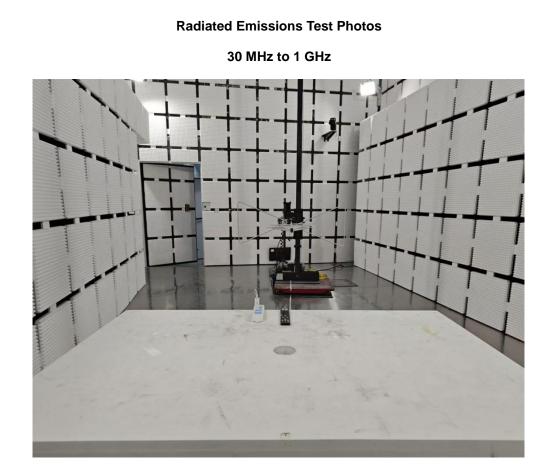
## 9.1STANDARD REQUIREMENT

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## 9.2ANTENNA CONNECTED CONSTRUCTION

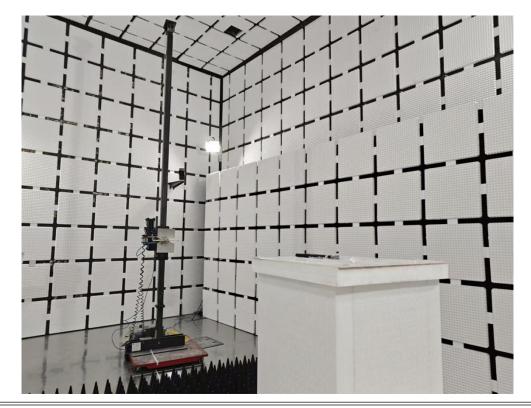
The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

### 9.3RESULTS


The EUT antenna is PCB antenna. It complies with the standard requirement.



| 0. MEASUREMENT INSTRUMENTS LIST |                    |                          |                              |                     |                    |
|---------------------------------|--------------------|--------------------------|------------------------------|---------------------|--------------------|
| Name of Equipment               | Manufacturer       | Model Number             | Serial Number                | Last<br>Calibration | Due<br>Calibration |
| EMI Receiver                    | Rohde&Schwarz      | ESIB 40                  | YH-TIRT-SAC-966<br>-20220911 | 2025/01/05          | 2026/01/04         |
| Integral Antenna                | Schwarzbeck        | VULB 9163                | 01314                        | 2023/12/11          | 2025/12/10         |
| Integral Antenna                | Rohde&Schwarz      | HF907                    | RSM2991424                   | 2023/12/11          | 2025/12/10         |
| Preamplifier                    | Emtrace            | RP01A                    | '02017                       | 2025/01/05          | 2026/01/04         |
| Preamplifier                    | Schwarzbeck        | BBV9744                  | 00143                        | 2025/01/05          | 2026/01/04         |
| Loop Antenna                    | ZHINAN             | ZN30900A                 | 12024                        | 2025/01/05          | 2026/01/04         |
| Exposure Level Tester           | narda              | ELT-400                  | N-0925                       | 2025/01/05          | 2026/01/04         |
| Horn Antenna                    | Schwarzbeck        | BBHA9170                 | 00956                        | 2025/01/05          | 2026/01/04         |
| RF Cable                        | /                  | LMR400UF-NMNM-7.<br>0M   | /                            | 2025/01/05          | 2026/01/04         |
| RF Cable                        | /                  | SFT2050PUR-NMNM<br>-7.0M | /                            | 2025/01/05          | 2026/01/04         |
| EMI Receiver                    | Rohde&Schwarz      | ESR7                     | 1316.3003K07-10<br>2611-mk   | 2024/11/02          | 2025/11/01         |
| LISN                            | Rohde&Schwarz      | ENV216                   | 3560.655.12-1029<br>15-Bp    | 2024/11/02          | 2025/11/01         |
| ISN                             | Schwarzbeck        | ENY81                    | 1309.8510.03                 | 2025/01/05          | 2026/01/04         |
| ISN                             | Schwarzbeck        | ENY81-CAT6               | 1309.8526.03-101<br>976-kh   | 2025/01/05          | 2026/01/04         |
| RF Cable                        | /                  | SFT2050PUR-NMNM<br>-2.0M | \                            | 2025/01/05          | 2026/01/04         |
| CMW500                          | ROHDE&SCHWARZ      | CMW500                   | 120434                       | 2025/01/05          | 2026/01/04         |
| Spectrum analyzer               | ROHDE&SCHWARZ      | FSU26                    | 200732                       | 2025/01/05          | 2026/01/04         |
| Spectrum analyzer               | ROHDE&SCHWARZ      | FSV40-N                  | 101722                       | 2025/01/05          | 2026/01/04         |
| vector Signal Generator         | KEYSIGHT           | N5182B                   | MY56200458                   | 2025/01/05          | 2026/01/04         |
| vector Signal Generator         | HEWLETT<br>PACKARD | 83752A                   | 3610A02458                   | 2025/01/05          | 2026/01/04         |
| Filter                          | HEWLETT<br>PACKARD | JS0806-F                 | 19K8060209                   | 2025/01/05          | 2026/01/04         |
| Wireless comprehensive tester   | ANRISTU            | MT8821C                  | SN6262170409                 | 2025/01/05          | 2026/01/04         |
| Wireless comprehensive tester   | ANRISTU            | MT8000A                  | SN6262166782                 | 2025/01/05          | 2026/01/04         |




## **11. PHOTOS OF TEST SETUP**

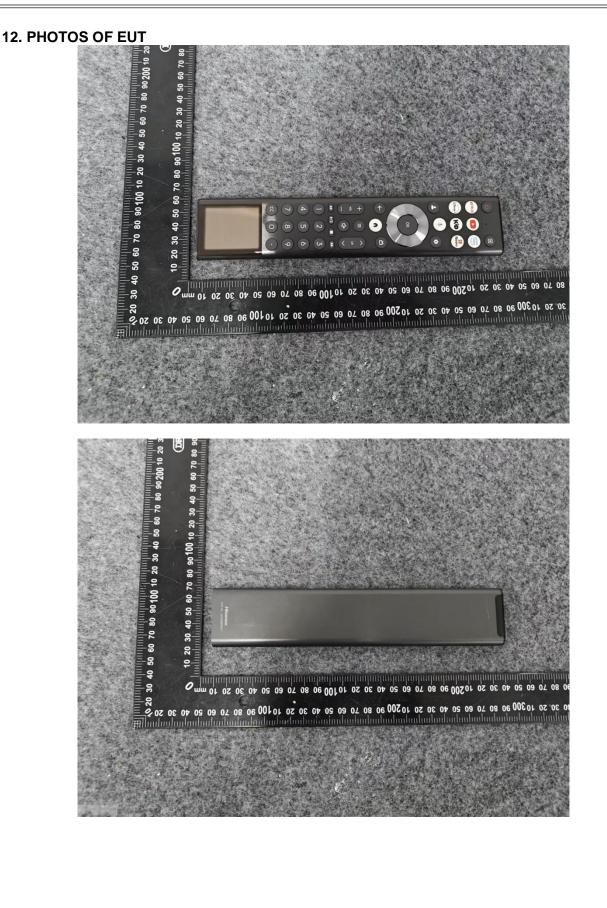


#### **Radiated Emissions Test Photos**

Above 1 GHz

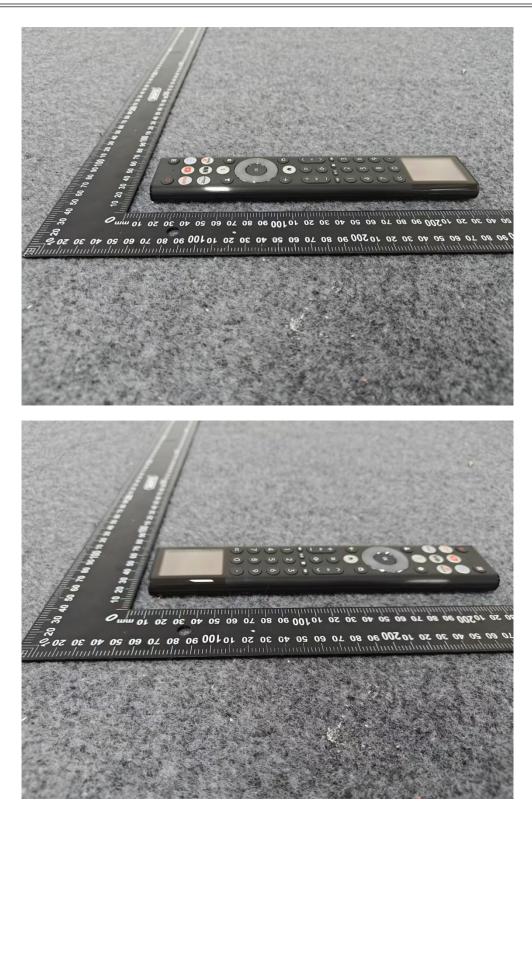




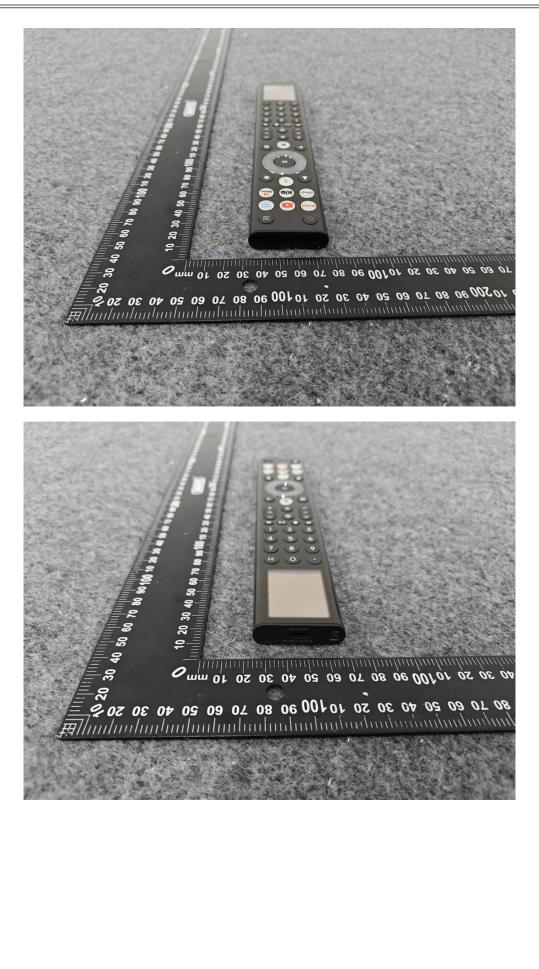

### **Conducted Test Photos**



AC POWER LINE CONDUCTED EMISSIONS Test Photos

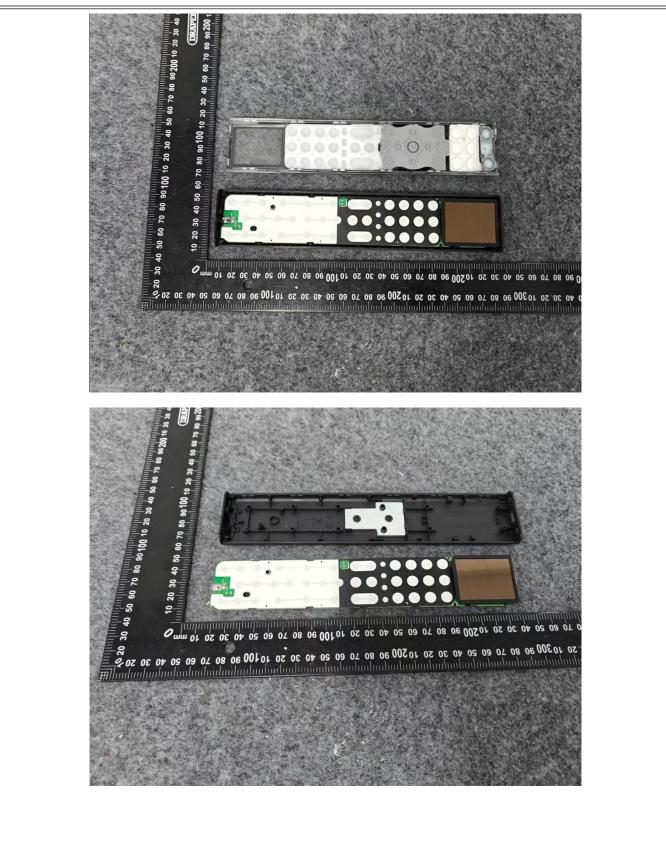










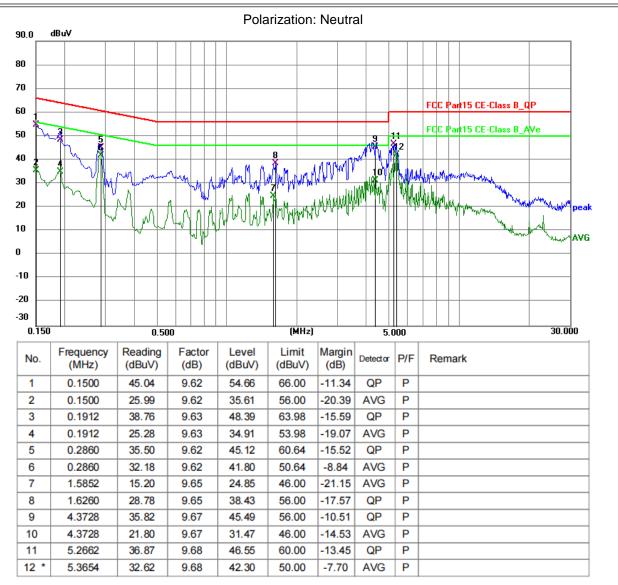





#### Report No.: ITEZA2-202500003RF






Report No.: ITEZA2-202500003RF

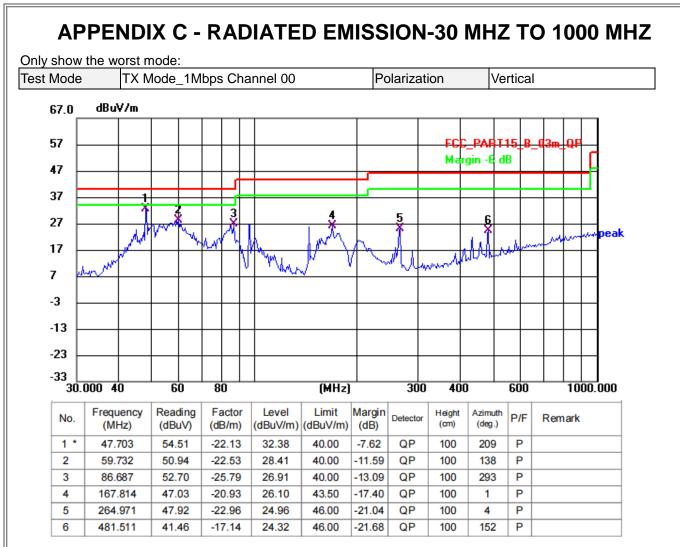




#### **APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS** Polarization: Line 90.0 dBu¥ 80 70 FCC Part15 CE-Class B\_QP 60 FCC Part15 CE-Class B\_AVe 50 40 ALAND MAR Ą٣ 30 20 peal 10 AVG 0 -10 -20 -30 0.150 (MHz) 30.000 0.500 5.000 Reading Margin Frequency Factor Level Limit No. Detector P/F Remark (MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) 0.1510 QP Ρ 39.96 9.63 49.59 65.94 -16.35 1 2 0.1510 25.16 9.63 34.79 55.94 -21.15 AVG Ρ 3 0.2792 37.46 47.09 60.84 -13.75 QP Ρ 9.63 4 0.2792 32.42 9.63 42.05 50.84 -8.79 AVG Ρ 5 4.1423 31.41 9.67 41.08 56.00 -14.92 QP Ρ 6 4.1423 15.90 9.67 25.57 46.00 -20.43 AVG Ρ 7 5.3340 36.90 9.68 46.58 60.00 -13.42 QP Ρ 8 \* 5.3654 32.70 9.68 42.38 50.00 -7.62 AVG Ρ 9 1.6214 28.03 9.65 37.68 56.00 -18.32 QP Ρ Р 10 1.6214 9.65 23.72 46.00 -22.28 14.07 AVG 11 0.5594 26.99 9.62 36.61 56.00 -19.39 QP Ρ 0.5639 12.83 22.45 46.00 -23.55 Ρ 12 9.62 AVG



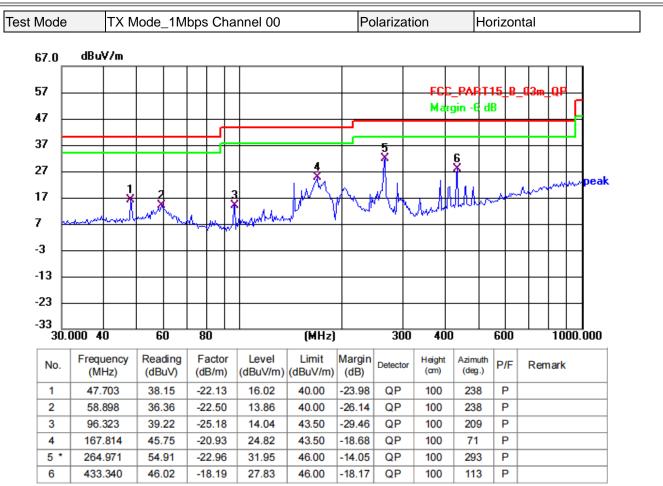





# APPENDIX B - RADIATED EMISSION -9 KHZ TO 30 MHZ

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.






#### REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





#### REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.



# **APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ**

Test Result of RADIATED EMISSION-1000MHz TO 25GHz

| Test                    | Mode :      | GFSK TX L | -OW                 |                   |                    |                   |        |        |  |
|-------------------------|-------------|-----------|---------------------|-------------------|--------------------|-------------------|--------|--------|--|
| No.                     | Freq<br>MHz | Polarity  | Reading<br>(dBuV/m) | Correct<br>Factor | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin | Remark |  |
| 1                       | 4804        | V         | 88.15               | -27.21            | 60.94              | 74                | -13.06 | Peak   |  |
| 2                       | 4804        | V         | 69.39               | -27.21            | 42.18              | 54                | -11.82 | Avg    |  |
| 3                       | 7206        |           |                     |                   |                    |                   |        |        |  |
| 4                       | 9608        |           |                     |                   |                    |                   |        |        |  |
| 5                       | 4804        | Н         | 90.44               | -27.21            | 63.23              | 74                | -10.77 | Peak   |  |
| 6                       | 4804        | Н         | 68.52               | -27.21            | 41.31              | 54                | -12.69 | Avg    |  |
| 7                       | 7206        |           |                     |                   |                    |                   |        |        |  |
| 8                       | 9608        |           |                     |                   |                    |                   |        |        |  |
| Test Mode : GFSK TX Mid |             |           |                     |                   |                    |                   |        |        |  |
| 1                       | 4880        | V         | 90.55               | -27.84            | 62.71              | 74                | -11.29 | Peak   |  |
| 2                       | 4880        | V         | 70.48               | -27.84            | 42.64              | 54                | -11.36 | Avg    |  |
| 3                       | 7320        |           |                     |                   |                    |                   |        |        |  |
| 4                       | 9760        |           |                     |                   |                    |                   |        |        |  |
| 5                       | 4880        | Н         | 90.88               | -27.84            | 63.04              | 74                | -10.96 | Peak   |  |
| 6                       | 4880        | Н         | 71.81               | -27.84            | 43.97              | 54                | -10.03 | Avg    |  |
| 7                       | 7320        |           |                     |                   |                    |                   |        |        |  |
| 8                       | 9760        |           |                     |                   |                    |                   |        |        |  |
| Test I                  | Mode :      |           |                     |                   | GFSK TX High       |                   |        |        |  |
| 1                       | 4960        | V         | 90.43               | -28.49            | 61.94              | 74                | -12.06 | Peak   |  |
| 2                       | 4960        | V         | 69.45               | -28.49            | 40.96              | 54                | -13.04 | Avg    |  |
| 3                       | 7440        |           |                     |                   |                    |                   |        |        |  |
| 4                       | 9920        |           |                     |                   |                    |                   |        |        |  |
| 5                       | 4960        | Н         | 90.98               | -28.49            | 62.49              | 74                | -11.51 | Peak   |  |
| 6                       | 4960        | Н         | 69.21               | -28.49            | 40.72              | 54                | -13.28 | Avg    |  |
| 7                       | 7440        |           |                     |                   |                    |                   |        |        |  |
| 8                       | 9920        |           |                     |                   |                    |                   |        |        |  |

Note :

1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.

2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain. Result=Reading + Correct Factor. Margin= Result-Limit.



| Т | Fest Result of Radiated Spurious at Band edges |        |             |              |                  |                        |             |        |        |  |  |  |
|---|------------------------------------------------|--------|-------------|--------------|------------------|------------------------|-------------|--------|--------|--|--|--|
|   |                                                |        | Т           | est Results  |                  |                        | PASS        |        |        |  |  |  |
|   |                                                |        | Fred        | quency Range |                  | 2                      | 310MHz~2410 | MHz    |        |  |  |  |
|   |                                                |        | -           | Test Mode    |                  | 1Mbps: GFSK TX 2402MHz |             |        |        |  |  |  |
|   | Ν                                              | Freq   | Data di     | Reading      | Correct          | Result                 | Limit       | Manufa | David  |  |  |  |
|   | 0.                                             | MHz    | Polarity    | (dBuV/m)     | Factor           | (dBuV/m)               | (dBuV/m)    | Margin | Remark |  |  |  |
|   | 1                                              | 2390   | Н           | 75.02        | -21.49           | 53.53                  | 74.00       | -20.47 | Peak   |  |  |  |
|   | 2                                              | 2390   | Н           |              | -21.49           |                        | 54.00       |        | Avg    |  |  |  |
|   | 3                                              | 2400   | Н           | 78.67        | -26.13           | 52.54                  | 74.00       | -21.46 | Peak   |  |  |  |
|   | 4 2400 H                                       |        |             |              | 2400 H26.13 54.0 |                        | 54.00       |        | Avg    |  |  |  |
|   |                                                |        |             |              |                  |                        |             |        |        |  |  |  |
|   | 1                                              | 2390   | V           | 75.11        | -21.49           | 53.62                  | 74.00       | -20.38 | Peak   |  |  |  |
|   | 2                                              | 2390   | V           |              | -21.49           |                        | 54.00       |        | Avg    |  |  |  |
|   | 3                                              | 2400   | V           | 78.80        | -26.13           | 52.67                  | 74.00       | -21.33 | Peak   |  |  |  |
|   | 4                                              | 2400   | V           |              | -26.13           |                        | 54.00       |        | Avg    |  |  |  |
|   |                                                |        |             |              |                  |                        |             |        |        |  |  |  |
|   |                                                | Т      | est Results |              |                  |                        | PASS        |        |        |  |  |  |
|   |                                                | Free   | quency Ran  | ge           |                  | 24                     | 50MHz~2550N | ſHz    |        |  |  |  |
|   |                                                | -      | Test Mode   |              |                  | 1Mbps                  | GFSK TX 24  | 80MHz  |        |  |  |  |
|   | 1                                              | 2483.5 | Н           | 78.62        | -25.31           | 53.31                  | 74.00       | -20.69 | Peak   |  |  |  |
|   | 2                                              | 2483.5 | Н           |              | -25.31           |                        | 54.00       |        | Avg    |  |  |  |
|   |                                                |        | 1           | 1            | 1                | 1                      | 1           |        |        |  |  |  |
|   | 1                                              | 2483.5 | V           | 79.21        | -25.31           | 53.90                  | 74.00       | -20.10 | Peak   |  |  |  |
|   |                                                |        |             |              |                  |                        |             | 1      |        |  |  |  |

Note: 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.

--

54.00

--

Avg

-25.31

2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

--

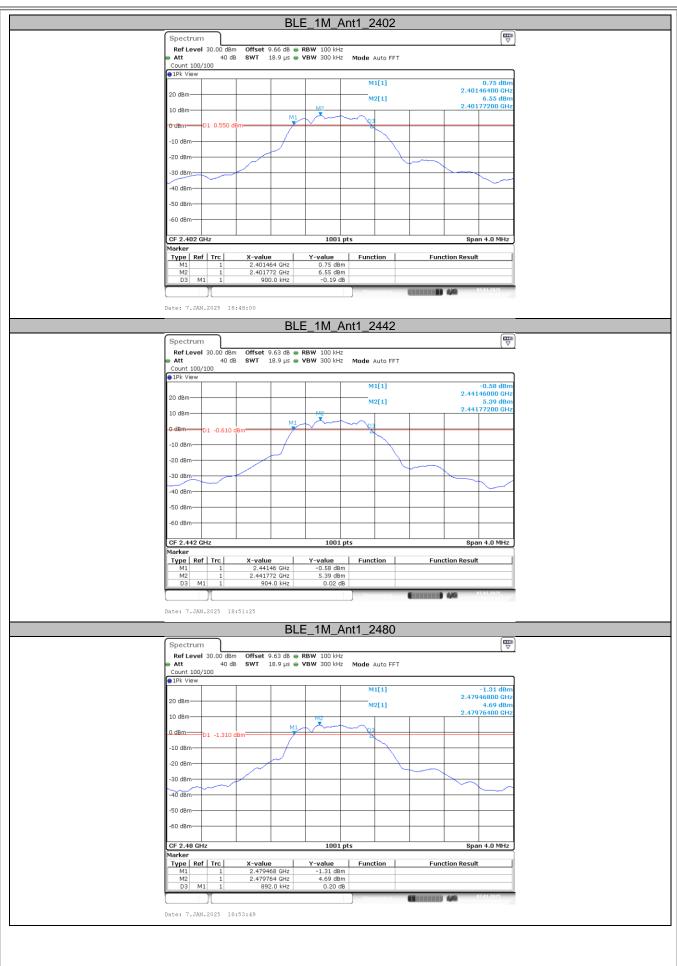
Result=Reading + Correct Factor.

Margin= Result-Limit.

2 2483.5 V

3. If the limits for the measurement with the average detector are met when using a receiver with a

peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.




# **APPENDIX E - BANDWIDTH**

#### -6dB Bandwidth

| Antenna | Freq(MHz) | DTS BW [MHz] | FL[MHz]                | FH[MHz]                                                            | Limit[MHz]                                                                                 | Verdict                                                |
|---------|-----------|--------------|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|
|         | 2402      | 0.90         | 2401.46                | 2402.36                                                            | 0.5                                                                                        | PASS                                                   |
| Ant1    | 2442      | 0.90         | 2441.46                | 2442.36                                                            | 0.5                                                                                        | PASS                                                   |
|         | 2480      | 0.89         | 2479.47                | 2480.36                                                            | 0.5                                                                                        | PASS                                                   |
|         |           | Ant1 2442    | Ant1     2402     0.90 | Ant1     2402     0.90     2401.46       2442     0.90     2441.46 | Ant1     2402     0.90     2401.46     2402.36       2442     0.90     2441.46     2442.36 | Ant1     2442     0.90     2401.46     2402.36     0.5 |



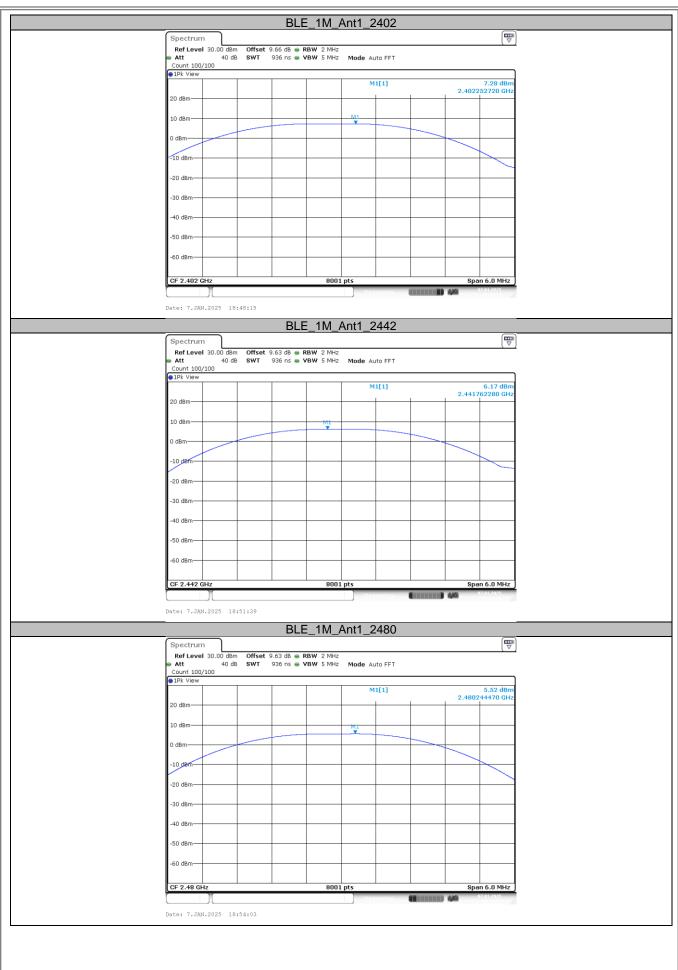





## 99% Occupied Bandwidth

| TestMode | Antenna | Freq(MHz) | OCB [MHz] | FL[MHz]   | FH[MHz]   | Limit[MHz] | Verdict |
|----------|---------|-----------|-----------|-----------|-----------|------------|---------|
|          |         | 2402      | 1.099     | 2401.4366 | 2402.5355 |            |         |
| BLE_1M   | Ant1    | 2442      | 1.091     | 2441.4446 | 2442.5355 |            |         |
|          |         | 2480      | 1.091     | 2479.4446 | 2480.5355 |            |         |





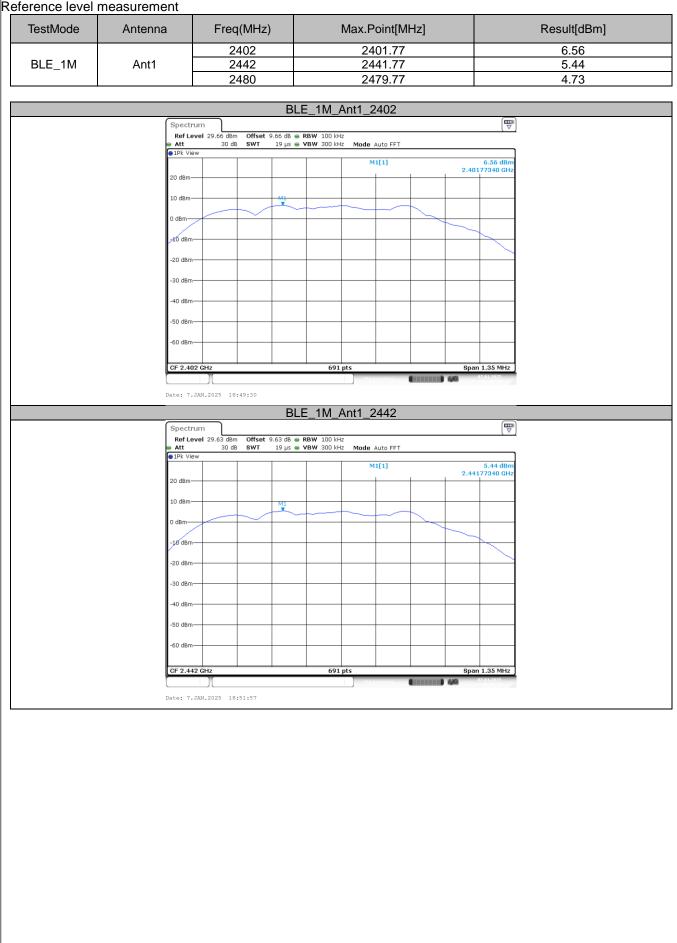




| TestMode | Antenna | Freq(MHz) | Conducted Peak<br>Powert[dBm] | Conducted<br>Limit[dBm] | Verdict |
|----------|---------|-----------|-------------------------------|-------------------------|---------|
| BLE_1M   |         | 2402      | 7.28                          | ≤30                     | PASS    |
|          | Ant1    | 2442      | 6.17                          | ≤30                     | PASS    |
|          |         | 2480      | 5.52                          | ≤30                     | PASS    |

## APPENDIX F - MAXIMUM OUTPUT POWER









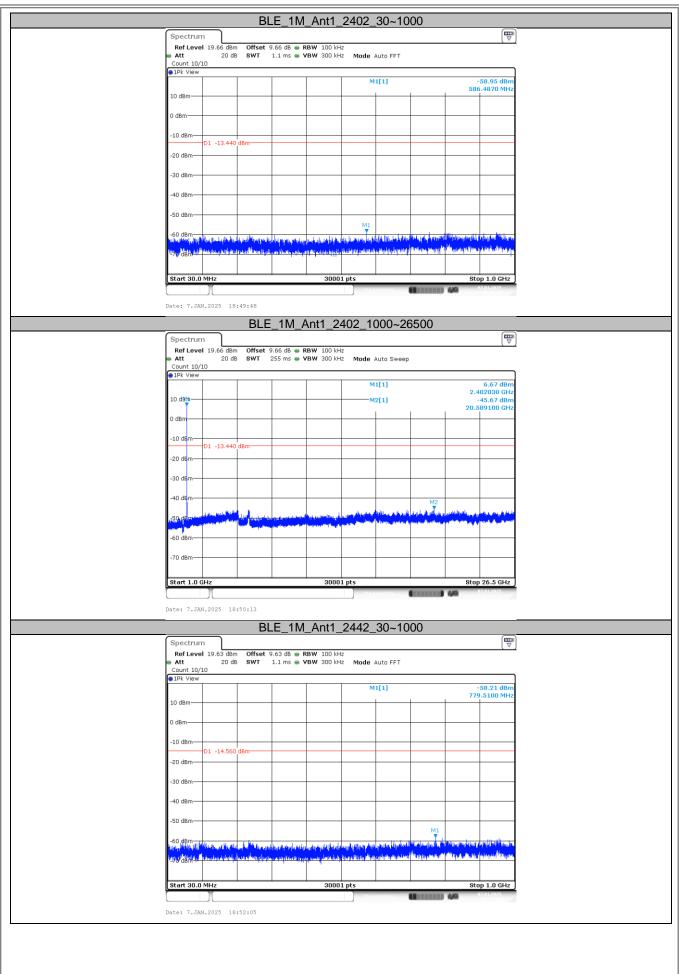

## **APPENDIX G - CONDUCTED SPURIOUS EMISSION**

Reference level measurement

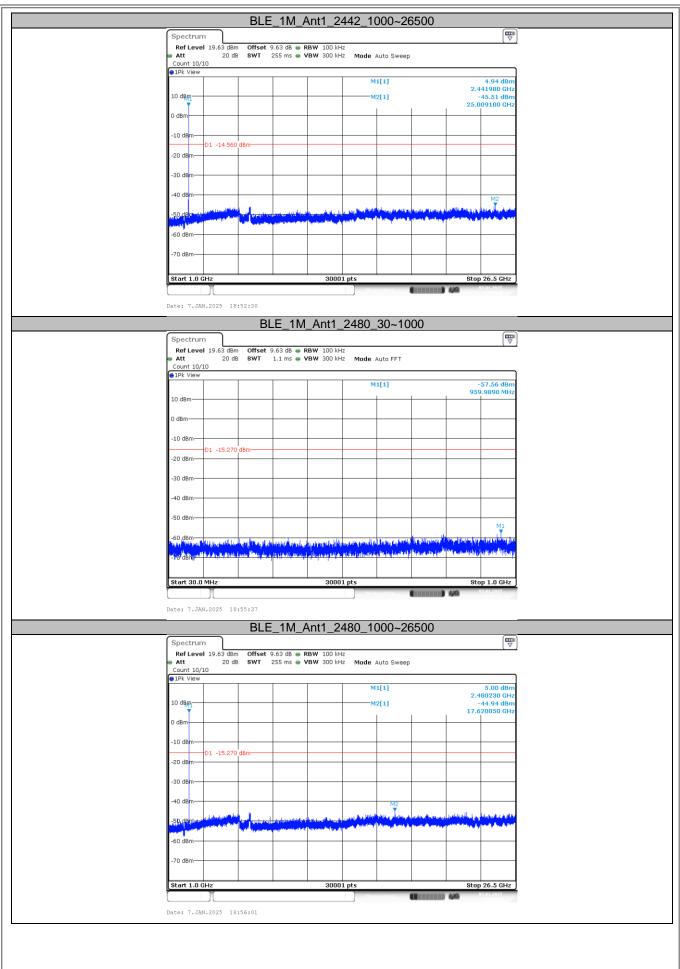




### Report No.:ITEZA2-202500003RF


| Spectrum             |                          |                  |                            |  |
|----------------------|--------------------------|------------------|----------------------------|--|
|                      |                          |                  |                            |  |
|                      | Offset 9.63 dB 👄 RBW 100 |                  | <u> </u>                   |  |
| Att 30 dB 8 IPk View | SWT 19 µs 👄 VBW 300      | Hz Mode Auto FFT |                            |  |
|                      |                          | M1[1]            | 4.73 dBm<br>2.47976820 GHz |  |
| 20 dBm-              |                          |                  |                            |  |
| 10 dBm               | M1                       |                  |                            |  |
| 0 dBm                |                          |                  |                            |  |
| -10 dBm              |                          |                  |                            |  |
| -20 dBm              |                          |                  |                            |  |
| -30 dBm              |                          |                  |                            |  |
| -40 dBm              |                          |                  |                            |  |
| -50 dBm              |                          |                  |                            |  |
| -60 dBm              |                          |                  |                            |  |
| CF 2.48 GHz          | 69                       | 1 pts            | Span 1.335 MHz             |  |
|                      |                          | Measuring        | 07.01.2025                 |  |




# Spurious Emission

| spurious En | nission             |           |                    |                   |             |            |         |
|-------------|---------------------|-----------|--------------------|-------------------|-------------|------------|---------|
| TestMode    | Antenna             | Freq(MHz) | FreqRange<br>[MHz] | RefLevel<br>[dBm] | Result[dBm] | Limit[dBm] | Verdict |
|             | 2402<br>M Ant1 2442 | 2402      | 30~1000            | 6.56              | -58.95      | ≤-13.44    | PASS    |
|             |                     | 2402      | 1000~26500         | 6.56              | -45.67      | ≤-13.44    | PASS    |
| BLE 1M      |                     | Apt1 2442 | 30~1000            | 5.44              | -58.21      | ≤-14.56    | PASS    |
|             |                     | 2442      | 1000~26500         | 5.44              | -45.51      | ≤-14.56    | PASS    |
|             |                     | 2480      | 30~1000            | 4.73              | -57.56      | ≤-15.27    | PASS    |
|             |                     | 2400      | 1000~26500         | 4.73              | -44.94      | ≤-15.27    | PASS    |





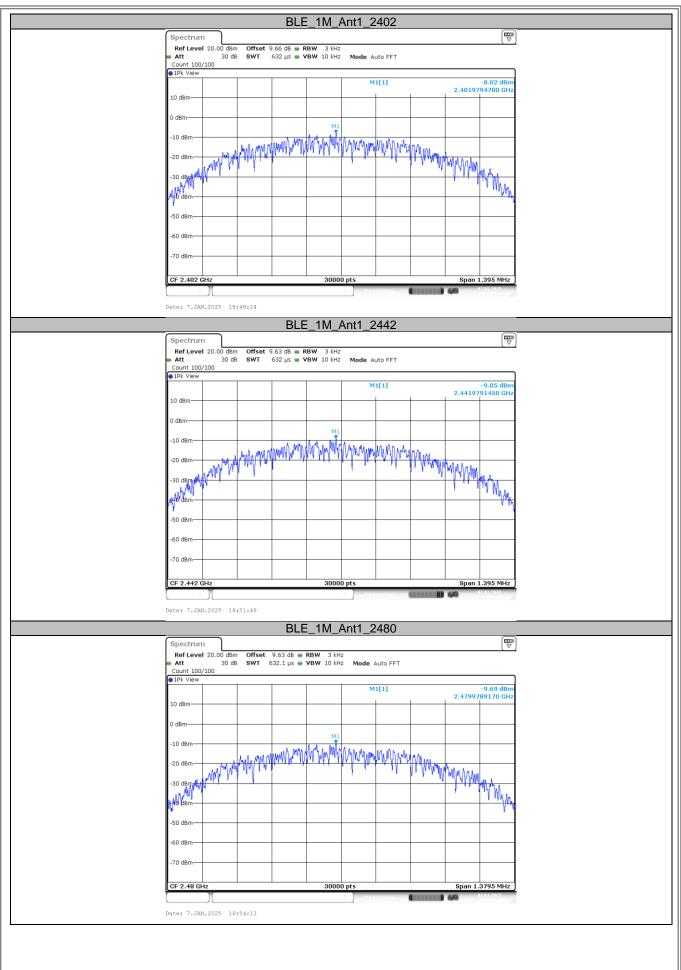






# Bandedge

| TestMode | Antenna | ChName                                                          | Freq(MHz)                                          | RefLevel[dBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result[dBm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit[dBm] | Verdic |
|----------|---------|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| BLE_1M   | Ant1    | Low                                                             | 2402                                               | 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -35.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≤-13.44    | PASS   |
|          | AIIU    | High                                                            | 2480                                               | 4.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -43.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ≤-15.27    | PASS   |
|          |         |                                                                 | BIE 1M                                             | I_Ant1_Low_2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Spectrum                                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | RefLevel 20.00<br>Att 30                                        | dBm Offset 9.66 dB 👄 RBW<br>) dB SWT 75.8 µs 👄 VBW |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -33.99 dBm                                                      |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | 10 dBm                                                          |                                                    | M3[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4000000 GHz<br>-49.07 dBm<br>2.3900000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |
|          |         | 0 dBm                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.390000 0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |
|          |         |                                                                 | 440 dBm                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -20 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        |
|          |         | -40 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wwwww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |
|          |         | v58.dBm who with                                                | ala analy and a second                             | ware to prove a warder March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MANN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        |
|          |         | -60 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -70 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Start 2.35 GHz                                                  |                                                    | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 2.405 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |        |
|          |         | Marker<br>Type Ref Trc<br>M2 1                                  | X-value Y<br>2.4 GHz                               | -value Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | M3 1<br>M4 1                                                    | 2.39 GHz -                                         | 49.07 dBm<br>35.17 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         |                                                                 |                                                    | Measuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07.01.2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |        |
|          |         | Date: 7.JAN.2025                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         |                                                                 | BLE_1M                                             | _Ant1_High_2480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Spectrum<br>Ref Level 20.00                                     |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Att 30 IPk View                                                 | )dB SWT 94.8 µs 👄 VBV                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | 10 dBm                                                          |                                                    | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -42.01 dBm<br>2.483500 GHz<br>-50.89 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |        |
|          |         | 0 dBm                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.500000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |        |
|          |         | -10 dBm                                                         | 270 dBm                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -20 dBm                                                         | 270 dBm                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -30 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -40 dBm // ///                                                  | MMM Jalan M3                                       | the second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         |                                                                 | - Contraction                                      | water all the and the state of the second state of the second of the sec | Wind and and the state of the s |            |        |
|          |         | -60 dBm                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | -70 0611                                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         |                                                                 |                                                    | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 2.55 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |        |
|          |         | Start 2.47 GHz<br>Marker                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Marker<br>Type Ref Trc<br>M2 1                                  | 2.4835 GHz -                                       | 42.01 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Marker<br>Type Ref Trc                                          | 2.4835 GHz -<br>2.5 GHz -                          | 42.01 dBm<br>50.89 dBm<br>43.40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |
|          |         | Marker       Type     Ref     Trc       M2     1       M3     1 | 2.4835 GHz -<br>2.5 GHz -<br>2.483565 GHz -        | 42.01 dBm<br>50.89 dBm<br>43.40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |

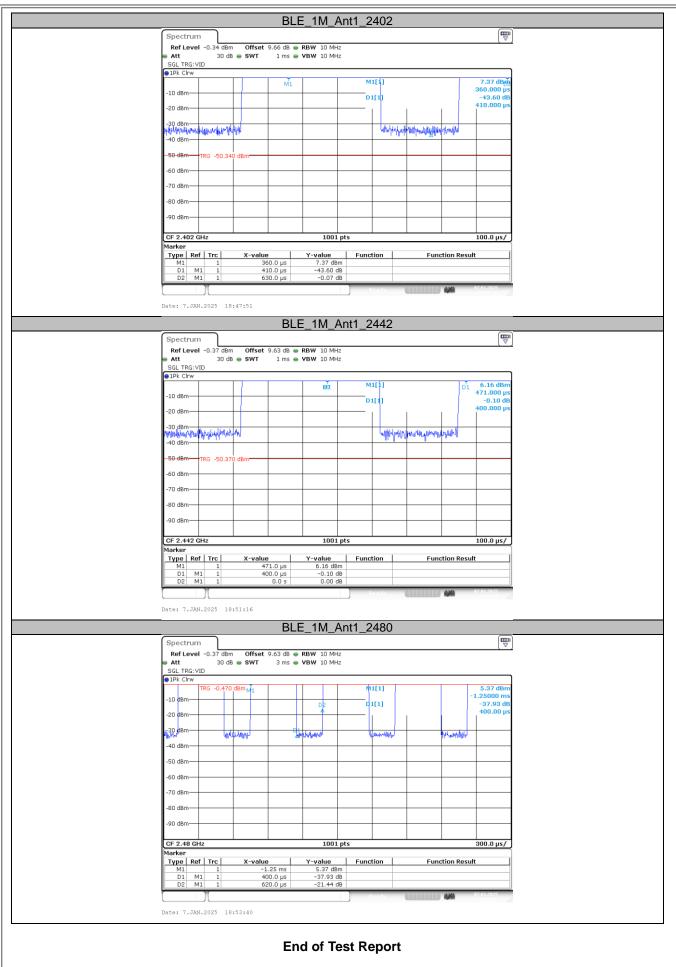



### **APPENDIX H - POWER SPECTRAL DENSITY**

#### Power Spectral Density

| TestMode | Antenna | Freq(MHz) | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|----------|---------|-----------|------------------|-----------------|---------|
|          |         | 2402      | -8.02            | ≤8.00           | PASS    |
| BLE_1M   | Ant1    | 2442      | -9.05            | ≤8.00           | PASS    |
|          |         | 2480      | -9.69            | ≤8.00           | PASS    |








## APPENDIX I: DUTY CYCLE

| TestMode | Antenna | Freq(MHz) | ON Time<br>[ms] | Period<br>[ms] | Х      | DC [%] | xFactor | Limit | Verdict |
|----------|---------|-----------|-----------------|----------------|--------|--------|---------|-------|---------|
|          |         | 2402      | 0.41            | 0.63           | 0.6508 | 65.08  | 1.87    |       |         |
| BLE_1M   | Ant1    | 2442      | 0.40            | 0.63           | 0.6349 | 63.49  | 1.97    |       |         |
|          |         | 2480      | 0.40            | 0.62           | 0.6452 | 64.52  | 1.90    |       |         |
|          |         |           |                 |                |        |        |         |       |         |



