

TEST REPORT

Applicant Name: Address: Shenzhen Jiayz photo industrial ., Ltd A16 Building, Intelligent Terminal Industrial Park of Silicon Valley Power, Guanlan,Longhua District, Shenzhen, China 2401X20549E-RF-00 2ARN3-121911RX

Report Number: FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Issue Date: Wireless Microphone BOYA mini-RXU BOYA mini-RXD, BOYA mini-RX BOYA 2024/09/11 2024/11/05

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Kingfu Muster liang

Kungfumaster Liang RF Engineer

Approved By:

Normal Wang

Nancy Wang RF Supervisor

Note: The information marked [#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " \mathbf{v} ".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF001

Page 1 of 54

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	
Test Methodology Measurement Uncertainty	
MEASUREMENT UNCERTAINTY Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	7
SPECIAL ACCESSORIES	
Equipment Modifications Support Equipment List and Details	
SUPPORT EQUIPMENT LIST AND DETAILS EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 - RF EXPOSURE	
APPLICABLE STANDARD	
Measurement Result	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) - AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
Factor & Over Limit Calculation	
TEST DATA	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	
APPLICABLE STANDARD	17
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE Factor & Over Limit/Margin Calculation	
TEST DATA	
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

FCC §15.247(A) (1) - 20 DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	40
FCC §15.247(A) (1) (III) - QUANTITY OF HOPPING CHANNEL TEST	42
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	42
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	44
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	45
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	47
APPLICABLE STANDARD	47
TEST PROCEDURE	
TEST DATA	47
FCC §15.247(D) § 5.5 - BAND EDGES TESTING	50
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	50
EUT PHOTOGRAPHS	53
TEST SETUP PHOTOGRAPHS	54

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	2401X20549E-RF-00	Original Report	2024/11/05	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)	

Product	Wireless Microphone		
Tested Model	BOYA mini-RXU		
Multiple Model(s)	BOYA mini-RXD, BOYA mini-RX		
Frequency Range	2402-2480MHz		
Transmit Peak Power	4.28dBm		
Modulation Technique	GFSK		
Antenna Specification [#]	-1.01dBi (provided by the applicant)		
Voltage Range	DC 5V from USB-C Port		
Sample serial number	2RLA-2 Conducted and for Radiated Emissions Test 2RLA-1for RF Conducted Test (Assigned by BACL, Shenzhen)		
Sample/EUT Status	Good condition		
Adapter Information	N/A		
Note: The Multiple models are electrically identical with the test model except for model name and sales channels. Please refer to the declaration letter [#] for more detail, which was provided by manufacturer.			

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		:	Uncertainty
Occupied Channel Bandwidth		Bandwidth	±5%
RF output power, conducted		conducted	0.72 dB(k=2, 95% level of confidence)
AC Power Lines Cond	ucted	9kHz-150kHz	3.94dB(k=2, 95% level of confidence)
Emissions		150kHz-30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MH	z~200MHz (Horizontal)	4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		re	±1°C
Humidity			±1%
Supply voltages		ges	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	40	2442	
1	2403	41	2443	
2	2404 42		2444	
36	2438	75	2477	
37	2439	76	2478	
38	2440	77	2479	
39	2441	78	2480	

Channel list[#]

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

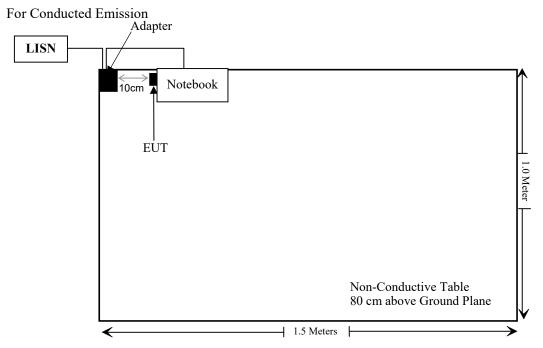
"FCC_assist 1.0.4" exercise software was used and the power level is $10^{\#}$. The software and power level was provided by the applicant.

Special Accessories

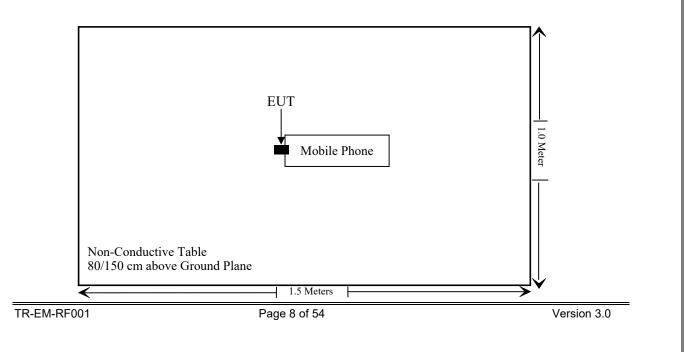
No special accessory.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
Honor	Mobile Phone	CHL-AL00	Unknown	
DELL	Adapter	DA90PE1-00	Unknown	
DELL	Notebook	WIN-74SN91CT10L	Unknown	


External I/O Cable

Cable Description	Length (m)	From Port	То	
Un-shielding detachable AC Cable	1.5	Adapter	LISN	
Un-shielding Un-detachable DC Cable	1.2	Notebook	Adapter	

Block Diagram of Test Setup

For Radiated Emissions:

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC 15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	Compliant
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d)	Radiated Emissions	Compliant
FCC §15.247(a)(1)	20 dB Emission Bandwidth	Compliant
FCC §15.247(a)(1)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1)	Peak Output Power Measurement	Compliant
FCC §15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted Emission Test								
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15			
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15			
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20			
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20			
Audix	EMI Test software	E3	191218(V9)	NCR	NCR			
	R	adiated Emission Test	t					
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15			
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20			
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19			
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17			
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17			
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13			
Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20			
Unknown	Cable	PNG214	1354	2024/05/21	2025/05/20			
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR			
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26			
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17			
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25			
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17			
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17			
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17			
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17			
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17			
Electro-Mechanics Co	Horn Antenna	3116	2026	2023/09/18	2026/09/17			
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17			
Audix	EMI Test software E3		191218(V9)	NCR	NCR			
		RF Conducted Test						
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200982	2023/12/18	2024/12/17			
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26			

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
GFSK	2402-2480	4.5	2.82	5	0.9	3.0	Yes

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

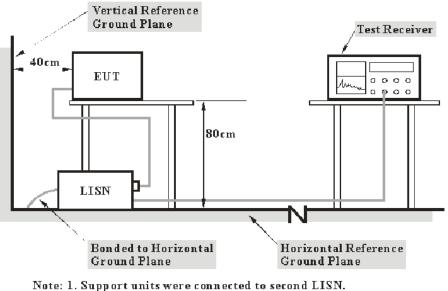
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which were permanently attached, the antenna $gain^{\#}$ is -1.01dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

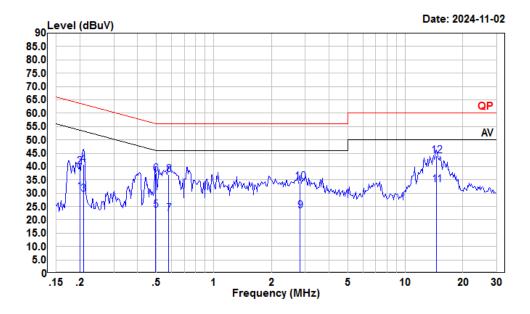
Factor = LISN VDF + Cable Loss

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over Limit = level – Limit Level= reading level+ Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

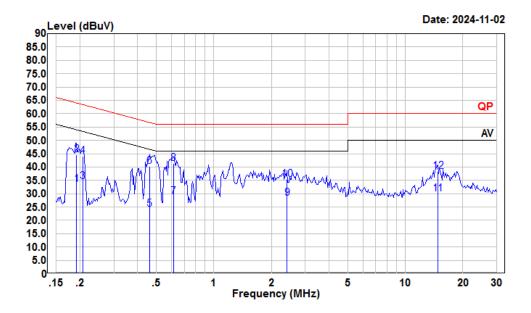
Test Data


Environmental Conditions

Temperature:	26 °C		
Relative Humidity:	52 %		
ATM Pressure:	101 kPa		

The testing was performed by Macy shi on 2024-11-02.

EUT operation mode: Transmitting (Maximum output power mode, Highest Channel)


AC 120V/60 Hz, Line

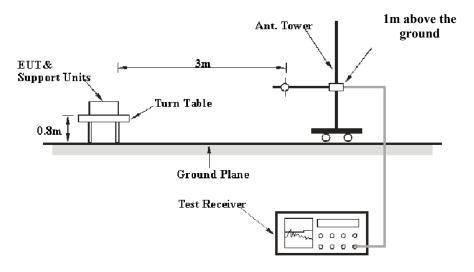
Condition:	Line
Project :	2401X20549E-RF
tester :	Macy.shi
Note :	Transmitting

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.200	10.07	30.56	10.40	10.09	53.62	-23.06	Average
2	0.200	19.48	39.97	10.40	10.09	63.62	-23.65	QP
3	0.208	9.05	29.53	10.39	10.09	53.27	-23.74	Average
4	0.208	20.40	40.88	10.39	10.09	63.27	-22.39	QP
5	0.497	3.21	23.55	10.20	10.14	46.05	-22.50	Average
6	0.497	17.00	37.34	10.20	10.14	56.05	-18.71	QP
7	0.582	2.01	22.42	10.29	10.12	46.00	-23.58	Average
8	0.582	16.62	37.03	10.29	10.12	56.00	-18.97	QP
9	2.824	2.74	23.27	10.35	10.18	46.00	-22.73	Average
10	2.824	13.71	34.24	10.35	10.18	56.00	-21.76	QP
11	14.594	12.77	33.27	10.28	10.22	50.00	-16.73	Average
12	14.594	23.57	44.07	10.28	10.22	60.00	-15.93	QP

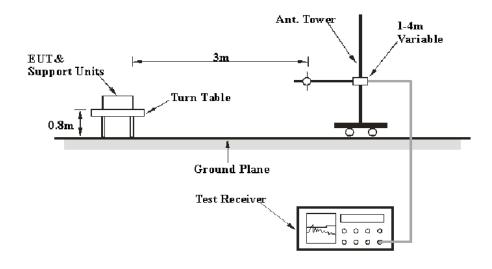
AC 120V/60 Hz, Neutral

Condition:	Neutral
Project :	2401X20549E-RF
tester :	Macy.shi
Note :	Transmitting

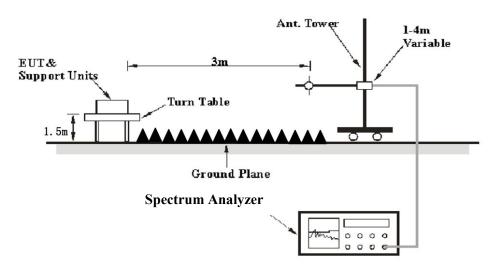
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.191	12.84	33.47	10.54	10.09	53.98	-20.51	Average
2	0.191	24.03	44.66	10.54	10.09	63.98	-19.32	QP
3	0.206	13.88	34.58	10.61	10.09	53.36	-18.78	Average
4	0.206	23.26	43.96	10.61	10.09	63.36	-19.40	QP
5	0.461	3.43	24.33	10.78	10.12	46.67	-22.34	Average
6	0.461	19.23	40.13	10.78	10.12	56.67	-16.54	QP
7	0.614	7.96	28.70	10.62	10.12	46.00	-17.30	Average
8	0.614	20.65	41.39	10.62	10.12	56.00	-14.61	QP
9	2.409	7.87	28.22	10.18	10.17	46.00	-17.78	Average
10	2.409	15.08	35.43	10.18	10.17	56.00	-20.57	QP
11	14.750	9.18	29.81	10.41	10.22	50.00	-20.19	Average
12	14.750	17.85	38.48	10.41	10.22	60.00	-21.52	QP


FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement				
9 kHz – 150 kHz	/	/	200 Hz	QP				
9 KHZ – 130 KHZ	300 Hz	1 kHz	/	PK				
150 kHz – 30 MHz	/	/	9 kHz	QP				
150 KHZ – 50 MHZ	10 kHz	30 kHz	/	РК				
30 MHz – 1000 MHz	/	/	120 kHz	QP				
	100 kHz 300 kHz		/	РК				
	Harmonics & Band Edge							
	1MHz 3 MHz		/	РК				
Above 1 GHz	Average Emission Level=Peak Emission Level+20*log(Duty cycle)							
Above I GHZ		Other Em	issions					
	1MHz	3 MHz	/	РК				
	1MHz	10 Hz	/	Average				

For Duty cycle measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, Where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

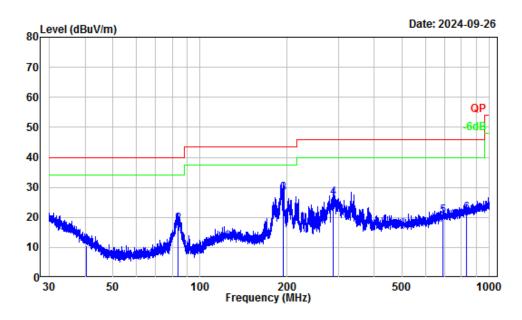
Test Data

Environmental Conditions

Temperature:	22~25 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-09-26 for below 1GHz and Zenos Qiao and Dylan Yang from 2024-09-27 to 2024-10-29 for above 1GHz.

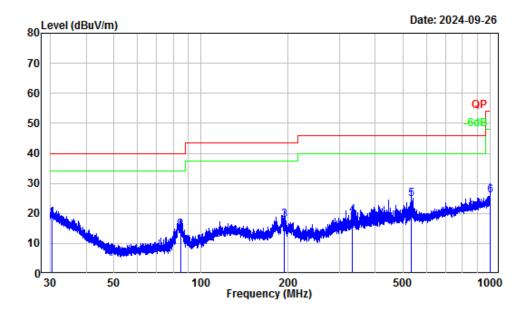
Test mode: Transmitting


Note: After pre-scan in the X, Y and Z axes of orientation, the worst case z-axis of orientation were recorded.

9 kHz-30MHz: (Maximum output power mode, High channel)

The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded.

30MHz-1GHz: (*Maximum output power mode, High channel*)


Horizontal

Site :	Chamber A
Condition :	3m Horizontal
Project Number:	2401X20549E-RF
Test Mode :	Transmitting
Tester :	Anson Su

	-				Limit		
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.51	-13.55	24.12	10.57	40.00	-29.43	QP
2	83.93	-18.76	36.68	17.92	40.00	-22.08	QP
3	194.03	-12.88	41.00	28.12	43.50	-15.38	QP
4		-12.93	39.54	26.61	46.00	-19.39	QP
5	692.59	-6.67	27.23	20.56	46.00	-25.44	QP
6	835.51	-4.38	25.92	21.54	46.00	-24.46	QP

Site	Chamber A				
Condition	:	3m Vertical			
Project Number	:	2401X20549E-RF			
Test Mode	:	Transmitting			
Tester	:	Anson Su			

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.50	-6.71	25.14	18.43	40.00	-21.57	QP
2	84.74	-18.76	33.15	14.39	40.00	-25.61	QP
3	194.20	-12.86	30.66	17.80	43.50	-25.70	QP
4		-12.47	31.80	19.33	46.00	-26.67	QP
5	533.83	-8.86	33.73	24.87	46.00	-21.13	QP
6		-1.78	27.66	25.88	54.00	-28.12	QP

Above 1GHz:

	Rece	iver		_	Corrected			
Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	GFSK							
Low Channel 2402MHz								
2379.11	55.74	PK	Н	-3.19	52.55	74	-21.45	
2354.29	54.28	PK	V	-3.16	51.12	74	-22.88	
4804.00	47.62	PK	Н	2.42	50.04	74	-23.96	
4804.00	47.33	PK	V	2.42	49.75	74	-24.25	
Middle Channel 2441MHz								
4882.00	47.61	PK	Н	2.58	50.19	74	-23.81	
4882.00	47.42	PK	V	2.58	50.00	74	-24.00	
High Channel 2480MHz								
2483.64	60.07	PK	Н	-3.17	56.90	74	-17.10	
2499.12	55.45	РК	V	-3.20	52.25	74	-21.75	
4960.00	47.41	PK	Н	2.68	50.09	74	-23.91	
4960.00	47.28	РК	V	2.68	49.96	74	-24.04	

Note:

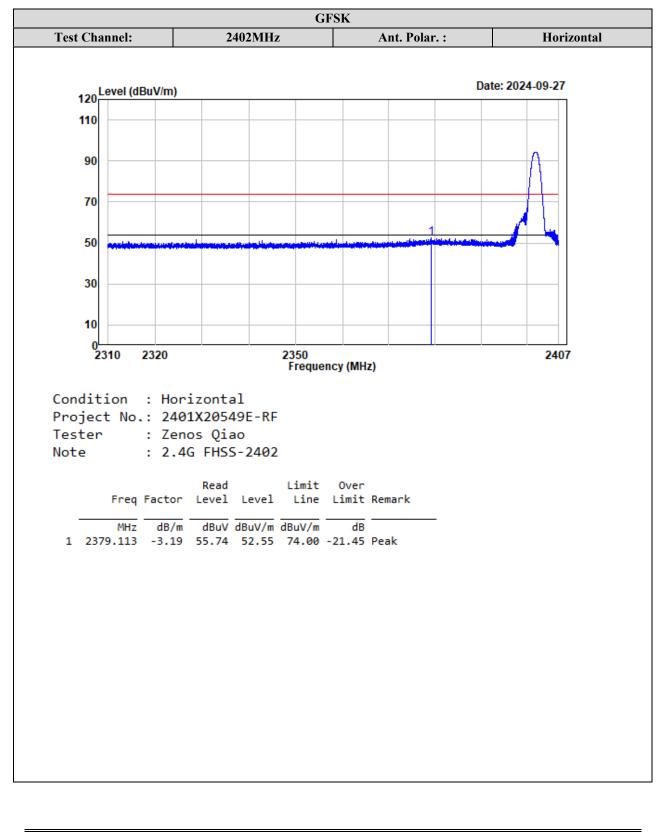
Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

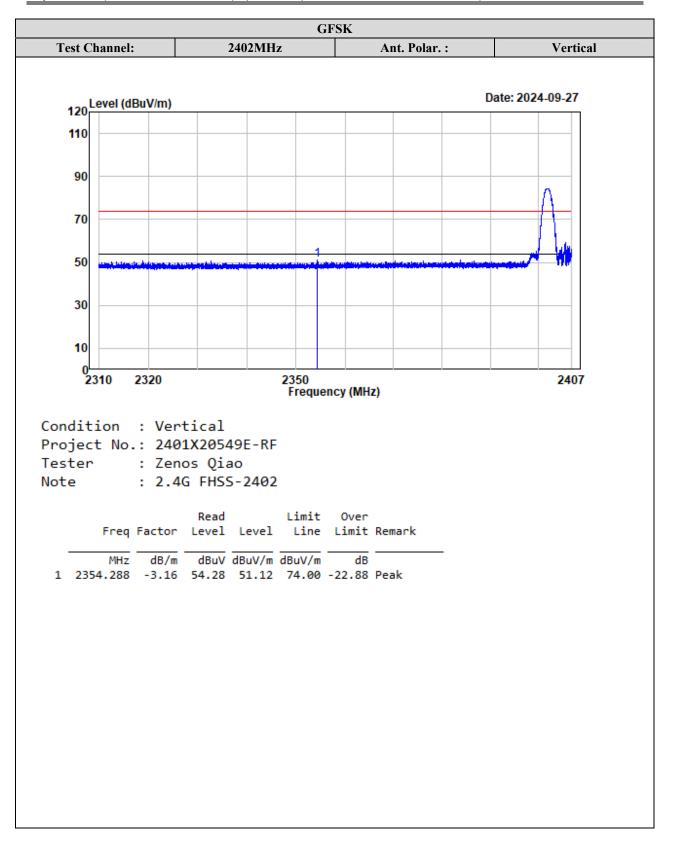
Report No.: 2401X20549E-RF-00

Field Strength of Average							
Frequency (MHz)	Peak Measurement @3m (dBµV/m)	Polar (H/V)	Duty Cycle Corrected Factor (dB)	Average Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comment
Low Channel 2402MHz							
2379.11	52.55	Н	-24.73	27.82	54	-26.18	Bandedge
2354.29	51.12	V	-24.73	26.39	54	-27.61	Bandedge
4804.00	50.04	Н	-24.73	25.31	54	-28.69	Harmonic
4804.00	49.75	V	-24.73	25.02	54	-28.98	Harmonic
Middle Channel 2441MHz							
4882.00	50.19	Н	-24.73	25.46	54	-28.54	Harmonic
4882.00	50.00	V	-24.73	25.27	54	-28.73	Harmonic
High Channel 2478MHz							
2483.64	56.90	Н	-24.73	32.17	54	-21.83	Bandedge
2499.12	52.25	V	-24.73	27.52	54	-26.48	Bandedge
4960.00	50.09	Н	-24.73	25.36	54	-28.64	Harmonic
4960.00	49.96	V	-24.73	25.23	54	-28.77	Harmonic

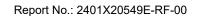
Note: Average level= Peak level+ Duty Cycle Corrected Factor

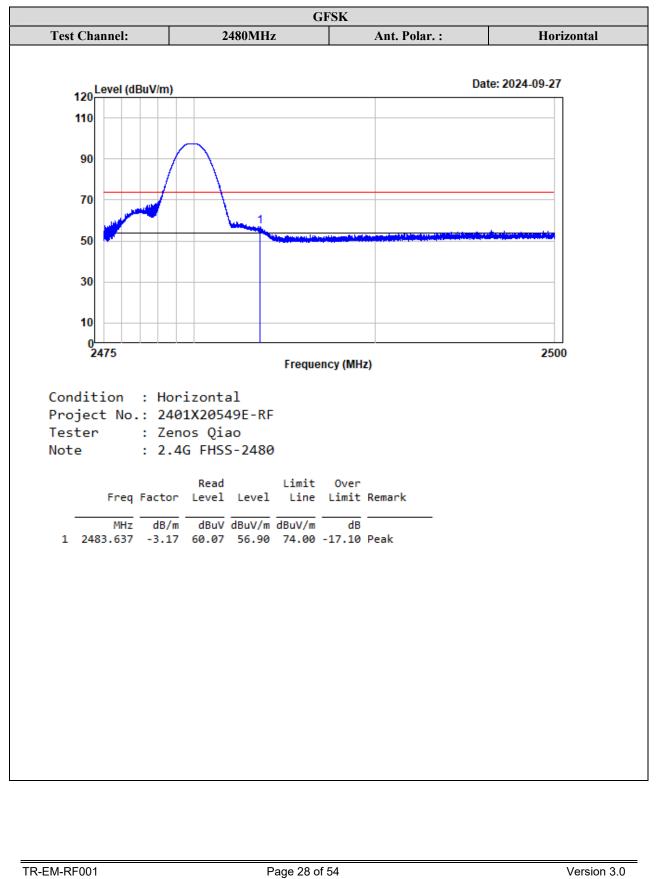

Worst case duty cycle: Duty Cycle = Ton/100ms = 2.899*2/100=0.05798 Duty Cycle Corrected Factor = 20lg (Duty Cycle) = 20lg0.05798 = -24.73

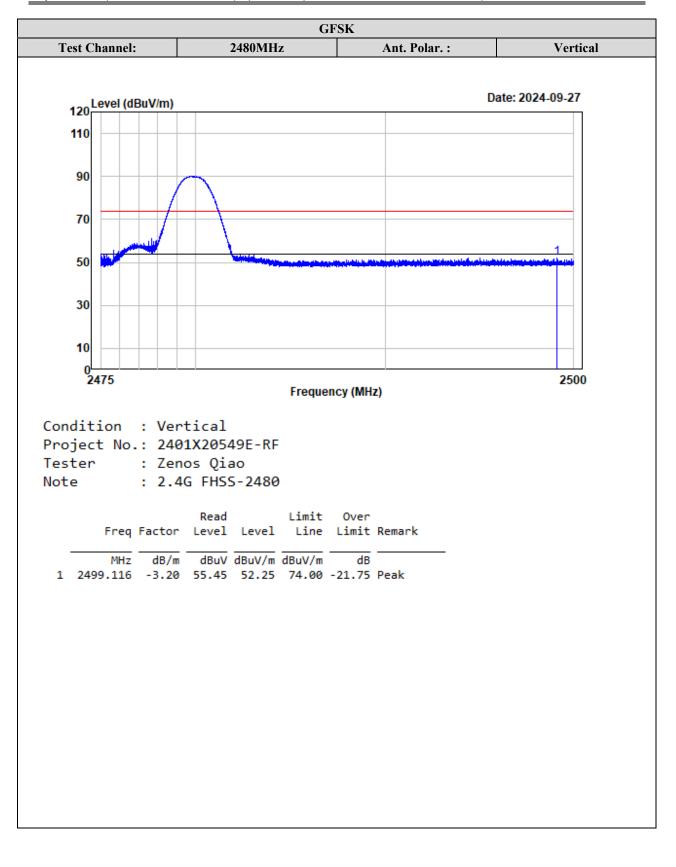
Report No.: 2401X20549E-RF-00

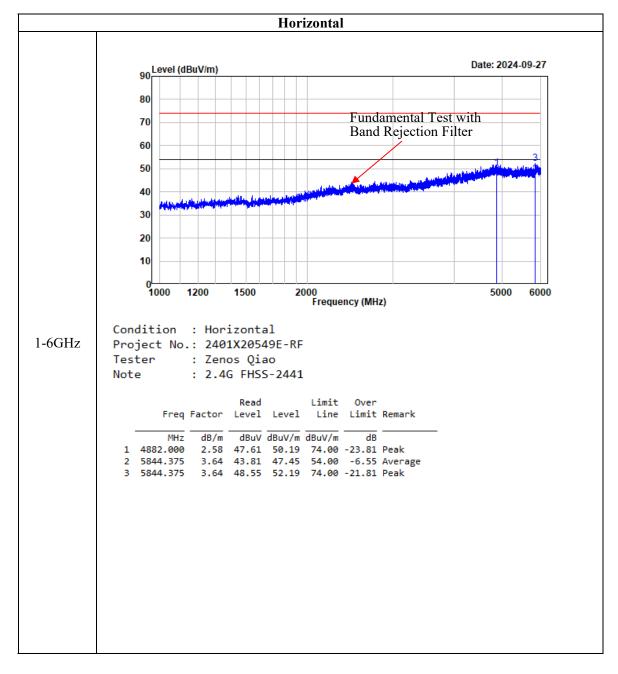

	Spectrum					
		RBW 1 MHz				
	Att 0 dB • SWT 100 ms •					
	SGL TRG: VID TDF					
	• 1Pk Max					
	po da pu	1 D1[1]	0.02 dB 2.899 ms			
	50 00 pV	M1[1]	94.88 dBµV			
	30 dBµV		-275 μs			
	70 dBµV					
	50 dBµV					
	50 depter and the state of the	and production and second and the	Without With www.alman.almarkad.ochily			
Duty Cycle	40 dBµV					
(100ms)						
(1001115)	30 dBµV					
	20 dBµV					
	10 dBµV					
	10 0000					
	0 dBµV					
	CF 2.402 GHz	691 pts	10.0 ms/			
	Marker Type Ref Trc X-value	Y-value Function	Function Result			
	M1 1 -275.4 µs	94.88 dBµV				
	D1 M1 1 2.899 ms D2 M1 1 41.304 ms	0.02 dB				
			J			
	ProjectNo.:2401X20549E-RF Tester:Zenos Qiao					
		22 VINC				
	Date: 27.SEP.2024 02:44:02	29 XIGO				
	Date: 27.SEP.2024 02:44:02	22 (140)				
	Date: 27.SEP.2024 02:44:02 Spectrum					
	Date: 27.SEP.2024 02:44:02 Spectrum RefLevel 97.00 dBµV Att 0 dB SWT 1 s VI	W 1 MHz				
	Date: 27.5EP.2024 02:44:02	W 1 MHz	(@)			
	Date: 27.5EP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV Att Ode SWT 1s VI SGL TRG:VID TDF 1Pk Max	WW 1 MHz WW 1 MHz				
	Date: 27.SEP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV RI Att 0 dB SWT 1 s VI SGL TRG:VID TOF IPk Max TRG 93.000 dBuV	W 1 MHz	(₩) 52.00 dBµV 10.00 ms			
	Date: 27.5EP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV Att Ode SWT 1s VI SGL TRG:VID TDF 1Pk Max	WW 1 MHz WW 1 MHz	52.00 dBµV			
	Date: 27.SEP.2024 02:44:02	WW 1 MHz WW 1 MHz	52.00 dBµV			
	Date: 27.SEP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV RI Att 0 dB SWT 1 s VI SGL TRG:VID TOF IPk Max TRG 93.000 dBuV	WW 1 MHz WW 1 MHz	52.00 dBµV			
	Date: 27.SEP.2024 02:44:02	WW 1 MHz WW 1 MHz	52.00 dBµV			
	Date: 27.5EP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV Att SGL TRG:VID TDF PPk Max 90 dBµV B0 dBµV B0 dBµV B0 dBµV B0 dBµV B0 d	WW 1 MHz WW 1 MHz	52.00 dBµV			
	Date: 27.5EP.2024 02:44:02 Spectrum Ref Level 97.00 dBµV Att SGL TRG:VID TDF PPk Max 90 dBµV B0 dBµV B0 dBµV B0 dBµV B0 dBµV B0 d	WW 1 MHz WW 1 MHz	52.00 dBµV			
Duty Cycle	Date: 27.SEP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle	Date: 27.SEP.2024 02:44:02	WW 1 MHz WW 1 MHz	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.SEP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.SEP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)	52.00 dBµV 10.00 ms			
Duty Cycle (1s)	Date: 27.5EP.2024 02:44:02	W 1 MH2 W 1 MH2 M1(1)M1(1)	52.00 dBµV 10.00 ms			

Report No.: 2401X20549E-RF-00

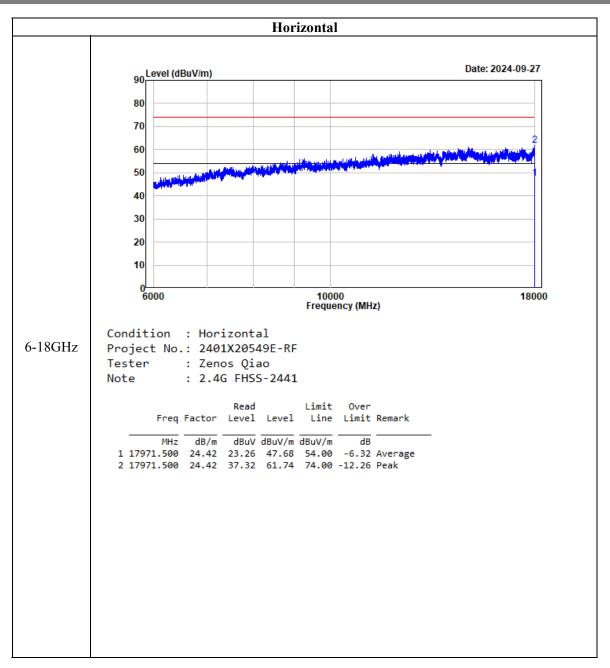

Test plots for Band Edge Measurements (Radiated):

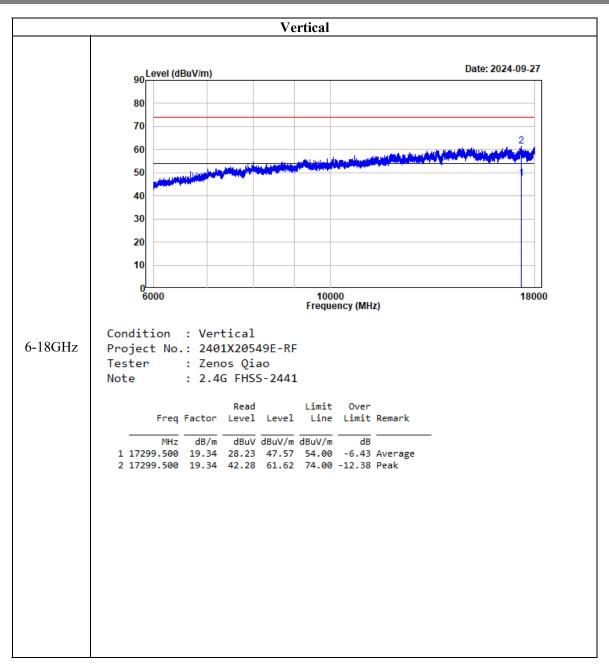


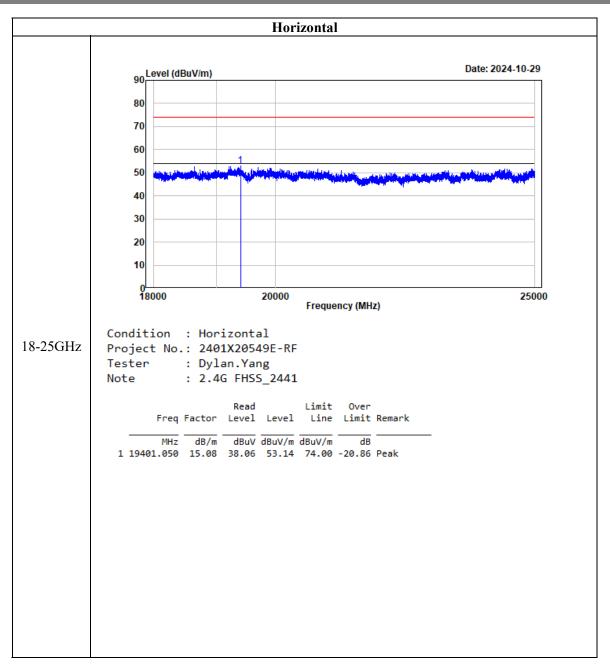


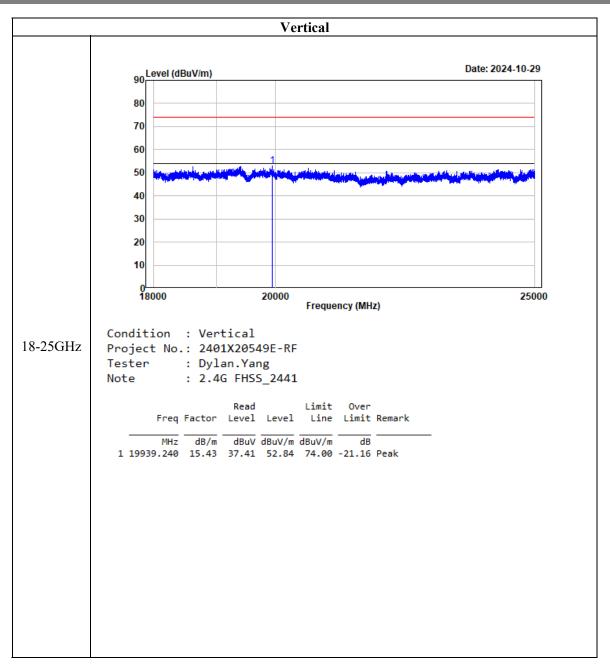





Listed with the worst harmonic margin test plot:


Report No.: 2401X20549E-RF-00


Report No.: 2401X20549E-RF-00


Report No.: 2401X20549E-RF-00

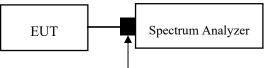
Report No.: 2401X20549E-RF-00

Report No.: 2401X20549E-RF-00

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

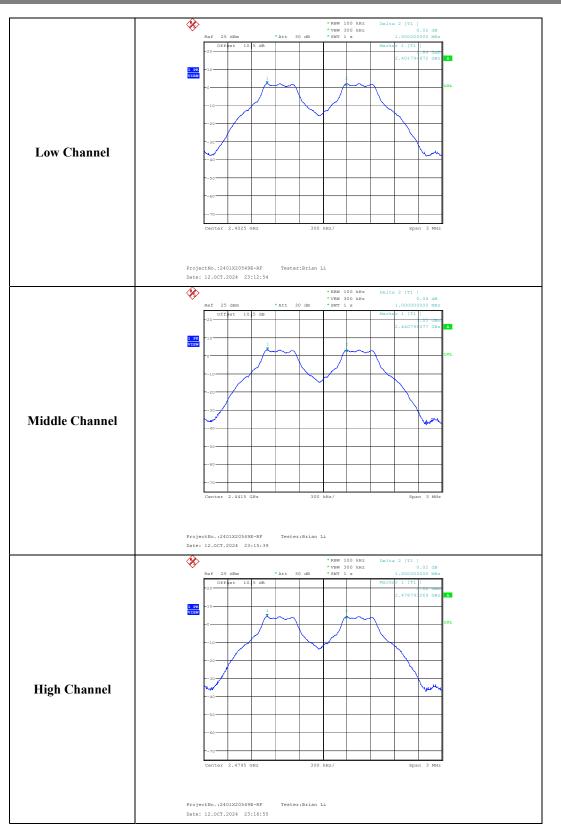
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary
- to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined.

Attenuator

Test Data

Environmental Conditions


Temperature:	26 °C
Relative Humidity:	51 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li on 2024-10-12.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Channel	Test Frequency (MHz)	Channel Separation (MHz)	Limits (MHz)
Lowest	2402	1.000	0.596
Middle	2441	1.000	0.593
Highest	2480	1.000	0.591
Limit= Two-thirds of the 20 dB bandwidth			

FCC §15.247(a) (1) - 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.

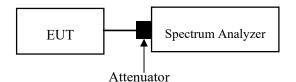
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.

d) Steps a) through c) might require iteration to adjust within the specified tolerances.

e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.

f) Set detection mode to peak and trace mode to max hold.


g) Determine the reference value: Set the EUT to transmit an un-modulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

i) If the reference value is determined by an un-modulated carrier, then turn the EUT modulation on, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

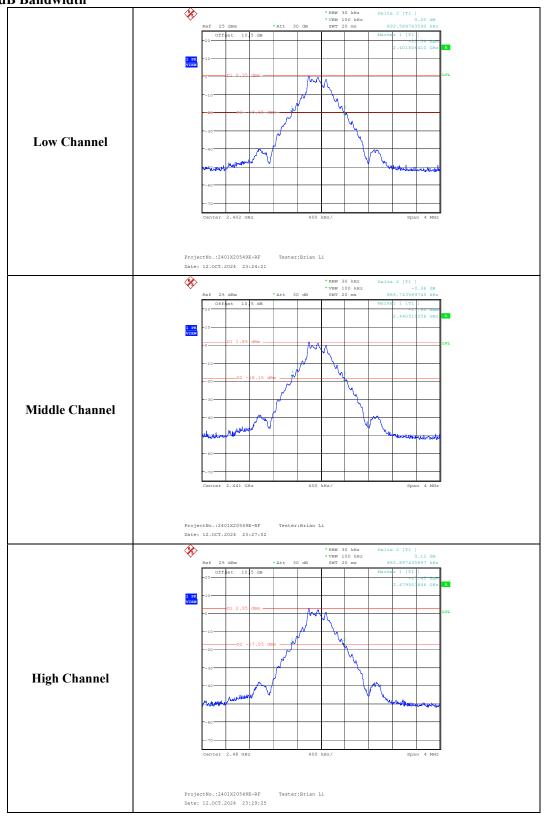
j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "- xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "- xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	51 %
ATM Pressure:	101 kPa


The testing was performed by Brian Li on 2024-10-12.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Channel	Test Frequency (MHz)	20 dB Bandwidth (MHz)
Lowest	2402	0.894
Middle	2441	0.890
Highest	2480	0.886

20 dB Bandwidth

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

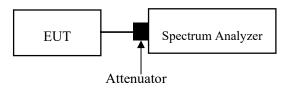
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.


c) VBW \geq RBW.

d) Sweep: Auto.

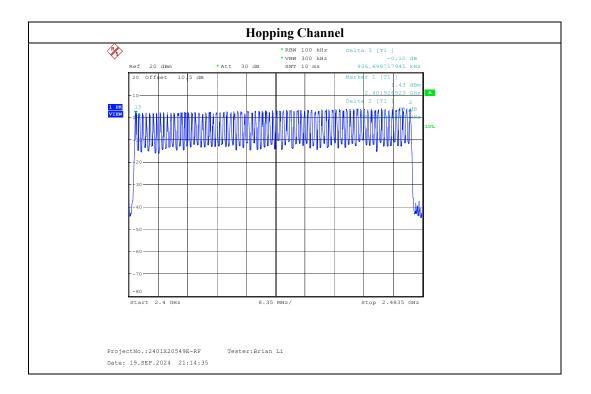
e) Detector function: Peak.

f) Trace: Max hold.

It might prove necessary to break the span up into sub ranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels.

Test Data

Environmental Conditions


Temperature:	26 °C
Relative Humidity:	51 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li on 2024-09-19.

EUT operation mode: Transmitting

Test Result: Compliant.

Frequency Range (MHz)	Number of Hopping Channel	Limits
2400-2483.5	79	≥15

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

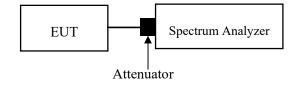
a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

d) Detector function: Peak.

e) Trace: Max hold.


Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

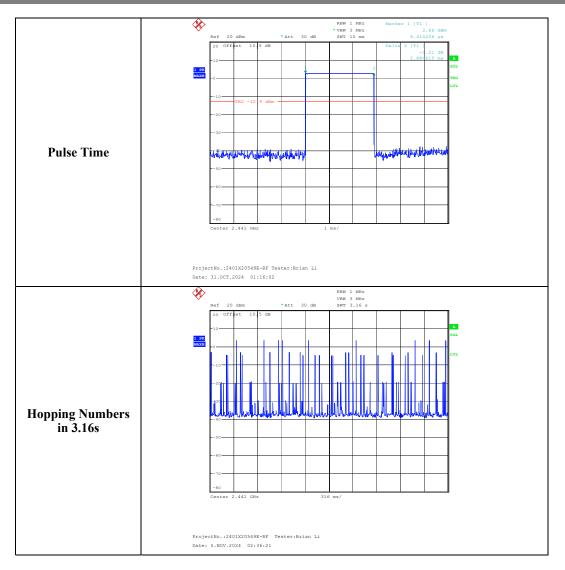
(Number of hops in the period specified in the requirements) =(number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Test Data

Environmental Conditions


Temperature:	26~27 °C
Relative Humidity:	51~55 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li from 2024-10-31 to 2024-11-05.

EUT operation mode: Transmitting

Test Result: Compliant.

Test Frequency (MHz)	Pulse Width (ms)	Observation Time (s)	Hopping Numbers in Observation time	Dwell Time (s)	Limit (s)
2441	2.885	31.6	110	0.317	0.400
Note 1: Observation time= Hopping Channel Number× 0.4 Note 2: Dwell Time = Pulse width *Hopping Numbers in Observation time Note 3: Hopping Numbers in Observation time = Hopping Numbers in 3.16s*10					

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

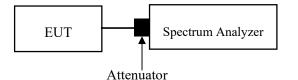
Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:


a) Use the following spectrum analyzer settings:

- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW \geq RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.

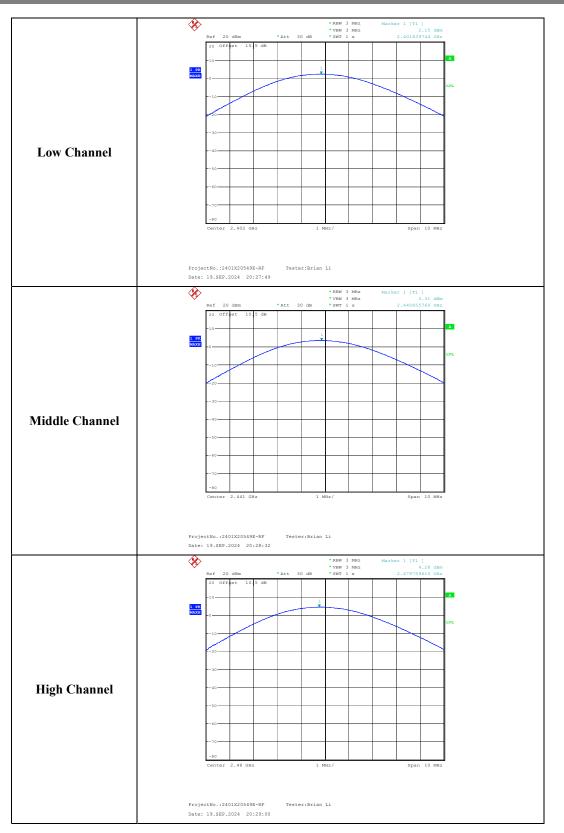
b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

Test Data

Environmental Conditions


Temperature:	26 °C
Relative Humidity:	51 %
ATM Pressure:	101 kPa

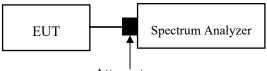
The testing was performed by Brian Li on 2024-09-19.

EUT operation mode: Transmitting

Test Result: Compliant.

Mode	Channel	Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)
	Low	2402	2.15	21
GFSK	Middle	2441	3.31	21
	High	2480	4.28	21

FCC §15.247(d) § 5.5 - BAND EDGES TESTING


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

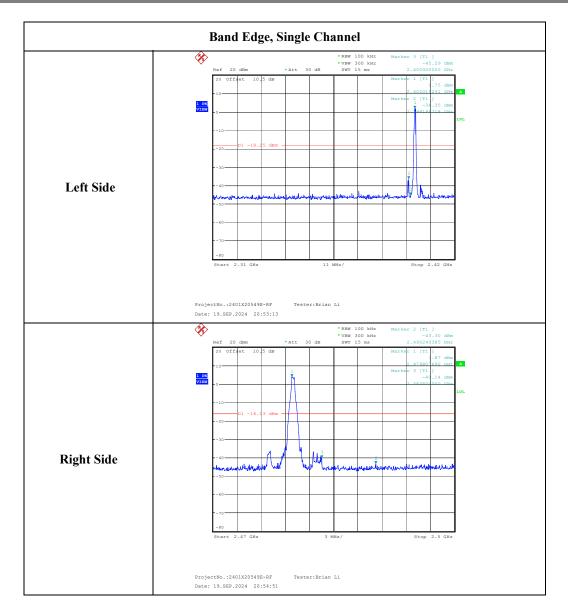
Test Procedure

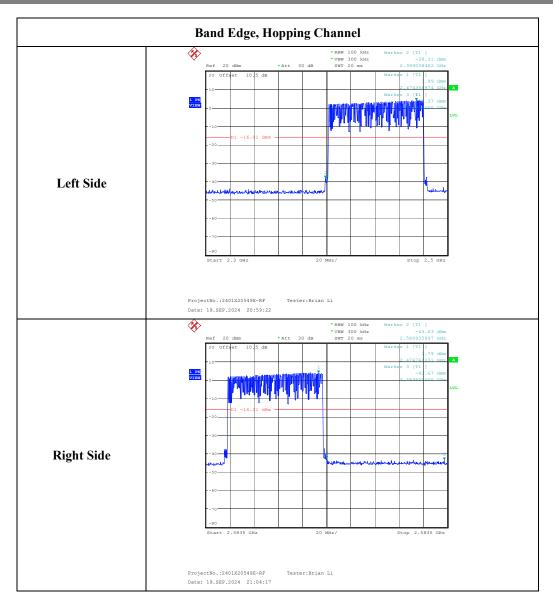
Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Attenuator

Test Data


Environmental Conditions


Temperature:	26 °C
Relative Humidity:	51 %
ATM Pressure:	101 kPa

The testing was performed by Brian Li on 2024-09-19.

EUT operation mode: Transmitting

Test Result: Compliant.

EUT PHOTOGRAPHS

Please refer to the attachment 2401X20549E-RF External photo and 2401X20549E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401X20549E-RF Test Setup photo.

***** END OF REPORT *****