Frequency: 750 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 750 MHz; σ = 0.876 S/m; ϵ_r = 40.834; ρ = 1000 kg/m³

DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(10.24, 10.24, 10.24) @ 750 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

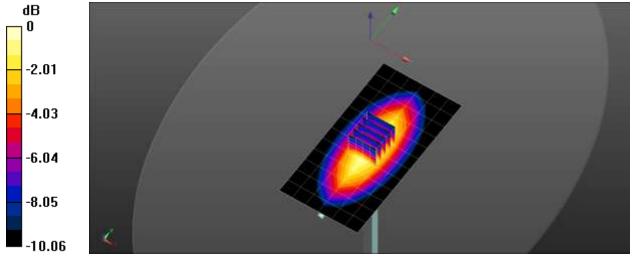
dy=15mm

Maximum value of SAR (measured) = 2.64 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.24 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.08 W/kg

SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 21.5 mm

Ratio of SAR at M2 to SAR at M1 = 68.2%

Maximum value of SAR (measured) = 2.65 W/kg

0 dB = 2.65 W/kg = 4.24 dBW/kg

Frequency: 900 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 900 MHz; σ = 0.957 S/m; ϵ_r = 42.062; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(9.75, 9.75, 9.75) @ 900 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (7x13x1): Measurement grid: dx=15mm,

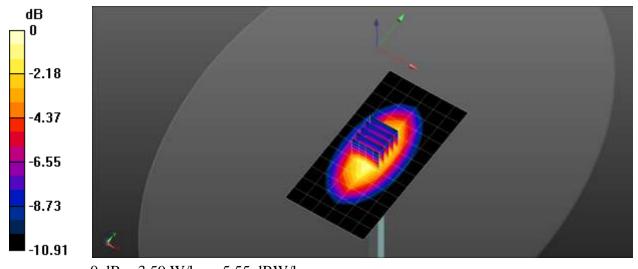
dy=15mm

Maximum value of SAR (measured) = 3.53 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.60 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 4.22 W/kg

SAR(1 g) = 2.81 W/kg; SAR(10 g) = 1.82 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%

Maximum value of SAR (measured) = 3.59 W/kg

0 dB = 3.59 W/kg = 5.55 dBW/kg

Frequency: 1800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 1800 MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 38.41$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm,

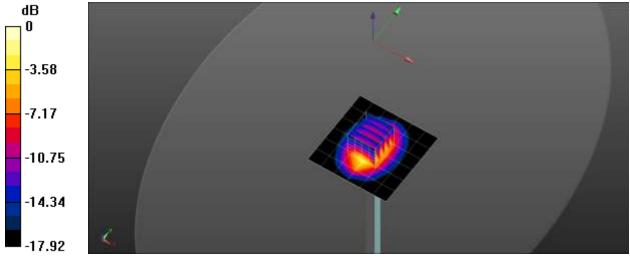
dy=15mm

Maximum value of SAR (measured) = 13.7 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 100.7 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.04 W/kg

Smallest distance from peaks to all points 3 dB below = 10.7 mm

Ratio of SAR at M2 to SAR at M1 = 55.1%

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.42 dBW/kg

Frequency: 1900 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 1900 MHz; σ = 1.442 S/m; ϵ_r = 38.845; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(8.32, 8.32, 8.32) @ 1900 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm,

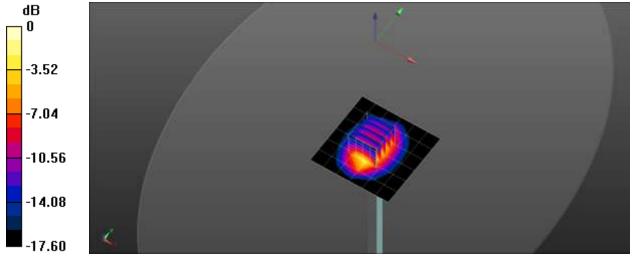
dy=15mm

Maximum value of SAR (measured) = 14.4 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 98.14 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.22 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 55.3%

Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.84 dBW/kg

Frequency: 2300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 2300 MHz; $\sigma = 1.681$ S/m; $\epsilon_r = 40.679$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(7.92, 7.92, 7.92) @ 2300 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (9x9x1): Measurement grid: dx=12mm,

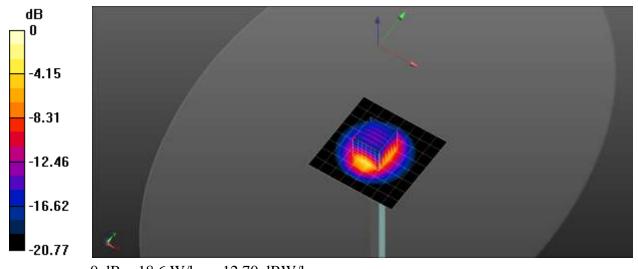
dy=12mm

Maximum value of SAR (measured) = 17.5 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.0 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 24.4 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.97 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 18.6 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

Frequency: 2600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 2600 MHz; $\sigma = 2.016$ S/m; $\epsilon_r = 37.318$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(7.44, 7.44, 7.44) @ 2600 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm,

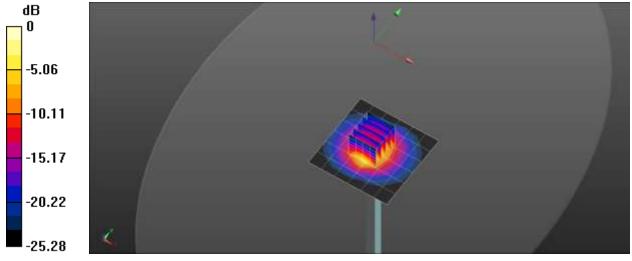
dy=15mm

Maximum value of SAR (measured) = 20.0 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 101.7 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 5.99 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 45.9%

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg