

RADIO TEST REPORT FCC ID: W59VAD50909

Product: Venture VideoBAR

Model No.: 999-50909-000 Family Model: N/A Report No.: S24030703504002 Issue Date: Jun 07, 2024

Prepared for

Legrand AV Inc.

6436 City West Pkwy, Eden Prairie MN 55344, United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

2 SUMMARY OF TEST RESULTS	1	TEST RESULT CERTIFICATION	4
3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT FQUIPMENT. 12 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 13 7 TEST REQUIREMENTS 15 7.1.1 CONDUCTED EMISSIONS TEST 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments 15 7.1.4 Test Configuration 15 7.1.5 Test Require Emission 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Reasuring Instruments 16 7.2.2 RADIATED SPURIOUS EMISSION 18 7.2.3 GADBANDWIDTH 27 7.3.4 Gessuring Instruments 27 7.3.5 Test Configuration 27 7.3.4 <td>2</td> <td>SUMMARY OF TEST RESULTS</td> <td>5</td>	2	SUMMARY OF TEST RESULTS	5
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 12 6.3 EQUIPMENTS LIST FOR ALL TEST TIMES 13 7 TEST REQUIREMENTS 15 7.1 CONDUCTED EMISSIONS TEST 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3.6 Test	3	FACILITIES AND ACCREDITATIONS	6
3.3 MEASUREMENT UNCERTAINTY	3		
4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 12 6.3 EQUIPMENT LIST FOR ALL TEST TITEMS. 13 7 TEST REQUIREMENTS 15 7.1. CONDUCTED EMISSIONS TEST. 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments 15 7.1.4 Rest Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RAINATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Procedure 20 7.3 OB BANDWIDTH 27 7.3.1 A			
5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 12 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 13 7 TEST REQUIREMENTS 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments 15 7.1.4 Test Procedure 15 7.1.5 Test Procedure 15 7.1.6 Test Procedure 16 7.2.7 RADIATED SPURIOUS EMISSION 18 7.2.3 Applicable Standard 18 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3 GDB BANDWIDTH 27 7.3.4 Measuring Instruments 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.7 ADIATED SPURIOUS EMIS			
6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 12 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 13 7 TEST REQUIREMENTS. 15 7.1 CONDUCTED EMISSIONS TEST. 15 7.1.1 Applicable Standard. 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments. 15 7.1.4 Test Procedure 15 7.1.5 Test Procedure 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard. 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments. 19 7.2.4 Test Configuration 19 7.2.5 Test Results 21 7.3 GDB BANDWIDTH. 27 7.3.4 Test Configuration 19 7.3.5 Test Procedure 27 7.3.4 Test	4		
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 12 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 13 7 TEST REQUIREMENTS 15 7.1 CONDUCTED EMISSIONS TEST 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.4 Test Configuration 15 7.1.5 Test Require 15 7.1.6 Test Revists 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Conformance Limit 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Results 27 7.3.3 Applicable Standard 27 7.3.4 Test Configuration 27 7.3.5 Test Results 27 <	5		
6.2 SUPPORT EQUIPMENT. 12 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 13 7 TEST REQUIREMENTS. 15 7.1 CONDUCTED EMISSIONS TEST. 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit. 15 7.1.3 Measuring Instruments. 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 GB BANDWIDTH 27 7.3.3 Gonformance Limit 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.4	6	SETUP OF EQUIPMENT UNDER TEST	10
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 13 7 TEST REQUIREMENTS. 15 7.1 CONDUCTED EMISSIONS TEST. 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments. 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2.7 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3.6 DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Results 27 7.3.5 Test Setup 27 7.3.6 Test Results 27 <	6	.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
7 TEST REQUIREMENTS 15 7.1 CONDUCTED EMISSIONS TEST 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Procedure 15 7.1.7 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3 GDB BANDWIDTH 27 7.3.4 Test Procedure 27 7.3.4 Test Procedure 27 7.3.4 Test Procedure 27 7.3.4 Test Procedure 27 7.3.5 Test Procedure 27 7.3.4 Test Procedure 27 7.3.4 Test Pro		.2 SUPPORT EQUIPMENT	12
7.1 CONDUCTED EMISSIONS TEST. 15 7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments. 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results. 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 OB BANDWIDTH 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.4 Test Setup 27 7.3.5 Test Results 27 7.3.4 Test Setup 27 7.3.4 Test Setup 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit <td>6</td> <td>-</td> <td></td>	6	-	
7.1.1 Applicable Standard 15 7.1.2 Conformance Limit 15 7.1.3 Measuring Instruments 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 GDB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results	7	TEST REQUIREMENTS	15
7.1.2 Conformance Limit	7		
7.1.3 Measuring Instruments. 15 7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Results 20 7.3.6 Test Results 21 7.3 6DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.3 Measuring Instruments 27 7.3.4 Test Results 27 7.3.5 Test Noncedure 27 7.3.6 Test Results 27 7.3.7 Test Results 27 7.3.8 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instrument		11	
7.1.4 Test Configuration 15 7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Configuration 19 7.2.6 Test Results 20 7.2.6 Test Results 21 7.3 GDB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.4 Measuring Instruments 28 7.4.4 Applicable Standard 28 7.4.3 Measuring Ins			
7.1.5 Test Procedure 15 7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 GDB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.5 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.7 Test Setup 27 7.3.8 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 </td <td></td> <td></td> <td></td>			
7.1.6 Test Results 16 7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.3 6DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Results 28 7.4.5 Test Results			
7.2 RADIATED SPURIOUS EMISSION 18 7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 6DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Netup 28 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Results 29 <td></td> <td></td> <td></td>			
7.2.1 Applicable Standard 18 7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Procedure 20 7.2.6 Test Results 21 7.3 OBB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Procedure 27 7.3.6 Test Setup 28 7.4.1 DUTY CYCLE 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28<	7		
7.2.2 Conformance Limit 18 7.2.3 Measuring Instruments 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 6DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 28 7.4.7 Test Setup 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28	,		
7.2.3 Measuring Instruments. 19 7.2.4 Test Configuration 19 7.2.5 Test Procedure 20 7.2.6 Test Procedure 20 7.2.6 Test Results 21 7.3 GDB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Negulate 29 7.5 Test Procedure 30			
7.2.5 Test Procedure 20 7.2.6 Test Results 21 7.3 6DB BANDWIDTH 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30			
7.2.6 Test Results 21 7.3 6DB BANDWIDTH. 27 7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.5 Test Procedure 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30		7.2.4 Test Configuration	19
7.3 6DB BANDWIDTH			
7.3.1 Applicable Standard 27 7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Networks 28 7.4.4 Test Setup 28 7.4.5 Test Networks 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 </td <td></td> <td></td> <td></td>			
7.3.2 Conformance Limit 27 7.3.3 Measuring Instruments 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Netup 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 20 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30	7		
7.3.3 Measuring Instruments. 27 7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE. 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments. 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30			
7.3.4 Test Setup 27 7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		5	
7.3.5 Test Procedure 27 7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30			
7.3.6 Test Results 27 7.4 DUTY CYCLE 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		4	
7.4 DUTY CYCLE. 28 7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30			
7.4.1 Applicable Standard 28 7.4.2 Conformance Limit 28 7.4.3 Measuring Instruments 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30	7		
7.4.3 Measuring Instruments. 28 7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30			
7.4.4 Test Setup 28 7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		11	
7.4.5 Test Procedure 28 7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		7.4.3 Measuring Instruments	
7.4.6 Test Results 29 7.5 PEAK OUTPUT POWER 30 7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		•	
7.5 PEAK OUTPUT POWER			
7.5.1 Applicable Standard 30 7.5.2 Conformance Limit 30 7.5.3 Measuring Instruments 30 7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30	_		
7.5.2 Conformance Limit	7		
7.5.3 Measuring Instruments		••	
7.5.4 Test Setup 30 7.5.5 Test Procedure 30 7.5.6 Test Results 30		5	
7.5.5 Test Procedure 30 7.5.6 Test Results 30		8	
7.5.6 Test Results		1	
	7		

	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	31
	7.6.6	Test Results	
	7.7 C	CONDUCTED BAND EDGE MEASUREMENT	33
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	33
	7.7.3	Measuring Instruments	33
	7.7.4	Test Setup	33
	7.7.5	Test Procedure	33
	7.7.6	Test Results	
	7.8 S	PURIOUS RF CONDUCTED EMISSIONS	34
	7.8.1	Conformance Limit	34
	7.8.2	Measuring Instruments	34
	7.8.3	Test Setup	34
	7.8.4	Test Procedure	34
	7.8.5	Test Results	34
	7.9 A	NTENNA APPLICATION	35
	7.9.1	Antenna Requirement	35
	7.9.2	Result	35
8	TEST	RESULTS	36
	0 1 1	M	26
	8.1.1	Duty Cycle	
	8.1.2	Maximum Conducted Output Power	
	8.1.3	-6dB Bandwidth	
	8.1.4	Occupied Channel Bandwidth	
	8.1.5	Maximum Power Spectral Density Level	
	8.1.6	Band Edge	
	8.1.7	Conducted RF Spurious Emission	
		M	
	8.2.1	Duty Cycle	
	8.2.2	Maximum Conducted Output Power	
	8.2.3	-6dB Bandwidth	
	8.2.4	Occupied Channel Bandwidth	
	8.2.5	Maximum Power Spectral Density Level	
	8.2.6	Band Edge	
	8.2.7	Conducted RF Spurious Emission	76

1 TEST RESULT CERTIFICATION

Applicant's name Legrand AV Inc.				
Address:	: 6436 City West Pkwy, Eden Prairie MN 55344, United States			
Manufacturer's Name:	Legrand AV Inc.			
Address:	6436 City West Pkwy, Eden Prair	ie MN 55344, United States		
Product description				
Product name:	Venture VideoBAR			
Trademark:	A brand of Diegrand®			
Model and/or type reference:	999-50909-000			
Family Model:				
Test Sample Number				
Date of tests Mar 07, 2024 ~ Apr 23, 2024				
Measurement Procedure Used:				
APPLICABLE STANDARDS				
APPLICABLE STANDAR	D/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Pa				
FCC 47 CFR Pa				
ANSI C63	Complied			
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Joe.Yan Approved By Prepared . By Joe.Yan (Project Engineer) (Supervisor) (Manager)

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207 Conducted Emission PASS				
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b) Peak Output Power PASS				
15.209 (a) 15.205 (a) Radiated Spurious Emission		PASS		
15.247 (e) Power Spectral Density		PASS		
15.247 (d) Band Edge Emission PASS				
15.247 (d) Spurious RF Conducted Emission PASS				
15.203 Antenna Requirement PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

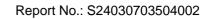
3.2 LABORATORY ACCREDITATIONS AND LISTINGS

The Certificate Registration Number is L5516.
The Certificate Registration Number is 9270A. CAB identifier:CN0074
Test Firm Registration Number: 463705.
Designation Number: CN1184
The Certificate Registration Number is 4298.01
This laboratory is accredited in accordance with the recognized
International Standard ISO/IEC 17025:2005 General requirements for
the competence of testing and calibration laboratories.
This accreditation demonstrates technical competence for a defined
scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Shenzhen NTEK Testing Technology Co., Ltd.
1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±3.7%



4 GENERAL DESCRIPTION OF EUT

	Product Feature and Specification				
Equipment Venture VideoBAR					
Trade Mark VADDIO®					
FCC ID	W59VAD50909				
Model No.	999-50909-000				
Family Model	N/A				
Model Difference	N/A				
Operating Frequency	2402MHz~2480MHz				
Modulation	GFSK				
Number of Channels	40 Channels				
Antenna Type	PCB Antenna				
Antenna Gain	2 dBi				
Adapter	MODEL: KA2401A-1202000DE INPUT: 100-240V~50/60Hz, 0.65A Max OUTPUT: 12.0V2.0A 24.0W				
Battery	N/A				
Rating	DC 12V from adapter				
HW Version	N/A				
SW Version	N/A				

Note : Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Certificate #4298.01

Revision History

Report No.	Version	Description	Issued Date	
S24030703504002	Rev.01	Initial issue of report	Jun 07, 2024	
			1	
			-	
	+		+	
			+	
	+		+	
	+		1	
	+		-	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

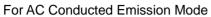
The following summary table is showing all test modes to demonstrate in compliance with the standard.

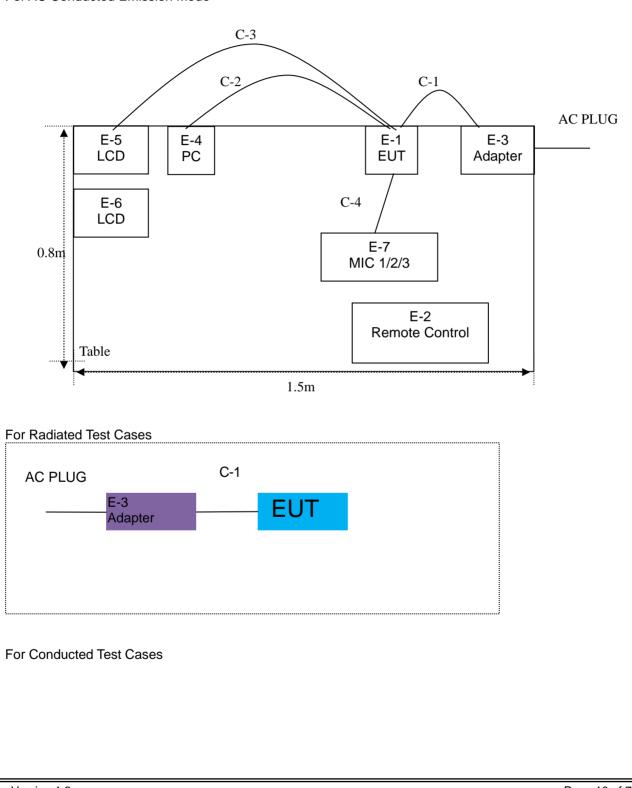
Test Cases				
Test Item	Data Rate/ Modulation			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			

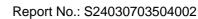
Note:

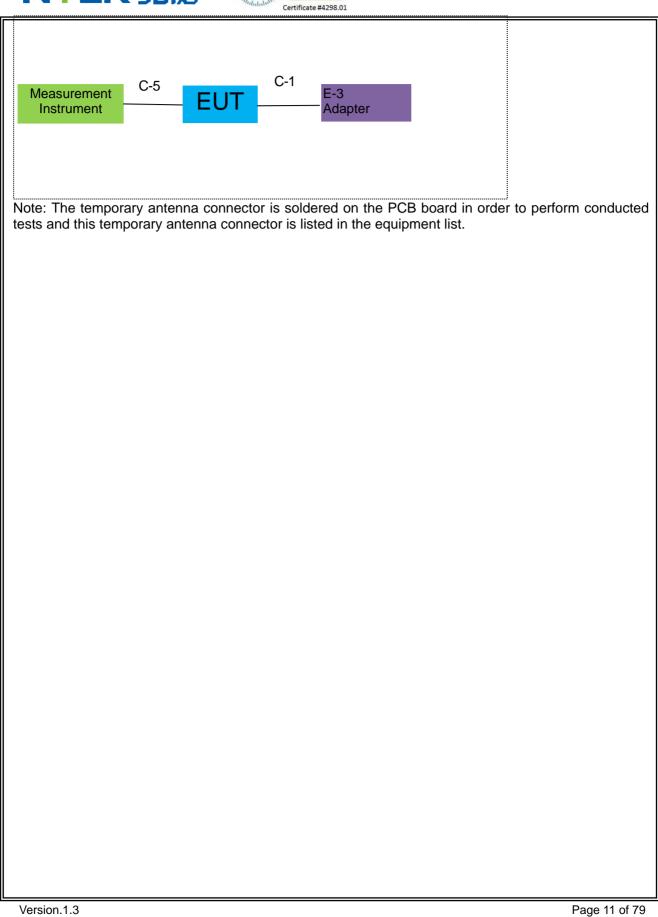
1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.


3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.




6 SETUP OF EQUIPMENT UNDER TEST


6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

ACC

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	1			1
Item Equipment		Model/Type No.	Series No.	Note
E-1 Venture VideoBAR		999-50909-000	N/A	EUT
E-2 Venture VideoBAR RMT-509		RMT-50909	N/A	Peripherals
E-3 Adapter		KA2401A-1202000DE	N/A	Peripherals
E-4 PC		Insplron 3471	N/A	Peripherals
E-5 LCD		KDL-24EX520	N/A	Peripherals
E-6 LCD		241P6V	N/A	Peripherals
E-7 MIC		999-85909-000	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.2m
C-2	USB Cable	NO	YES	1.0m
C-3	HDMI Cable	YES	YES	1.2m
C-4	Earphone Cable	NO	NO	0.8m
C-5	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		rest equipment					- ··· ·
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4440A	MY41000130	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16 2024.03.11	2024.03.15 2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

ACCREDITED Certificate #4298.01

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27 2024.03.12	2024.03.26 2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

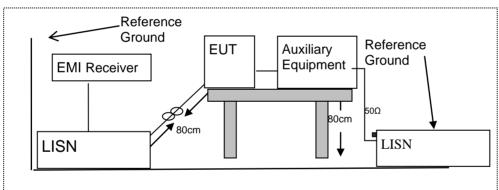
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

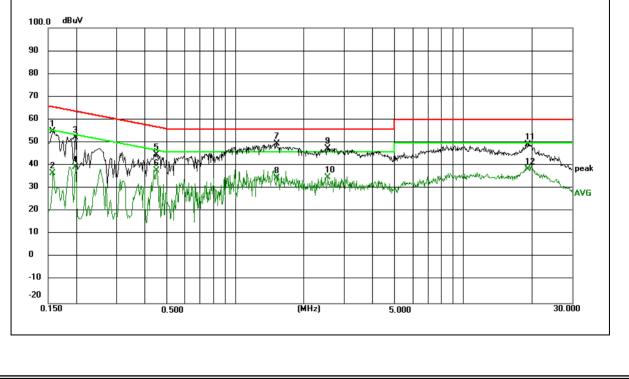
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Venture VideoBAR	Model Name :	999-50909-000
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

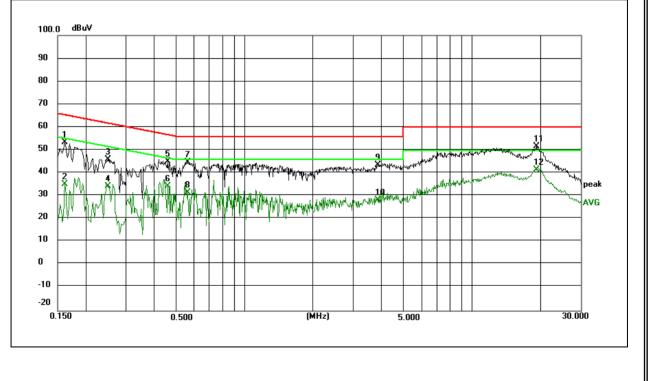
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1572	45.15	9.95	55.10	65.61	-10.51	QP
0.1572	26.83	9.95	36.78	55.61	-18.83	AVG
0.1975	42.34	10.03	52.37	63.72	-11.35	QP
0.1975	29.30	10.03	39.33	53.72	-14.39	AVG
0.4490	34.29	10.55	44.84	56.89	-12.05	QP
0.4490	27.37	10.55	37.92	46.89	-8.97	AVG
1.5112	36.97	12.68	49.65	56.00	-6.35	QP
1.5112	21.91	12.68	34.63	46.00	-11.37	AVG
2.5400	37.89	9.67	47.56	56.00	-8.44	QP
2.5400	25.32	9.67	34.99	46.00	-11.01	AVG
19.2236	39.59	9.72	49.31	60.00	-10.69	QP
19.2236	28.88	9.72	38.60	50.00	-11.40	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Venture VideoBAR	Model Name :	999-50909-000
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1615	43.61	9.95	53.56	65.39	-11.83	QP
0.1615	25.12	9.95	35.07	55.39	-20.32	AVG
0.2494	35.79	10.14	45.93	61.78	-15.85	QP
0.2494	24.27	10.14	34.41	51.78	-17.37	AVG
0.4561	34.54	10.57	45.11	56.76	-11.65	QP
0.4561	23.85	10.57	34.42	46.76	-12.34	AVG
0.5611	33.91	10.77	44.68	56.00	-11.32	QP
0.5611	20.95	10.77	31.72	46.00	-14.28	AVG
3.8400	34.02	9.67	43.69	56.00	-12.31	QP
3.8400	18.60	9.67	28.27	46.00	-17.73	AVG
19.1220	42.05	9.72	51.77	60.00	-8.23	QP
19.1220	31.92	9.72	41.64	50.00	-8.36	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

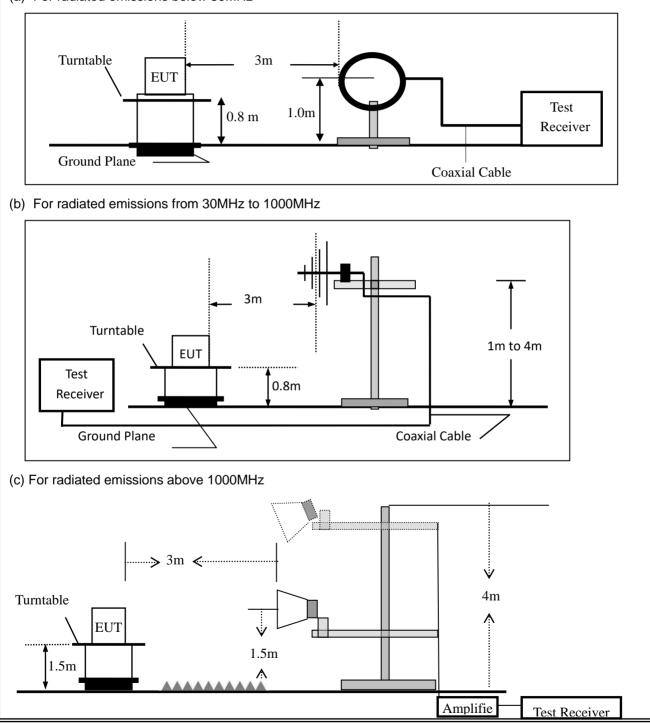
	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	Frequency(MHZ)	PEAK	AVERAGE	
l	Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Ab 200	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

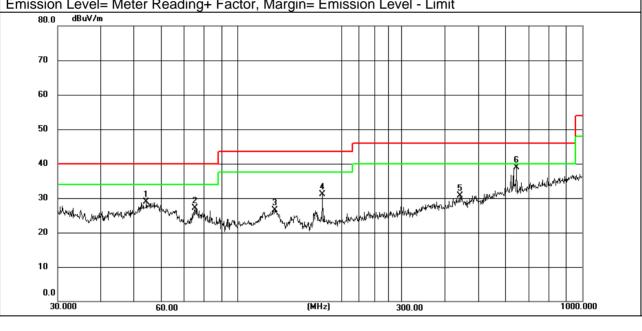
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Joe.Yan

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Venture VideoBAR	Model Name :	999-50909-000
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4
Test Voltage :	DC 12V		

Polar	Frequency	Meter Reading	Eactor Limite		Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m) (dB)	
V	54.2610	9.33	19.61	28.94	40.00	-11.06	QP
V	75.1822	11.69	15.37	27.06	40.00	-12.94	QP
V	128.1130	11.64	14.94	26.58	43.50	-16.92	QP
V	176.2686	15.01	16.02	31.03	43.50	-12.47	QP
V	441.7425	7.43	23.34	30.77	46.00	-15.23	QP
V	645.1194	12.06	26.88	38.94	46.00	-7.06	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Freq	luency	y	Me Rea	ter ding	g	Factor		ssio evel	n	Lin	nits	М	argin	_ F	Remark
(H/V)	(N	/Hz)		(dB	uV))	(dB)	(dB	uV/m)	(dBu	V/m)	(dB)		
Н	147	.4036		12	.59		14.21	26	6.80		43	.50	-1	6.70		QP
Н	187	.7530		13	.60		16.80	30).40		43	.50	-1	3.10		QP
Н	305	6800		16	.24		20.16	36	6.40		46	.00	-	9.60		QP
Н	360	.4476		14	.65		22.06	36	6.71		46	.00	-	9.29		QP
Н	645	.1194		9.	28		26.88	36	6.16		46	.00	-	9.84		QP
Н	900	.1474		10	.49		30.33	40).82		46	.00	-	5.18		QP
	emark: mission Level= Meter Reading+ Factor, Margin= Emission Level - Limit															
70																
60 50																
40								2			₩¥		ة لالالاليان	i kanya aka handar	6 *	
30 20	winnyhan vien vien h	proven where	Mathing	www.w	10	anna,	North March March March	White White	han an a	at white	Mark Marine	and the second sec	4/11/11			
10															_	
0.0															1000	
30	.000		60.	.00				MHz)		3	00.00				1000	000

■ Spurious	s Emiss	ion Above	1GHz (1G	Hz to	25G	Hz)						
EUT:	١	Venture Vie	deoBAR		Mod	el No.:		999-	50909-00	0		
Temperature	e: 2	20 ℃			Relative Humidity: 4			48%	48%			
Test Mode:	1	Mode2/Mo	de3/Mode4	1	Test	: By:	-	Joe.Yan				
Frequency	Read	Cable	Antenna	Prea		Emission	Lim	its	Margin			
	Level		Factor	Fac		Level				Rema	rk	Comment
(MHz)	(dBµV) (dB)	dB/m	(d		(dBµV/m)	(dBµ\	,	(dB)			
	Low Channel (2402 MHz)(GFSK)Above 1G											
4804	71.85		35.59	44.	.30	68.35	74.		-5.65	Pk		Vertical
4804	51.99		35.59	44.	30	48.49	54.	00	-5.51	AV		Vertical
7206	70.34	6.48	36.27	44.	60	68.49	74.	00	-5.51	Pk		Vertical
7206	50.18	6.48	36.27	44.	60	48.33	54.	00	-5.67	AV		Vertical
4804	72.04	5.21	35.55	44.	30	68.50	74.	00	-5.50	Pk	F	lorizontal
4804	52.22	5.21	35.55	44.	30	48.68	54.00		-5.32	AV	F	lorizontal
7206	69.27	6.48	36.27	44.	52	67.50	74.00		-6.50	Pk	F	lorizontal
7206	47.9	6.48	36.27	44.	52	46.13	54.	00	-7.87	AV	F	lorizontal
Mid Channel (2440 MHz)(GFSK)Above 1G												
4880	72.29	5.21	35.66	44.	20	68.96	74.	00	-5.04	Pk		Vertical
4880	49.18	5.21	35.66	44.	20	45.85	54.	00	-8.15	AV		Vertical
7320	70.43	7.10	36.50	44.	43	69.60	74.	00	-4.40	Pk		Vertical
7320	47.3	7.10	36.50	44.	43	46.47	54.	00	-7.53	AV		Vertical
4880	71.61	5.21	35.66	44.	20	68.28	74.	00	-5.72	Pk	H	lorizontal
4880	50.54	5.21	35.66	44.	20	47.21	54.	00	-6.79	AV	H	lorizontal
7320	71.7	7.10	36.50	44.	43	70.87	74.	00	-3.13	Pk	H	lorizontal
7320	47.45	7.10	36.50	44.	43	46.62	54.	00	-7.38	AV	F	lorizontal
-			High Cha	annel	(2480	MHz)(GFSK	() Abo	ove 10	3			
4960	70.22	5.21	35.52	44.	21	66.74	74.	00	-7.26	Pk		Vertical
4960	51.31	5.21	35.52	44.	21	46.00	54.	00	-8.00	AV		Vertical
7440	71.6	7.10	36.53	44.	.60	69.96	74.	00	-4.04	Pk		Vertical
7440	48.3	7.10	36.53	44.		46.38	54.	00	-7.62	AV		Vertical
4960	68.95		35.52	44.		64.70	74.		-9.30	Pk		lorizontal
4960	47.16		35.52	44.		42.62	54.		-11.38	AV		lorizontal
7440	70.77		36.53	44.		68.43	74.		-5.57	Pk		lorizontal
7440	49.64		36.53	44.		48.39	54.		-5.61	AV		lorizontal
_					-			-				

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious El	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz										
EUT:	Venture VideoBAR	Model No.:	999-50909-000								
Temperature:	20 ℃	Relative Humidity:	48%								
Test Mode:	Mode2/ Mode4	Test By:	Joe.Yan								

Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре				
	1Mbps(GFSK)											
2310.00	69.68	2.97	27.80	43.80	56.65	74	-17.35	Pk	Horizontal			
2310.00	47.30	2.97	27.80	43.80	34.27	54	-19.73	AV	Horizontal			
2310.00	72.10	2.97	27.80	43.80	59.07	74	-14.93	Pk	Vertical			
2310.00	48.83	2.97	27.80	43.80	35.80	54	-18.20	AV	Vertical			
2390.00	72.51	3.14	27.21	43.80	59.06	74	-14.94	Pk	Vertical			
2390.00	48.94	3.14	27.21	43.80	35.49	54	-18.51	AV	Vertical			
2390.00	72.78	3.14	27.21	43.80	59.33	74	-14.67	Pk	Horizontal			
2390.00	49.59	3.14	27.21	43.80	36.14	54	-17.86	AV	Horizontal			
2483.50	69.55	3.58	27.70	44.00	56.83	74	-17.17	Pk	Vertical			
2483.50	49.26	3.58	27.70	44.00	36.54	54	-17.46	AV	Vertical			
2483.50	70.75	3.58	27.70	44.00	58.03	74	-15.97	Pk	Horizontal			
2483.50	49.61	3.58	27.70	44.00	36.89	54	-17.11	AV	Horizontal			

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

ι	JT:	Ventur	e Videol	BAR	Mo	Model No.:			999-50909-000			
e	mperature:	20 ℃			Re	Relative Humidity:						
e	st Mode:	Mode2	/ Mode4	ŀ	Te	st By:		Joe.۱	'an			
	Frequency	Reading Level	Cable Loss	Antenna Factor	Pream Facto		Lir	nits	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре		
	3260	70.21	4.04	29.57	44.70	59.12	7	' 4	-14.88	Pk	Vertical	
	3260	48.95	4.04	29.57	44.70	37.86	5	54	-16.14	AV	Vertical	
ĺ	3260	70.29	4.04	29.57	44.70	59.20	7	' 4	-14.80	Pk	Horizontal	
ĺ	3260	49.58	4.04	29.57	44.70	38.49	5	54	-15.51	AV	Horizontal	
Ī	3332	70.76	4.26	29.87	44.40	60.49	7	' 4	-13.51	Pk	Vertical	
ĺ	3332	46.05	4.26	29.87	44.40) 35.78	5	54	-18.22	AV	Vertical	
ĺ	3332	70.63	4.26	29.87	44.40) 60.36	7	' 4	-13.64	Pk	Horizontal	
Ì	3332	49.02	4.26	29.87	44.40) 38.75	5	54	-15.25	AV	Horizontal	
	17797	55.25	10.99	43.95	43.50) 66.69	7	' 4	-7.31	Pk	Vertical	
	17797	41.25	10.99	43.95	43.50) 52.69	5	54	-1.31	AV	Vertical	
ľ	17788	51.62	11.81	43.69	44.60) 62.52	7	' 4	-11.48	Pk	Horizontal	
ľ	17788	35.61	11.81	43.69	44.60) 46.51	5	54	-7.49	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe.Yan

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Venture VideoBAR	Model No.:	999-50909-000
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Joe.Yan

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

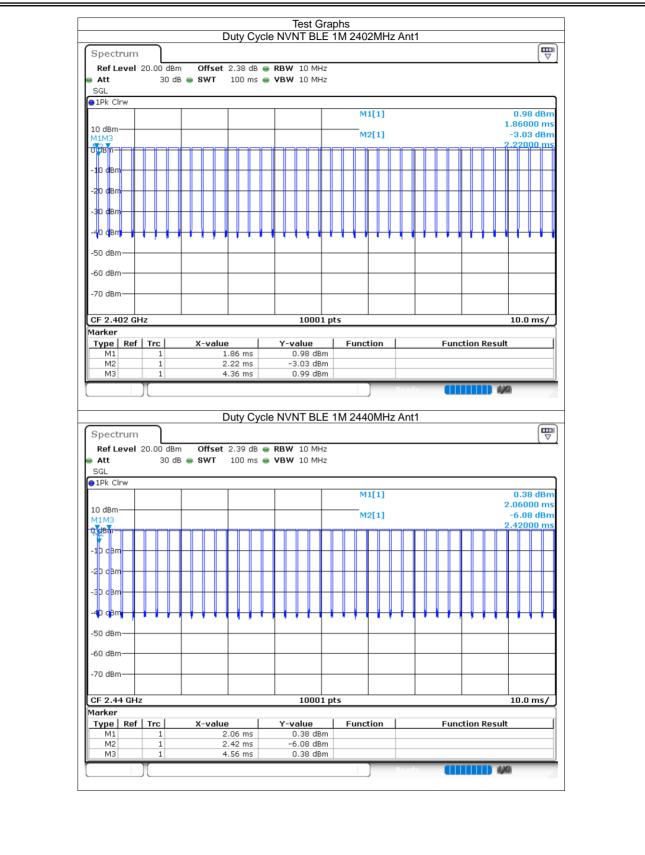
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

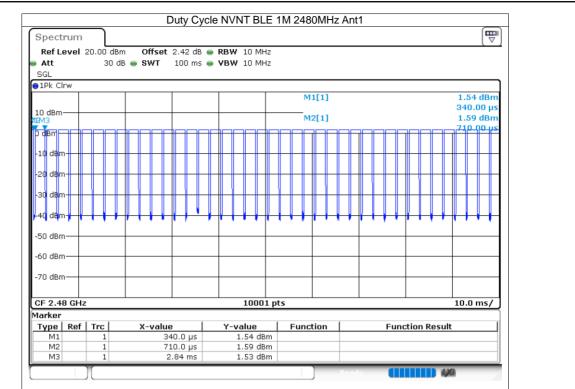
The EUT antenna is PCB Antenna (Gain:2 dBi). It comply with the standard equirement.

8 TEST RESULTS


8.1 **1M**

8.1.1 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	86	0.65	0.47
NVNT	BLE 1M	2440	Ant1	86	0.65	0.47
NVNT	BLE 1M	2480	Ant1	85.6	0.68	0.47



8.1.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	1.04	30	Pass
NVNT	BLE 1M	2440	Ant1	0.4	30	Pass
NVNT	BLE 1M	2480	Ant1	1.57	30	Pass

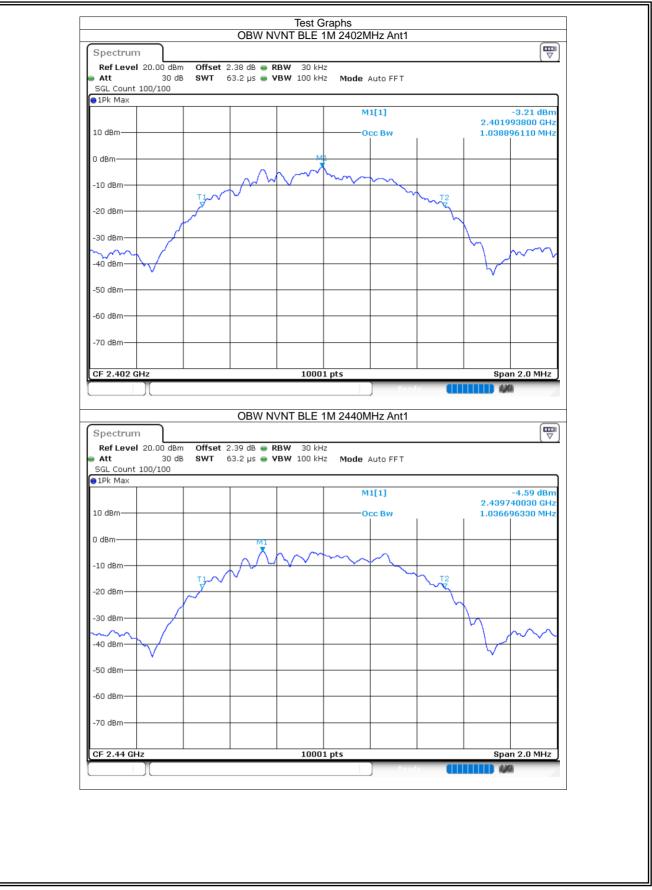
●1Pk Max	00/100			VBW 10 MH		1[1]			1.04 dBm
10 dBm							1 1	2.4019	63000 GHz
0 dBm				м	1				
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-70 ubiii									
CF 2.402 GH	iz		l	1000	1 pts			Span	10.0 MHz
-	20.00 dBm	Offset 2			1M 2440N	/Hz Ant1			
SGL Count 1	30 dB		2.39 dB 👄 I	NNTBLE RBW 3 MH VBW 10 MH	z)		
Ref Level Att SGL Count 1 91Pk Max	30 dB		2.39 dB 👄 I	RBW ЗМН	z z Mode A) 	2.4400	0.40 dBm 83000 GHz
Ref Level Att SGL Count 1 1Pk Max 10 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep	,	2.4400	0.40 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm 0 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 PIPk Max 10 dBm 0 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 • IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 • IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 • IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	z z Mode A M	Auto Sweep		2.4400	0.40 dBm
Ref Level Att SGL Count 1 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB 00/100		2.39 dB 👄 I	RBW 3 MH VBW 10 MH	Z Mode A	Auto Sweep		Span	0.40 dBm 183000 GHz

Spectrum					
Ref Level 20.00 dBm Att 30 dB SGL Count 100/100	Offset 2.42 dB ● SWT 10.1 ms ●		Mode Auto Sweep		
1Pk Max			M1[1]	2.479	1.57 dBm 642000 GHz
LO dBm		M1			
) dBm					
10 dBm					
20 dBm					
30 dBm					
40 dBm					
50 dBm					
60 dBm					
70 dBm					
CF 2.48 GHz		10001 pt		Spa	n 10.0 MHz

8.1.3 -6dB Bandwidth

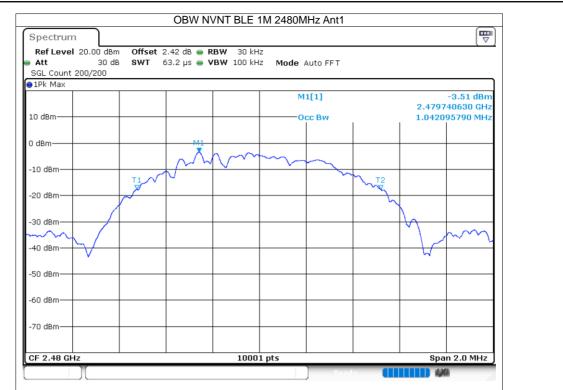
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.683	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.72	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.711	0.5	Pass

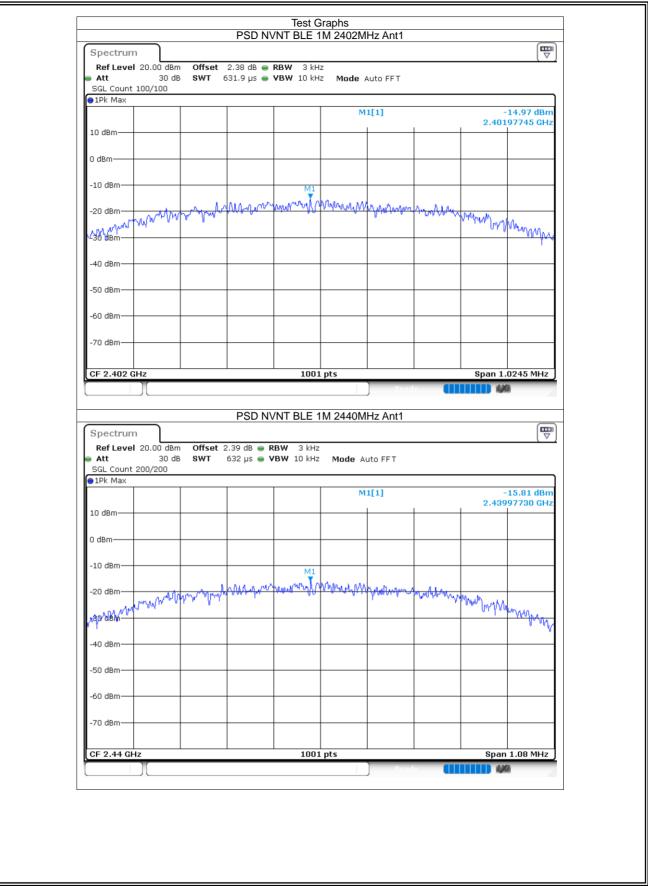
Spectrum						
Ref Level	20.00 d	Bm Offset 2.42 dB	RBW 100 kHz			(,
Att			VBW 300 kHz	Mode Auto FFT		
SGL Count 3	00/300					
1Pk Max						
				M1[1]	1.3	5 dBm
					2.48025557	0 GHz
10 dBm				M2[]	-4.66	5 dBm
) dBm					2.47963700	0 GHz
		M2				
-10 dBm						
-20 dBm						
20 00111						
30 dBm	\checkmark					
40 dBm						
50 dBm						
60 dBm —						
70 dBm —						
CF 2.48 GHz			10001 p	ts	Span 2.0	MHz
larker			10001 p		56411 210	
	Trc	X-value	Y-value	Function	Function Result	1
M1	1	2.48025557 GHz	1.35 dBm	Function	Function Result	
M2	1	2.479637 GHz	-4.66 dBm			
M3	1	2.480349 GHz	-4.67 dBm			



8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.039
NVNT	BLE 1M	2440	Ant1	1.037
NVNT	BLE 1M	2480	Ant1	1.042





8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-14.97	8	Pass
NVNT	BLE 1M	2440	Ant1	-15.81	8	Pass
NVNT	BLE 1M	2480	Ant1	-14.52	8	Pass

Spectrum				
	ffset 2.42 dB 👄 RBW			
Att 30 dB SV SGL Count 300/300	WT 632.1 µs 🖷 VBW	10 kHz Mode Auto FFT		
1Pk Max				
		M1[1]		-14.52 dBm
10 40			2.47	997765 GHz
10 dBm				
D dBm				
-10 dBm				
-20 dBm	malphil	VYB (WYWWWWWWWWWWWW	hrout here in	
a april my for my of the	Y ···	mj mmuumm	Janhon Marken	Auner
¢0 dBm				" vyvy M
				1
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.48 GHz		1001 pts		.0665 MHz

8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.28	-20	Pass
NVNT	BLE 1M	2480	Ant1	-42.97	-20	Pass

Spectrum Ref Level 20.0			RBW 100 kHz					
Att SGL Count 100/	35 dB SWT /100	18.9 µs 😑	VBW 300 kHz	Mode Au	uto FFT			
1Pk Max								
				M	1[1]		2 402	0.84 dBm 25570 GHz
10 dBm							2.402	20070 012
				M1				
0 dBm			M	\sim				
-10 dBm			+	$-\lambda$				
				$\langle \rangle$				
-20 dBm								
-30 dBm		- r	-↓		~			
40 dBm				Ŭ				
-40 dBm					\			
-50 dBm					h	b		
-60 dBm	1 mar V V	~				- · · · ·	m	$\gamma \sim \gamma$
-00 ubm								
-70 dBm								
			1001	ant o			Sna	n 8.0 MHz
Spectrum Ref Level 20.0	0 dBm Offset	t 2.38 dB 🖷	VNT BLE 1M	2402MH		nission		
Spectrum Ref Level 20.0 Att SGL Count 200/	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2402MH		nission		
Spectrum Ref Level 20.0 Att SGL Count 200/	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2402MH2 2 2 Mode 4	Auto FFT	nission		
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]	nission	2.402	0.84 dBm 225000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT	nission	2.402	0.84 dBm
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]	nission	2.402	0.84 dBm 25000 GHz 52.12⋈∰Bm
Spectrum Ref Level 20.0 Att SGL Count 200/ •1Pk Max 10 dBm -10 dBm -10 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]	nission	2.402	0.84 dBm 25000 GHz 52.12⋈∰Bm
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm D1 -	0 dBm Offset 35 dB SWT	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]		2.402	0.84 dBm 25000 GHz 52.12⋈∰Bm
Att SGL Count 200/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm D1 - -30 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 🖷	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]	nission	2.402	0.84 dBm 25000 GHz 52.12⋈∰Bm
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2 2 2 3 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3	Auto FFT 1[1]		2.402	0.84 dBm 225000 GHz 52.12,4Pm 00000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2402MH: 2 Mode 4 	Auto FFT 1[1] 2[1]		2.402	0.84 dBm 25000 GHz 52.12⋈∰Bm
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -40 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2402MH: 2 Mode 4 	Auto FFT 1[1] 2[1]		2.402	0.84 dBm 225000 GHz 52.12,49m 00000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	0 dBm Offset 35 dB SWT /200	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2402MH: 2 Mode 4 	Auto FFT 1[1] 2[1]		2.402	0.84 dBm 225000 GHz 52.12,49m 00000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	0 dBm Offset 35 dB SWT 200 	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2 Mode 4 M: 	Auto FFT 1[1] 2[1]		2.402 2.400	0.84 dBm 225000 GHz 52.12,4Pm 000000 SHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	0 dBm Offset 35 dB SWT 200 	t 2.38 dB 227.5 μs	VNT BLE 1M	2 2 Mode / M: 	Auto FFT 1[1] 2[1]	MV Marker (Marker	2.402 2.400	0.84 dBm 225000 GHz 52.12 _A Hpm 000000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	0 dBm Offset 35 dB SWT /200 	t 2.38 dB 227.5 µs 227.5 µs Интерности М4 Интерности Виче	VNT BLE 1M	2402MH: 2 Mode 4 M: M: M: 040Mru, AunUsuk pts Funct	Auto FFT 1[1] 2[1]	MV Marker (Marker	2.402 2.400	0.84 dBm 225000 GHz 52.12 _A Hpm 000000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	O dBm Offset 35 dB SWT /200 /////////////////////////	t 2.38 dB 227.5 µs 227.5 µs 40225 GHz 2.4 GHz	VNT BLE 1M	2 2 Mode 4 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Auto FFT 1[1] 2[1]	MV Marker (Marker	2.402 2.400	0.84 dBm 225000 GHz 52.12 _A Hpm 000000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200 1Pk Max 10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm Type Ref Tn M1	0 dBm Offset 35 dB SWT 200 	t 2.38 dB 227.5 µs 227.5 µs	VNT BLE 1M	2 2 Mode 4 M: M: M: M: Pts Pts Funct m m	Auto FFT 1[1] 2[1]	MV Marker (Marker	2.402 2.400	0.84 dBm 225000 GHz 52.12 _A Hpm 000000 GHz
Spectrum Ref Level 20.0 Att SGL Count 200/ 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	0 dBm Offset 35 dB SWT 200 	t 2.38 dB 227.5 µs 227.5 µs 40225 GH2 2.4 GHz 2.39 GHz	VNT BLE 1M	2 2 Mode 4 M: M: M: M: Pts Pts Funct m m	Auto FFT 1[1] 2[1]	MV Marker (Marker	2.402 2.400	0.84 dBm 225000 GHz 52.12 _A Hpm 000000 GHz

Spectrum Ref Level 30.0 Att SGL Count 100,	45 dB			RBW 100 kHz VBW 300 kHz		uto FFT			
SGL COUNT 100, 1Pk Max	100								
					M	1[1]			0.88 dBm
						I	1	2.480	00800 GHz
20 dBm									
10 dBm									
0 dBm					$\sqrt[1]{}$				
-10 dBm					\rightarrow				
-20 dBm					\rightarrow				
-30 dBm				~	l	~			
-40 dBm									
and h	Sec.	$\sim \sim \sim \sim$	\sim				han no	n.m.	mm
-50 dBm	~ ~ ~ ~	1 V V V 1					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		V
-60 dBm									
CF 2.48 GHz				1001	pts			Spa	n 8.0 MHz
Spectrum)0 dBm			NT BLE 1M) Rear z Ant1 En	nission		
Spectrum Ref Level 30.0 Att SGL Count 100,	45 dB	Offset 2	2.42 dB 👄	(NT BLE 1M RBW 100 kH VBW 300 kH	z) Read z Ant1 En Auto FFT	nission		
Spectrum Ref Level 30.0 Att SGL Count 100,	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A		nission		0.85 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, • 1Pk Max	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission		0.85 dBm 05000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT	nission	-	0.85 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm M1	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission	-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm M1	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission	-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm M1	45 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission	-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	45 dB	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission	-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 cBm D1 -	45 dB /100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A M	Auto FFT 1[1]	nission	-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm D1 - -30 dBm	45 dB /100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z Mode A	Auto FFT 1[1]		-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 cBm D1 -	45 dB /100	Offset 2 SWT 22	2.42 dB ● 2.7.5 µs ●	RBW 100 kH VBW 300 kH	2 Mode /	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -20 cBm -30 dBm -40 dBm ¹² -40 dBm ¹²	45 dB /100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH VBW 300 kH	2 Mode /	Auto FFT 1[1]		-	0.85 dBm 05000 GHz 43.73 dBm
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm	45 dB /100	Offset 2 SWT 22	2.42 dB ● 2.7.5 µs ●	RBW 100 kH VBW 300 kH	2 Mode /	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -20 cBm -30 dBm -40 dBm ¹² -40 dBm ¹²	45 dB /100	Offset 2 SWT 22	2.42 dB ● 2.7.5 µs ●	RBW 100 kH VBW 300 kH	2 Mode /	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	45 dB /100 -19.124	Offset 2 SWT 22	2.42 dB ● 2.7.5 µs ●	RBW 100 kH VBW 300 kH	Z Mode A	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm ¹² -60 dBm -60 dBm	45 dB /100 -19.124	Offset 2 SWT 22	2.42 dB ● 2.7.5 µs ●	RBW 100 kH VBW 300 kH	Z Mode A	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm ¹² -50 dBm -60 dBm -60 dBm	45 dB /100 -19.124 -19.124 -19.124	Offset 2 SWT 22	2.42 dB • ?7.5 µs •	RBW 100 kH VBW 300 kH	Z Mode A	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70	45 dB /100 -19.124 4 4 2 rc 1	Offset 2 SWT 22 dBm 	2.42 dB • 27.5 µs •	RBW 100 kH VBW 300 kH Image: State of the sta	2 2 Mode / M: M: M: M: M: M: M: M: M: M:	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm	45 dB /100 -19.124 4 4 z rc 1 1	Offset 2 SWT 22 dBm dBm <u>W13</u> (W13)	2.42 dB • ?7.5 µs • 	RBW 100 kH VBW 300 kH	2 2 Mode / M. M. M. M. M. M. M. M. M. M.	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm Start 2.476 GH Marker Type Ref T	45 dB /100 -19.124 4 4 2 rc 1	Offset 2 SWT 22 dBm dBm vyyradywwyd z,4800 2,4900 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000000000000000000000000000000000000	2.42 dB • 27.5 µs •	RBW 100 kH VBW 300 kH Image: State of the sta	z Mode A	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz
Spectrum Ref Level 30.0 Att SGL Count 100, 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -60 dBm -60 dBm Start 2.476 GH M1 M2 M3	45 dB /100 -19.124 -19.124 -1 -1 -1 -1 -1 -1	Offset 2 SWT 22 dBm dBm vyyradywwyd z,4800 2,4900 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000 2,49000000000000000000000000000000000000	2.42 dB	RBW 100 kH VBW 300 kH U	z Mode A	Auto FFT 1[1] 2[1]		2.483	0.85 dBm 05000 GHz 43.73 dBm 50000 GHz

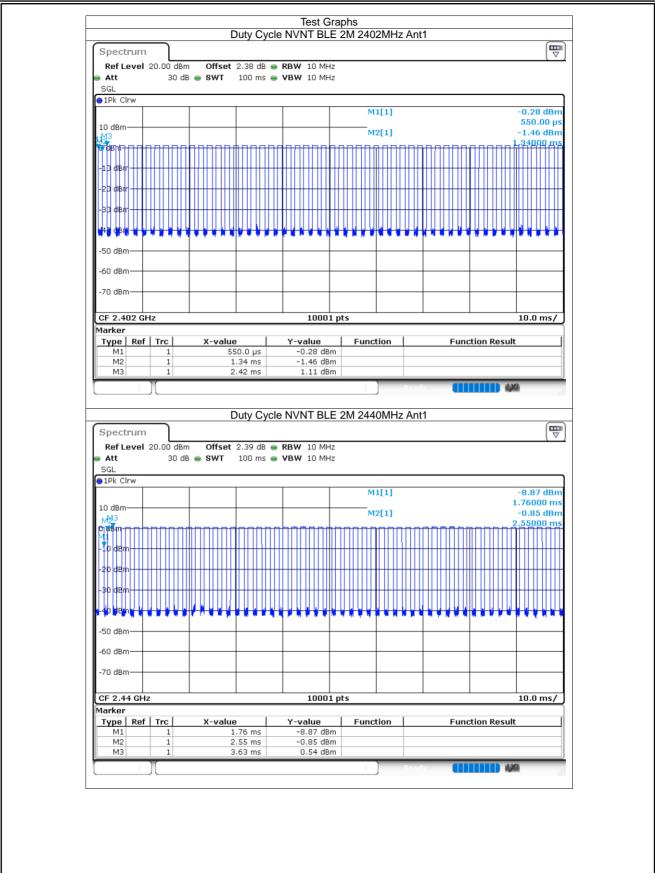
8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-51.49	-20	Pass
NVNT	BLE 1M	2440	Ant1	-48.56	-20	Pass
NVNT	BLE 1M	2480	Ant1	-52.02	-20	Pass

(a .	\neg	1x. Spi	unous	NVNT BLE 1					(m)
Spectrum									
Ref Level Att		m Offset 2.38 dB SWT 18.9		RBW 100 kHz	Mode Auto	D FFT			
SGL Count 3		 .	, ha 🖷	TEN SOO MIZ	Mode Auto	5 FF I			
😑 1Pk Max									
					M1[1	1			0.79 dBm
10 dBm					1		1	2.4019	944500 GHz
TO OBM									
0 dBm				ML					
U UBIII			~~~						
-10 dBm									
10 0.011									
-20 dBm									
-30 dBm				+			+		\vdash
-40 dBm		+		+			+		
-50 dBm		+		+ +			+		
-60 dBm		+ +		+ +					1
-70 dBm									
CF 2.402 GH	Ηz			30001	ots		•	Spa	an 1.5 MHz
][]					Rea	dy 🚺		KA .
Spectrum		Tx. Spuric	ous N\	/NT BLE 1M	2402MHz /	Ant1 E	mission		
Ref Level Att	20.00 dB 30 (Tx. Spuric m Offset 2.38 dB SWT 265	3 dB 👄	RBW 100 kHz					
Ref Level Att SGL Count 1	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz					
Ref Level	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz	Mode Aut	o Sweep			
Ref Level Att SGL Count 1 1Pk Max	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz		o Sweep		2.	0.13 dBm 402070 GHz
Ref Level Att SGL Count 1 P1Pk Max 10 dBm M1	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz	Mode Aut	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz
Ref Level Att SGL Count 1 P1Pk Max 10 dBm M1	20.00 dB 30 (m Offset 2.38	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 P1Pk Max 10 dBm 10 dBm -10 dBm	20.00 dB 30 (10/10	im Offset 2.38 38 SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 PIPk Max 10 dBm 10 dBm -10 dBm -20 dBm	20.00 dB 30 (10/10	im Offset 2.38 38 SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 P1Pk Max 10 dBm 10 dBm -10 dBm	20.00 dB 30 (10/10	im Offset 2.38 38 SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 PIPk Max 10 dBm 10 dBm -10 dBm -20 dBm	20.00 dB 30 (10/10	im Offset 2.38 38 SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep		22.	0.13 dBm 402070 GHz -50.70 dBm
Main Main ID dBm Mil 0 dBm Mil 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	20.00 dE 30 (10/10	m Offset 2.38 JB SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	o Sweep			0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dB 30 (10/10	m Offset 2.38 JB SWT 265	3 dB 👄	RBW 100 kHz	Mode Auto M1[1	D Sweep		22. M2	0.13 dBm 402070 GHz -50.70 dBm
Main Main ID dBm Mil 0 dBm Mil 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	20.00 dE 30 (10/10	m Offset 2.38 JB SWT 265	3 dB • i ms •	RBW 100 kHz	Mode Auto M1[1	D Sweep		22.	0.13 dBm 402070 GHz -50.70 dBm
Main Main ID dBm Mil 0 dBm Mil 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	20.00 dE 30 (10/10	m Offset 2.38 JB SWT 265	3 dB • i ms •	RBW 100 kHz	Mode Auto M1[1	D Sweep		22. M2	0.13 dBm 402070 GHz -50.70 dBm
Mail Mail SGL Count 1 SGL Count 1 ID dBm ID dBm 10 dBm ID dBm -10 dBm ID dBm -30 dBm ID dBm -30 dBm ID dBm -40 dBm ID dBm	20.00 dE 30 (10/10	m Offset 2.38 JB SWT 265	3 dB • i ms •	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1 	D Sweep		22. M2	0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 9 1Pk Max 10 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 30.0 M	20.00 de 30 (10/10)1 -19.20	m Offset 2.38 JB SWT 265	3 dB • i ms •	RBW 100 kHz	Mode Auto M1[1 	D Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm
Ref Level Att SGL Count 1 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm Start 30.0 M Marker	20.00 dB 30 (10/10 01 -19.20	m Offset 2.38 JB SWT 265 	3 dB • i ms •	RBW 100 kHz VBW 300 kHz	Mode Autr	o Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 • 1Pk Max 10 dBm • 10 dBm • 10 dBm • 10 dBm • 20 dBm • 20 dBm • 50 dBm • 50 dBm • 70 dBm	20.00 dB 30 (10/10 01 -19.20	im Offset 2.38 JB SWT 265 	3 dB ims ims	RBW 100 kHz VBW 300 kHz	Mode Auto M1[1 	o Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 SGL Count 1 I D dBm 10 dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 30.0 M Marker Type M1 M2	20.00 dE 30 (10/10)1 -19.20 (1Hz 1 1 1	m Offset 2.38 38 SWT 265 	A dB ms ms M5 GHz GHz GHz GHz	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto M1[1 M2[1	o Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm Start 30.0 M Marker Type Ref M1 M2 M3	20.00 dB 30 (10/10 01 -19.20 1Hz 1 1 1 1	m Offset 2.38 JB SWT 265 	3 dB ms ms GHz GHz GHz GHz GHz	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto	o Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 • 1Pk Max 10 dBm • 10 dBm • 10 dBm • 10 dBm • 20 dBm • 20 dBm • 40 dBm • 50 dBm • 70 dBm	20.00 dE 30 (10/10)1 -19.20 (1Hz 1Hz	im Offset 2.38 JB SWT 265 18 dBm 18 dBm 18 dBm 18 dBm 18 dBm 19 dBm 10	3 dB ms ms	RBW 100 kHz VBW 300 kHz Image: state st	Mode Auto	o Sweep		M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 9 1Pk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 M Marker Type M1 M2 M3	20.00 dB 30 (10/10 01 -19.20 1Hz 1Hz 1 1 1	m Offset 2.38 JB SWT 265 	3 dB ms ms	RBW 100 kHz VBW 300 kHz Image: State stat	Mode Auto	o Sweep	2	M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz
Ref Level Att SGL Count 1 • 1Pk Max 10 dBm • 10 dBm • 10 dBm • 10 dBm • 20 dBm • 20 dBm • 40 dBm • 50 dBm • 70 dBm	20.00 dB 30 (10/10 01 -19.20 1Hz 1Hz 1 1 1	im Offset 2.38 JB SWT 265 18 dBm 18 dBm 18 dBm 18 dBm 18 dBm 19 dBm 10	3 dB ms ms	RBW 100 kHz VBW 300 kHz Image: State stat	Mode Auto	o Sweep	2	M2	0.13 dBm 402070 GHz -50.70 dBm 799494 GHz

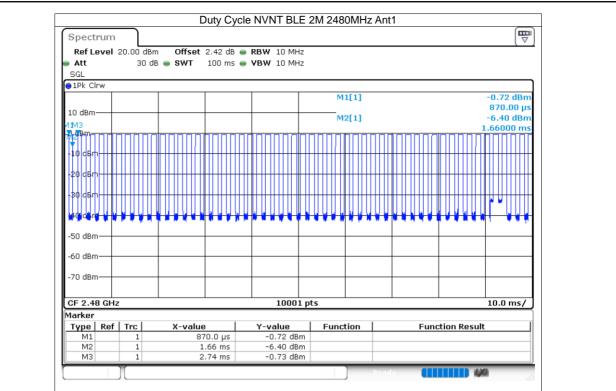
Ref Level 20.00 dB Att 30 d SGL Count 100/100	m Offset 2.39 dB 🖷 B SWT 18.9 µs 🖷		Mode Auto FFT			
1Pk Max						
			M1[1]		2.44000	-1.36 dBm 27500 GHz
10 dBm						
0 dBm		M1				
o usiii				-		
-10 dBm						
-20 dBm						
-20 0811						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm	+	+				
		30001 pt	· s		Spa	n 1.5 MHz
Spectrum Ref Level 20.00 dB	m Offset 2.39 dB 🖷	IVNT BLE 1M 2	440MHz Ant1			
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10		IVNT BLE 1M 2	440MHz Ant1			
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10	m Offset 2.39 dB 🖷	IVNT BLE 1M 2	440MHz Ant1			
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm	m Offset 2.39 dB 🖷	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm 40010 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 • 1Pk Max	m Offset 2.39 dB 🖷	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm
Spectrum Ref Level 20.00 dBa Att 30 d SGL Count 10/10 1Pk Max 10 dBm	m Offset 2.39 dB 🖷	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm	m Offset 2.39 dB B SWT 265 ms	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm	m Offset 2.39 dB B SWT 265 ms	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dB/ Att 30 d SGL Count 10/10 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm D1 -21.361	m Offset 2.39 dB B SWT 265 ms 2 dBm	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe		2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	m Offset 2.39 dB B SWT 265 ms Constraints of the second se	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe M1[1] M2[1]	ер	2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm D1 -21.36 -30 dBm	m Offset 2.39 dB B SWT 265 ms 2 dBm	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe M1[1] M2[1]		2.4	-1.16 dBm 40010 GHz 49.93 dBm
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m Offset 2.39 dB B SWT 265 ms Constraints of the second se	IVNT BLE 1M 2	Mode Auto Swe M1[1] M2[1]		2.4	-1.16 dBm 40010 GHz 49.93 dBm 37788 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	m Offset 2.39 dB B SWT 265 ms Constraints of the second se	VNT BLE 1M 2	440MHz Ant1 Mode Auto Swe M1[1] M2[1]		2.4 - 6.9	-1.16 dBm 40010 GHz 49.93 dBm 37788 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 30.0 MHz	m Offset 2.39 dB B SWT 265 ms Constraints of the second se	IVNT BLE 1M 2	440MHz Ant1 Mode Auto Swe M1[1] M2[1]		2.4 - 6.9	-1.16 dBm 40010 GHz 49.93 dBm 37788 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 MHz Marker Type	m Offset 2.39 dB B SWT 265 ms	VNT BLE 1M 2	440MHz Ant1 Mode Auto Swe M1[1] M2[1]		2.4 - 6.9	-1.16 dBm 49.93 dBm 37788 GHz
Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm 0 dBm -20 dBm 01 -21.360 -30 dBm 01 -21.360 -50 dBm 01 -21.360 -70 dBm 01 -21.360	m Offset 2.39 dB B SWT 265 ms	VNT BLE 1M 2 RBW 100 kHz VBW 300 kHz	Mode Auto Swee		2.4 - 6.9	-1.16 dBm 49.93 dBm 37788 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 MHz Marker Type Ref M1 1 M2 1 M3 1	m Offset 2.39 dB B B SWT 265 ms C 2 dBm C 2 dBm C 2 dBm C 2 dBm C 4 4001 GHz C 444001 GHz C 444001 GHz C 5.023124 GHz C 5.023124 GHz	VNT BLE 1M 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz VBW 300 kHz	Mode Auto Swee		2.4 - 6.9	-1.16 dBm 49.93 dBm 37788 GHz
Spectrum Ref Level 20.00 dBi Att 30 d SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm Start 30.0 MHz Marker Type Ref Trc M1 1	m Offset 2.39 dB B SWT 265 ms	VNT BLE 1M 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz 30001 pt -1.16 dBm -49.93 dBm	Mode Auto Swee		2.4 - 6.9	-1.16 dBm 49.93 dBm 37788 GHz

Att 🗧	30 dB			RBW 100 kH: VBW 300 kH:		Auto FFT			
SGL Count	200/200								
					N	11[1]			1.28 dBm
10 dBm						+		2.48025	28920 GHz
						M1			
0 dBm									
-10 dBm									
00.45									
-20 dBm									
-30 dBm									
-40 dBm									
-40 0811									
-50 dBm									
-60 dBm-									
-70 dBm						+			
			-	· ·					
Spectrum Ref Level	20.00 dBm	Offset 2	2.42 dB 👄 I	3000: NT BLE 1M	M 2480M			Spa	n 1.5 MHz
Spectrum Ref Level Att SGL Count	20.00 dBm 30 dB	Offset 2	2.42 dB 👄 I	NT BLE 1N	M 2480M				
Att 🗧	20.00 dBm 30 dB	Offset 2	2.42 dB 👄 I	NT BLE 1M	M 2480M ^z ^z Mode				
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset 2	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	20.00 dBm 30 dB	Offset 2	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep		2.4	(₩ .0.35 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB 👄 I	NT BLE 1M	Z 2480M Z Mode	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB • 1 265 ms • 1	NT BLE 1M	X 2480M	Auto Sweep 11[1]		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB 👄 I	NT BLE 1M	M 2480M	Auto Sweep		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB • 1 265 ms • 1	NT BLE 1M	M 2480M	Auto Sweep		2.4	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB • 1 265 ms • 1		X 2480M	Auto Sweep		2.4 22.8 22.8	-0.35 dBm 79720 GHz 50.75 dBm 29493 GHz
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm Start 30.0	20.00 dBm 30 dB 5/5	Offset 2 SWT	2.42 dB • 1 265 ms • 1	NT BLE 1M	X 2480M	Auto Sweep		2.4 22.8 22.8	-0.35 dBm -79720 GHz 50.75 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 30.0 Marker Type Ref	D1 -18.718	Offset 2 SWT	2.42 dB 265 ms Y 265 ms Y		V 2480M	Auto Sweep		2.4 22.8 22.8	-0.35 dBm 79720 GHz 50.75 dBm 29493 GHz
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm Start 30.0 Marker Type Ret M1 M2	20.00 dBm 30 dB 5/5 D1 -18.718 MHz MHz i Trc 1 1	Offset : SWT dBm dBm x-value 2.479 22.8294	2.42 dB I I	NT BLE 11	M 2480M	Auto Sweep		2.4 22.8 22.8 	-0.35 dBm 79720 GHz 50.75 dBm 29493 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm Start 30.0 Marker Type Ref M1 M2 M3 M4	D1 -18.718	Offset 2 SWT	2.42 dB 265 ms	NT BLE 1N RBW 100 kH yBW 300 kH 300	V 2480M	Auto Sweep		2.4 22.8 22.8 	-0.35 dBm 79720 GHz 50.75 dBm 29493 GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dB	D1 -18.718	Offset 2 SWT	2.42 dB 265 ms	NT BLE 11 RBW 100 kH; yBW 300 kH;	V 2480M	Auto Sweep	Fund	2.4 22.8 22.8 	-0.35 dBm -79720 GHz 50.75 dBm 29493 GHz


8.2 **2M**

8.2.1 Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	58.46	2.33	0.93
NVNT	BLE 2M	2440	Ant1	58.03	2.36	0.93
NVNT	BLE 2M	2480	Ant1	58.4	2.34	0.93

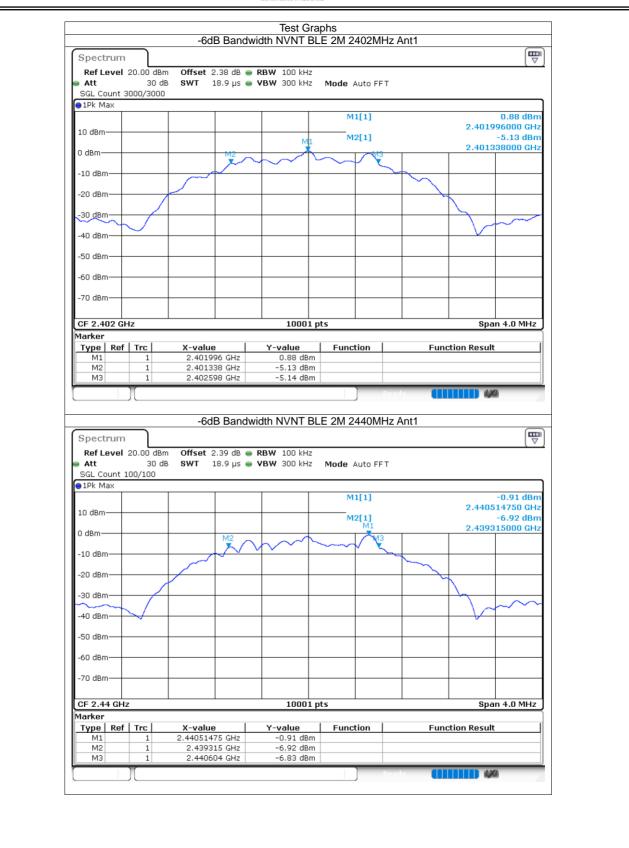


8.2.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	1.14	30	Pass
NVNT	BLE 2M	2440	Ant1	0.6	30	Pass
NVNT	BLE 2M	2480	Ant1	-0.64	30	Pass

Att 30 dB SWT 10.1 ms VBW 10 MHz Mude Auto Sweep SGL Count 100/100 Image: SGL Count 100/100 Image: SGL Count 100/100 Image: SGL Count 100/100 Image: SGL Count 100/100 In dBm Image: SGL Count 100/100 In dBm Image: SGL Count 100/100 In dBm Image: SGL Count 100/100 Image: SGL Count 100/	Ref Leve	ר ב 1 20.00 dBm		2.38 dB 👄 🖡						
10 dBm M1[1] 1.14 dBm 0 dBm M1 2.401491100 GHz 0 dBm M1 0 -10 dBm M1 0 -20 dBm 0 0 -30 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 -80 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 CF 2.402 GHz 10001 pts Spen 10.0 MHz Spectrum V V Ref Level 20.0 dBm Offset 2.39 dB RBW 3 MHz Std. Count 100/100 0 0.60 dBm 0 dBm M1[1] 2.440010000 GHz 0 dBm M1[1] 2.440010000 GHz 0 dBm M1 0 -30 dBm 0 0 -30 dB	SGL Count		5WI	10.1 ms 👄 \	юм 10 MH:	∠ Mode A	uto Sweep			
10 dBm M1 M1 M1 M1 0 dBm M1 M1 M1 M1 M1 -10 dBm M1 M1 M1 M1 M1 M1 -30 dBm M1 M1 M1 M1 M1 M1 M1 -30 dBm M1 M1 M1 M1 M1 M1 M1 M1 -30 dBm M1	●1Pk Max					M	1[1]			1.14 dBm
0 dbm -10 dbm -20 dbm -30 dbm -30 dbm -40 dbm -50 dbm -50 dbm -70 d	10 dBm							· · · · · ·	2.4014	
0 dsm -10 dsm					M1					
-20.46m -30.48m -40.48m -40.48m -50.48m -70	0 dBm									
-30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10 dBm -20	-10 dBm								~	
-40 dbm -50 dbm -50 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -10	-20. d 8m—									
-40 dbm -50 dbm -50 dbm -70 dbm -70 dbm -70 dbm -70 dbm -70 dbm -10	20 dBm-									
-50 dBm -60 dBm -70 dBm -10 dBm -10 dBm -20 dBm -20 dBm -70	-30 ubiii									
-60 dBm -70	-40 dBm									
-70 dBm CF 2.402 GHz Power NVNT BLE 2M 2440MHz Ant1 Spectrum Ref Level 20.00 dBm SWT 10.1 ms • VBW 10 MHz Mode Auto Sweep SGL Count 100/100 ● 1Pk Max 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	-50 dBm—									
-70 dBm CF 2.402 GHz Power NVNT BLE 2M 2440MHz Ant1 Spectrum Ref Level 20.00 dBm SWT 10.1 ms • VBW 10 MHz Mode Auto Sweep SGL Count 100/100 ● 1Pk Max 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	-60 dBm									
CF 2.402 GHz 10001 pts Span 10.0 MHz Power NVNT BLE 2M 2440MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 2.39 dB RBW 3 MHz Att 30 dB SWT 10.1 ms VBW 10 MHz Mode Auto Sweep SGL Count 100/100 PIPk Max M1[1] 0.60 dBm 10 dBm M1 0 0 0 -20 dBm -20 dBm<										
Power NVNT BLE 2M 2440MHz Ant1 Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"	-70 dBm									
Power NVNT BLE 2M 2440MHz Ant1 Spectrum Image: Colspan="2">Image: Colspan="2" Image: Colspan="2"	CF 2.402 (Hz			1000	1 pts			Span	10.0 MHz
Spectrum Image: Constraint of the sector of th							Read			
Spectrum Image: Constraint of the sector of th										
10 dBm N1 2.440010000 GHz 0 dBm N1 Image: Constraint of the second	Ref Leve	l 20.00 dBm		2.39 dB 👄 F	RBW 3 MH	z				
N1 Image: Constraint of the second secon	Ref Leve Att SGL Count	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH	z z Mode A	uto Sweep			
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10	Ref Leve • Att SGL Count • 1Pk Max	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH	z z Mode A	uto Sweep		2.4400	0.60 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70	Ref Leve Att SGL Count PIPK Max 10 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Ref Leve Att SGL Count PIPK Max 10 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-40 dBm	Ref Leve Att SGL Count 1Pk Max 10 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-40 dBm	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-50 dBm60 dBm70 dB	Ref Leve • Att <u>SGL Count</u> • 1Pk Max 10 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-60 dBm	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
-70 dBm	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
CF 2.44 GHz 10001 pts Span 10.0 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
CF 2.44 GHz 10001 pts Span 10.0 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
	Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
Ready (Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	l 20.00 dBm 30 dB		2.39 dB 👄 F	RBW 3 MH. VBW 10 MH.	z Mode A	uto Sweep		2.4400	0.60 dBm
	Ref Leve Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 20.00 dBm 30 dE 100/100		2.39 dB 👄 F	RBW 3 MH VBW 10 MH	Z Mode A	uto Sweep			0.60 dBm 10000 GHz
	Ref Leve Att SGL Count 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 20.00 dBm 30 dE 100/100		2.39 dB 👄 F	RBW 3 MH VBW 10 MH	Z Mode A	uto Sweep		Span	0.60 dBm 10000 GHz

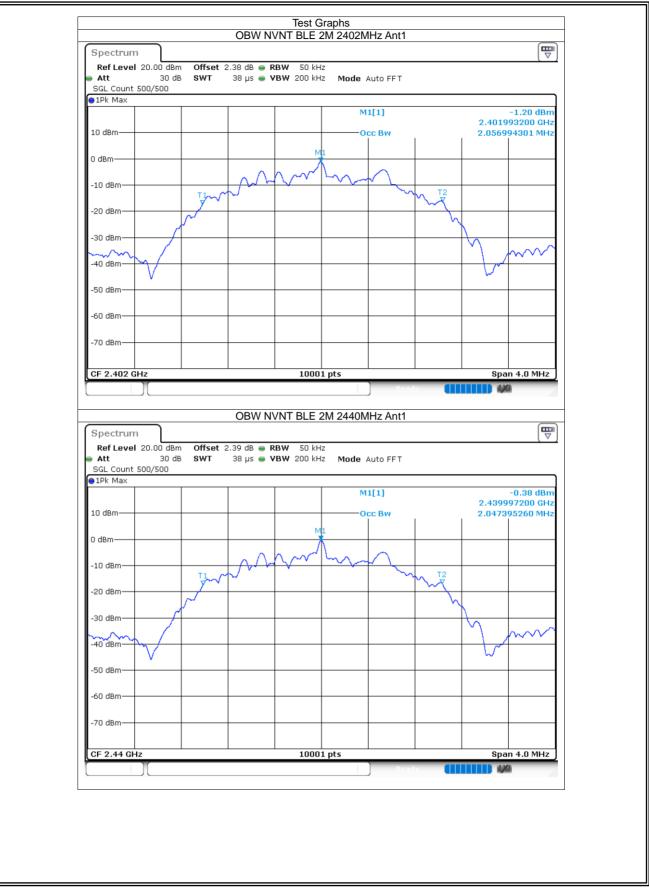
Spectrum					
Ref Level 20.00 dl Att 30 SGL Count 100/100		dB e RBW 3 MH: ms e VBW 10 MH:		эр	
1Pk Max			M1[1]	2.	-0.64 dBm 479478100 GHz
.0 dBm					
I dBm		M1			
10 dBm					
20 dBm					
30 dBm					
40 dBm	_				
50 dBm					
60 dBm					
70 dBm					
F 2.48 GHz		1000	1 ptc		Span 10.0 MHz



8.2.3 -6dB Bandwidth

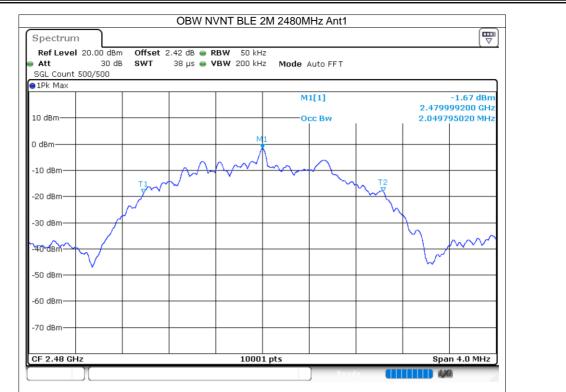
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.26	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.289	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.104	0.5	Pass

Spectrum					-		
Ref Level		m Offcot 0.40 dB	RBW 100 kHz				(🗸)
Att	20.00 UB 30 d		-	Mode Auto FFT			
SGL Count :		5 5441 10.9 µ3	- 1011 300 KHZ	MOUE AUTOFFT			
1Pk Max	,						
				M1[1]			-1.02 dBm
						2.4800	00400 GHz
				M2[1]			-7.02 dBm
) dBm			M1			2.4794	47000 GHz
		M		M3			
10 dBm							
					\sim		
20 dBm —							
30 dBm						<hr/>	
						\mathcal{I}	~~~
40 dBm	<u> </u>					$\rightarrow \sim$	\sim -
						~	
50 dBm —							
60 dBm —							
70 dBm							
CF 2.48 GH Iarker	z		10001 pt	S		Spa	n 4.0 MHz
	1 Tue 1	X-value	Y-value	Function	F	ion Result	
Type Ref M1	1	2.4800004 GHz	-1.02 dBm	Function	Funct	ion kesult	
M2	1	2.479447 GHz	-7.02 dBm				
M3	1	2.480551 GHz	-7.01 dBm				



8.2.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.057
NVNT	BLE 2M	2440	Ant1	2.047
NVNT	BLE 2M	2480	Ant1	2.05



8.2.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-16.07	8	Pass
NVNT	BLE 2M	2440	Ant1	-16.84	8	Pass
NVNT	BLE 2M	2480	Ant1	-18.1	8	Pass

SGL Count 60	30 dB SWT 000/6000	632.1 µs 👄 '	VBW 10 kH:	Z Mode /	Auto FFT			
●1Pk Max				м	1[1]			16.07 dBm
10 dBm							2.4019	89040 GHz
0 dBm								
-10 dBm								
			M	e Al la				
-20 dBm	where we have a man	AMMMM	www.why	"Manaphanaphanaphanaphanaphanaphanaphanap	MANAMANA	MANAMAN	Municipality	
WAR/APPLY							. (r. (1993)	profestion to
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.402 GH	z		1000	L pts	Poor		Span	1.89 MHz
	20.00 dBm Offset							
Ref Level 2 Att SGL Count 10	30 dB SWT	2.39 dB 🖷 R			uto FFT			
Ref Level 2 Att	30 dB SWT	2.39 dB 🖷 R		Mode A	uto FF T 1[1]			16.84 dBm
Ref Level 2 Att SGL Count 10	30 dB SWT	2.39 dB 🖷 R		Mode A				
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB SWT	2.39 dB 🖷 R		Mode A				16.84 dBm
Ref Level 2 Att SGL Count 10 1Pk Max	30 dB SWT	2.39 dB 🖷 R	BW 10 kHz	Mode A				16.84 dBm
Ref Level 2 Att SGL Count 10 PIPK Max 10 dBm 0 dBm -10 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]		2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 PIPK Max 10 dBm 0 dBm -10 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]	winner yw ywy	2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]	win 4m you'n Aw	2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]	who have you have	2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]	Monayarya	2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]	Minun yur W	2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A M	1[1]		2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A	1[1]		2.4399	16.84 dBm 88980 GHz
Ref Level 2 Att SGL Count 10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm	30 dB SWT	2.39 dB • R 632 µs • V	BW 10 kHz	Mode A	1[1]		2.4399	16.84 dBm 88980 GHz

Att	.00 dBm Offse	t 2.42 dB 🖷	RBW 3 kHz				
mu	30 dB SWT	_	VBW 10 kHz	Mode Auto	FFT		
SGL Count 100	/100						
1Pk Max]
				M1[1]			-18.10 dBm
10 dBm						2.479	988910 GHz
0 dBm							
o abiii							
-10 dBm			_				
			M				
-20 dBm							
	many	MANNAM	what man what have a second	mann	2 mar 1 hand	Men a had an	
Lad all have a second	was wanted and	a harde i v	and de		A.B. MALLIN		M MAR A
We C. C							A Awall
-40 dBm	,						
-50 dBm			++				
-60 dBm							
-70 dBm			++				
CF 2.48 GHz			10001	ntc			1.656 MHz
5. 2110 0112			10001	P.2		opun	1.000 1.112

8.2.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-51.1	-20	Pass
NVNT	BLE 2M	2480	Ant1	-49.59	-20	Pass

Spectrum					
Ref Level 20.00 dBr Att 35 d	B SWT 18.9	dB 👄 RBW 100 kHz μs 👄 VBW 300 kHz			(v)
SGL Count 1500/150 91Pk Max	0				
			M1[1]		0.73 dBm
10 40				2.40	199200 GHz
10 dBm					
0 dBm			h		
-10 dBm			\sim $$		
		<u></u>	\sim		
-20 dBm		1			
-30 dBm	-	/			
-40 dBm		/	V	~ \	
Δ.					
-50 dBm	+				m
-60 dBm					
-70 dBm	+				<u> </u>
CF 2.402 GHz		1001	pts	Sp	an 8.0 MHz
Spectrum	Band Ed	ge NVNT BLE 2M	1 2402MHz Ant1 Er		
RefLevel 20.00 dBr Att 35 d	n Offset 2.38	ge NVNT BLE 2M 3 dB ● RBW 100 kH 5 µS ● VBW 300 kH	z		
Ref Level 20.00 dBr	n Offset 2.38	3 dB 🖷 RBW 100 kH	z		
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max	n Offset 2.38	3 dB 🖷 RBW 100 kH	z	nission	-2.66 dBm
Ref Level 20.00 dBr Att 35 d SGL Count 100/100	n Offset 2.38	3 dB 🖷 RBW 100 kH	z z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max	n Offset 2.38	3 dB 🖷 RBW 100 kH	z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm	n Offset 2.38	3 dB 🖷 RBW 100 kH	z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm 0 dBm 0 dBm	n Offset 2.38 B SWT 227.5	3 dB 🖷 RBW 100 kH	z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 ● 1Pk Max 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	n Offset 2.38 B SWT 227.5	3 dB 🖷 RBW 100 kH	z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 INK Max 10 dBm 0 dBm -10 dBm -10 dBm -11 -19.26	n Offset 2.38 B SWT 227.5	3 dB 🖷 RBW 100 kH	z Mode Auto FFT	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IRK Max 10 dBm 0 dBm -10 dBm -10 dBm -11 -19.26 -30 dBm -40 dBm	n Offset 2.38 B SWT 227.5	8 dB ● RBW 100 kH 5 µs ● VBW 300 kH	Z Mode Auto FFT M1[1] M2[1]	2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 10 dBm - -10 dBm - -20 dBm D1 -19.20 -30 dBm - -40 dBm - -50 dBm -	n Offset 2.38 B SWT 227.5	8 dB ● RBW 100 kH 5 µs ● VBW 300 kH	Z Mode Auto FFT M1[1] M2[1]	nission 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 10 dBm -0 dBm -10 dBm -10 dBm -20 dBm D1 -19.26 -30 dBm -40 dBm -50 dBm -60 dBm	n Offset 2.38 B SWT 227.5	8 dB ● RBW 100 kH 5 µs ● VBW 300 kH	Z Mode Auto FFT M1[1] M2[1]	2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 INK Max 10 dBm 10 dBm - -10 dBm - -20 dBm D1 -19.20 -30 dBm - -40 dBm - -50 dBm -	n Offset 2.38 B SWT 227.5	8 dB ● RBW 100 kH 5 µs ● VBW 300 kH	Z Mode Auto FFT M1[1] M2[1]	2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 10 dBm 0 -10 dBm -10 dBm -20 dBm D1 -19.26 -30 dBm -40 dBm -50 dBm -60 dBm	n Offset 2.38 B SWT 227.5	8 dB ● RBW 100 kH 5 µs ● VBW 300 kH	2 2 Mode Auto FFT M1[1] M2[1] 	2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 ID dBm 10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -30 dBm -11 -19.26 -30 dBm -11 -19.26 -30 dBm -10 -19.26 -30 dBm -10 -19.26 -30 dBm -10 -19.26 -30 dBm -10 -19.26 -30 dBm -70 dBm -70 dBm -70 dBm Start 2.306 GHz Marker	n Offset 2.38 B SWT 227.5	3 dB ● RBW 100 kH 5 µs ● VBW 300 kH	2 2 Mode Auto FFT M1[1] M2	nission 2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 10 dBm - 0 dBm - -10 dBm - -20 dBm D1 -19.26 -30 dBm - -40 dBm - -50 dBm - -70 dBm - Start 2.306 GHz - Marker - Type Ref Trc M1 1	n Offset 2.38 B SWT 227.5	3 dB RBW 100 kH 5 µs VBW 300 kH	2 2 Mode Auto FFT M1[1] M2	2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 ID dBm 10 O dBm 10 -10 dBm 10 -20 dBm D1 -19.26 -30 dBm -30 dBm -30 dBm -40 dBm -60 dBm -70 dBm -50 dBm -70 dBm -70 dBm Start 2.306 GHz Marker Type Ref Trc M1 1 1 1 1 M2 1 1 1	n Offset 2.38 B SWT 227.5	3 dB RBW 100 kH 5 µs VBW 300 kH 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 Mode Auto FFT M1[1] M2	nission 2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm 10 dBm - 0 dBm - -10 dBm - -20 dBm D1 -19.26 -30 dBm - -40 dBm - -50 dBm - -70 dBm - Start 2.306 GHz - Marker - Type Ref Trc M1 1	n Offset 2.38 B SWT 227.5	3 dB ● RBW 100 kH 5 µs ● VBW 300 kH 	2 2 Mode Auto FFT M1[1] M2	nission 2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz
Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 O dBm 0 O dBm 0 -10 dBm 0 -20 dBm D1 -19.26 -30 dBm 0 -19.26 -30 dBm 0 -19.26 -30 dBm 0 -19.26 -30 dBm 0 -19.26 -30 dBm	n Offset 2.36 B SWT 227.5	3 dB ● RBW 100 kH 5 µs ● VBW 300 kH 	2 2 Mode Auto FFT M1[1] M2	nission 2.40 2.40	-2.66 dBm 145000 GHz -33.85 dBm 0000001GHz

Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 200/200		 RBW 100 kHz VBW 300 kHz Mode 	e Auto FFT		
●1Pk Max					
			M1[1]		0 dBm
10 dBm				2.4799920	JU GHZ
0 dBm		M1			
		m			
-10 dBm			<u>N.</u>		
-20 dBm					
20 00.00					
-30 dBm	+ + /				
	M		1 mm		
-40 dBm					
				man	
ASO YBM- V V				No. Mar	m
-60 dBm					
-70 dBm	+				
CF 2.48 GHz		1001 pts		Span 8.0	MHz
Spectrum Ref Level 20.00 dBr	m Offset 2.42 dB				
Spectrum	m Offset 2.42 dB				
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100	m Offset 2.42 dB	e RBW 100 kHz	le Auto FFT		
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max	m Offset 2.42 dB	e RBW 100 kHz			5 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm M1	m Offset 2.42 dB	e RBW 100 kHz	le Auto FFT	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 PIPk Max 10 dBm M1	m Offset 2.42 dB	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.4800500	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm M1 0 dBm	m Offset 2.42 dB	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm -10 dBm -10 dBm -10 dBm	m Offset 2.42 dB B SWT 227.5 μs	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -11 -21.79	m Offset 2.42 dB B SWT 227.5 μs	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -10 -21.79 -30 dBm	m Offset 2.42 dB B SWT 227.5 μs	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m Offset 2.42 dB B SWT 227.5 μs	e RBW 100 kHz	ie Auto FFT M1[1]	-1.0 2.480050 -54.0	5 dBm 00 GHz 2 dBm
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	le Auto FFTM2[1]	-1.0 2.480500 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -40 dBm -40 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	ie Auto FFT M1[1]	-1.0 2.480500 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -60 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	le Auto FFTM2[1]	-1.0 2.480500 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	le Auto FFTM2[1]	-1.0 2.480500 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -70 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	le Auto FFT M1[1] M2[1] 	-1.0 2.480500 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz Moo	le Auto FFT M1[1] M2[1] M2[-1.0 2.48050 -54.0 2.4835000 	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -10 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 µs	RBW 100 kHz VBW 300 kHz Moo	le Auto FFT M1[1] M2[1] M2[-1.0 2.48050 -54.0 2.4835000	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz Mod VBW 300 kHz Mod Intervention of the second seco	le Auto FFT M1[1] M2[1] M2[-1.0 2.48050 -54.0 2.4835000 	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz Moo VBW 300 kHz Moo I	le Auto FFT M1[1] M2[1] M2[-1.0 2.48050 -54.0 2.4835000 	5 dBm 10 GHz 2 dBm 10 GHz
Spectrum Ref Level 20.00 dBr Att 35 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	m Offset 2.42 dB B SWT 227.5 μs	RBW 100 kHz VBW 300 kHz Mod VBW 300 kHz Mod Intervention of the second seco	le Auto FFT M1[1] M2[1] M2[-1.0 2.48050 -54.0 2.4835000 	5 dBm 10 GHz 2 dBm 10 GHz

8.2.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-45.45	-20	Pass
NVNT	BLE 2M	2440	Ant1	-50.86	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.17	-20	Pass

Spec	trum									
🗕 Att		20.00 dE 30 3000/300	de swt d		RBW 100 kHz VBW 300 kHz	Mode Aut	O FFT			
⊖1Pk N	1ax									0.30.40
						M1[:	IJ		2.401	0.79 dBm 99400 GHz
10 dBn	ר ו									
0 dBm-					¥					
			~	\sim		\frown	$\sim \gamma$			
-10 dB	m—							\sim		
-20 dBi	m_									
-30 d8	m-+									
-40 dBi										
10 00										
-50 dB	m-+									
-60 dB										
-70 dB	m-+									
CF 2.4	0.0				1001 -				- Cna	n 3.0 MHz
Spec	trum][m Offset 2	2.38 dB 👄	1001 p VNT BLE 2M RBW 100 kHz) 2402MHz		nission	348 4	
Spec Ref L Att SGL C	trum .evel	20.00 dE	m Offset 2	2.38 dB 👄	VNT BLE 2M) 2402MHz		nission		0
Spec Ref L Att	trum .evel	20.00 dE	m Offset 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		
Spec Ref L Att SGL C	trum evel ount 1ax	20.00 dE	m Offset 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		-4.75 dBm 2.3970 GH2
Spec Ref I • Att SGL C • 1Pk N	trum evel	20.00 dE	m Offset 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		0 (₩ ▽ -4.75 dBm
Spec Ref L SGL C 10 dBn	trum evel ount 1ax	20.00 dE	m Offset 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Ref L Att SGL C 1Pk M 10 dBm -10 dBm	ount 1ax	20.00 dE	im Offset 2 dB SWT 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	hission		-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Ref I • Att SGL C • 1Pk N 10 dBm -10 dBm -20 dBm	trum evel dax	20.00 df 30 10/10	im Offset 2 dB SWT 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Ref L • Att SGL C • 1Pk N 10 dBm -10 dBm -10 dBm -30 dBm	trum evel Max M1 m m	20.00 df 30 10/10	im Offset 2 dB SWT 2	2.38 dB 👄	VNT BLE 2M	2402MHz Mode Aut	o Sweep	nission		-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Reft SGL C 9 1Pk N 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	trum evel dax M1 m m m	20.00 df 30 10/10	im Offset 2 3B SWT 2 7 dBm	2.38 dB • 265 ms •	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[:o Sweep L] L]			-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Ref I SGL C 9 1Pk N 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	trum evel ount 1ax m m m m m m	20.00 df 30 10/10	m Offset 2 dB SWT 3	2.38 dB • 265 ms •	VNT BLE 2M	2402MHz Mode Aut M1[:o Sweep L] L]			-4.75 dBm 2.3970 GH2 •44.66 dBm
Spec Ref I Att SGL C 1Pk N 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	trum evel ount fax m m m m m m m m m m m m m	20.00 df 30 10/10	m Offset 2 dB SWT 3	2.38 dB • 265 ms •	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[:o Sweep L] L]			-4.75 dBm 2.3970 GH2 -44.66 dBm 2.5182 GH2
Spec Ref I SGL C 9 1Pk N 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	trum evel ount fax m m m m m m m m m m m m m	20.00 df 30 10/10	m Offset 2 dB SWT 3	2.38 dB • 265 ms •	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[:o Sweep L] L]			-4.75 dBm 2.3970 GH2 -44.66 dBm 2.5182 GH2
Spec Ref L Att SGL C 10 dBm -10 dBm -10 dBm -20 dBm -30 dB	trum evel 1ax 	20.00 dE 30 10/10	m Offset 2 dB SWT 3	2.38 dB • 265 ms •	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut 	:o Sweep L] L]		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-4.75 dBm 2.3970 GH2 -44.66 dBm 2.5182 GH2
Spec Ref I SGL C 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm Start 3 Marker	trum evel 1 m m m m m m m a 0 0 0 0	20.00 dE 30 10/10	im Offset 2 JB SWT 2	2.38 dB 265 ms 265 ms	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2]1 M2[1 M2[1 M2[1 M2]1 M2[1 M2[1 M2]1 M2[1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2[1 M2]1 M2]1 M2[1 M2]1 M2]1 M2[1 M2]1 M2]1 M2[1 M2]1 M2]1 M2[1 M2]1 M2]1 M2[1 M2]1 M2]1 M2]1 M2[1 M2]1 M2]1 M2]1 M2[1 M2]1 M2]1 M2]1 M2[1 M2]1 M2]1 M2]1 M2]1 M2]1 M2[1 M2]1	:o Sweep	and the second	stop	-4.75 dBm 2.3970 GHz 44.66 dBm 2.5182 GHz
Spec Ref I Att SGL C 1Pk N 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	trum evel lax m m m m m ago.o r	20.00 df 30 10/10 D1 -19.20	im Offset 2 JB SWT 2	2.38 dB	VNT BLE 2M RBW 100 kHz VBW 300 kHz 	2402MHz Mode Aut M2[: 	:o Sweep	and the second	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-4.75 dBm 2.3970 GHz 44.66 dBm 2.5182 GHz
Spec Ref I Att SGL C 10 dBm -10 dBm -10 dBm -20 dBm -30 dB	trum evel 1ax m m m m m m m m m m m m m m m m m m m	20.00 dE 30 10/10 01 -19.20 MHz I Trc 1 1 1	m Offset 2 38 SWT 2 7 dBm 17 dBm 10 M4 10 M4	2.38 dB	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2] M2[1 M2[1 M2[1 M2] M2[1 M2[1 M2] M2[1 M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2[1 M2] M2] M2[1 M2] M2] M2[1 M2] M2] M2[1 M2] M2] M2[1 M2] M2] M2] M2[1 M2] M2] M2] M2] M2] M2] M2] M2]	:o Sweep	and the second	stop	-4.75 dBm 2.3970 GHz 44.66 dBm 2.5182 GHz
Spec Ref I Att SGL C 10 dBm -10 dBm -10 dBm -10 dBm -30 dB	trum evel tax m m m m trum tax tax tax m m tax tax tax tax tax tax tax tax tax tax	20.00 dE 30 10/10 01 -19.20 MHz IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	im Offset 2 dB SWT 2 17 dBm 17 dBm 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 10 M4	2.38 dB 265 ms 265 ms 26	VNT BLE 2M RBW 100 kHz VBW 300 kHz VBW 300 kHz 100 kHz 100 kHz V-value -4.75 dBm -44.66 dBm -55.12 dBm -54.35 dBm	2402MHz Mode Aut M1[M2[M2[M2[M2[M2[M2[M2[M2	:o Sweep	and the second	stop	-4.75 dBm 2.3970 GHz 44.66 dBm 2.5182 GHz
Spec Ref I SGL C 10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -40 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -3	trum evel tax m m m m trum tax tax tax m m tax tax tax tax tax tax tax tax tax tax	20.00 dE 30 10/10 01 -19.20 MHz I Trc 1 1 1	im Offset 2 dB SWT 2 17 dBm 17 dBm 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 19 M4 10 M4	2.38 dB 265 ms 265 ms 265 ms 265 ms 265 ms 267 ms 267 ms 27 GHz 27 GHz 27 GHz 27 GHz 27 GHz 34 GHz 24 GHz 34 GHz 26	VNT BLE 2M RBW 100 kHz VBW 300 kHz	2402MHz Mode Aut M1[M2[M2[M2[M2[M2[M2[M2[M2	:o Sweep	γ _ν ννήγγ _ν ι _{μα} Func	stop	-4.75 dBm 2.3970 GH2 -44.66 dBm 2.5182 GH2

