

Confidential REPORT

Prepared (also subject responsible if other)

RT/EUS/VR/X Mark Douglas

Approved

EUS/VR/X Mark Douglas

MGD

Prepared (also subject responsible if other)

BNO.

EUS/VR-00:0122/REP

Approved

Pate

C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

_

SAR Test Report: R250d

Addendum

Date of test: January 14 and 17, 2000

Laboratory: Electromagnetic Near Field and Radio Frequency Dosimetry Laboratory

Ericsson, Inc.

7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Test Responsible: Mark Douglas, Ph.D.

Senior Staff Engineer, Antenna Development Group

mark.douglas@ericsson.com

(919) 472-6334

Statement of Compliance

Ericsson, Inc. declares under its sole responsibility that the that the product

Ericsson R250d

to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices.

© Ericsson, Inc. 1999

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Confidential REPORT

Prepared (also subject responsible if other)
RT/EUS/VR/X Mark Douglas

Approved
EUS/VR/X Mark Douglas

MGD

No.
EUS/VR-00:0122/REP

Pate
C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

F

Table of Contents

1 I	introduction	3
2 I 2.1 2.2	Device Under Test (D.U.T.) Antenna description Device description	3 3 3
3.1 3.2	Fest equipment Dosimetric system Additional equipment	3 3 4
4 I	Electrical parameters of the tissue simulating liquid	4
5 5	System accuracy verification	4
6	Test results	4
Refere	ences	5
Apper	ndix 1: SAR distribution comparison for system accuracy verification	6
Apper	ndix 2: SAR distribution plots	10
Apper	ndix 3: Photographs of the device under test	13
Apper	ndix 4: Position of device on Generic Twin Phantom	15
Apper	ndix 5: Probe calibration parameters for ET3DV5 SN:1337	16

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

1. Introduction

This test report is an addendum to document number EUS/TR/X-99:1038, "SAR Assessment Measurements Test Report for the Ericsson R250d Triple Mode Telephone." In this report, compliance of the Ericsson R250d portable telephone with RF safety guidelines is demonstrated while the device is worn against the body (applicable RF safety guidelines are given in [1]).

2. Device Under Test

2.1 Antenna description

Type	40mm dual band stub			
Location	Back and left			
Dimensions	length 40 mm			
Dimensions	width at base 12 mm			
Configuration	Fixed helix			

2.2 Device description

Device model	R250d		
Serial number	UA20104A0A		
Mode	800 AMPS	800 TDMA	1900 TDMA
Multiple Access Scheme	FDMA	TDMA	TDMA
Maximum Output Power Setting ¹	26.0 dBm	26.0 dBm	26.0 dBm
Factory Tolerance in Power Setting	± 0.25	± 0.25	± 0.25 dB
Maximum Peak Output Power ²	26.25 dBm	26.25 dBm	26.25 dBm
Duty Cycle	1	1/3	1/3
Transmitting Frequency Range	824 – 849 MHz	824 – 849 MHz	1850-1910 MHz
Prototype or Production Unit ³	Prototype		

3. Test equipment

3.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c), manufactured by Schmid & Partner Engineering AG and installed February, 1998. The total SAR assessment uncertainty (K = 1) of the system is $\pm 16\%$ and includes a +15% offset (overestimation). The extended uncertainty (K = 2) is $\pm 32\%$ with a +15% offset. This results in a total uncertainty range of -1% to +31% for K = 1, or -17% to +47% for K = 2. The equipment list is given below.

<u>Description</u>	<u>Serial Number</u>	Due Date
DASY3 DAE V1	345	11/00
E-field probe ETDV5	1337	3/00
Dipole Validation Kit, D900V2	049	12/00
Dipole Validation Kit, D1800V2	238	12/00

¹ This is the conducted power measured at the antenna port when the device is set to its highest power setting. It is measured at the middle of the transmit frequency band. Note that the output power may be different at other frequencies.

² This equals the maximum output power setting plus the factory tolerance.

³ It shall be understood that a statement of compliance for a prototype unit also applies to production units [3].

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	, ,
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

3.2 Additional equipment

<u>Description</u>	Serial Number	Due Date
Signal Generator HP8648C	3537A01598	9/00
Dielectric probe kit HP 85070B	US33020256	8/00
Network analyzer HP 8752C	3410A03105	7/00
Power meter HP 437B	3125U16190	5/00
Power sensor HP 8482H	3318A07097	2/00
Radio communications analyzer Anritsu	MB12477	10/00
MT8801B		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 program is also given. Recommended limits for maximum permittivity, minimum conductivity and maximum mass density are also shown [3]. It is seen by comparison with the recommended limits that the measured parameters result in an overestimation of SAR.

f	Limits / Measured	Dielectric Parameters			
(MHz)		ϵ_r	σ (S/m)	ρ (g/cm ³)	
	Recommended Limits [3]	56.1	0.95	1.04	
	Measured, 2000/1/14	56.2	0.97	1.04	
835	Difference	+0.2%	+2.1%	0%	
	Measured, 2000/1/17	56.6	0.98	1.04	
	Difference	+0.9%	+3.2%	0%	
	Recommended Limits [3]	54.4	1.39	1.04	
1800	Measured, 2000/1/14	40.8	1.71	1.04	
	Difference	-25.0%	+23.0%	0%	

5. System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kits listed in Section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The obtained results are displayed in the table below. It is seen that the system is operating within its specification, as the results are within $\pm 5\%$ of the reference values. For the 1800 MHz liquid, the reference values were obtained from the system manufacturer [4]. For the 900 MHz liquid, reference values from the manufacturer were not available, so reference values were generated from careful measurements of the same liquid by our laboratory. The distributions of SAR compare well with those of the reference measurements (see Appendix 1).

f	Measured / Reference	SAR (W/kg),	Die	Temp.		
(MHz)		1 gram	ϵ_r	σ (S/m)	ρ (g/cm ³)	(°C)
	Measured, 2000/1/17	9.87	56.1	1.04	1.04	21
900	Measured, 2000/1/14	9.61	55.8	1.03	1.04	23
	(Reference)					
1800	Measured, 2000/1/14	39.2	40.8	1.71	1.00	22
	Reference [4]	38.9	41.0	1.70	1.00	?

5 (16)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	l.
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

6. Test results

The measured SAR values and conducted output powers are shown in Table 1. The device was tested against a flat phantom representing the exposure situation when the device is worn on the body. The SAR results shown are maximum SAR values averaged over 1 g of tissue.

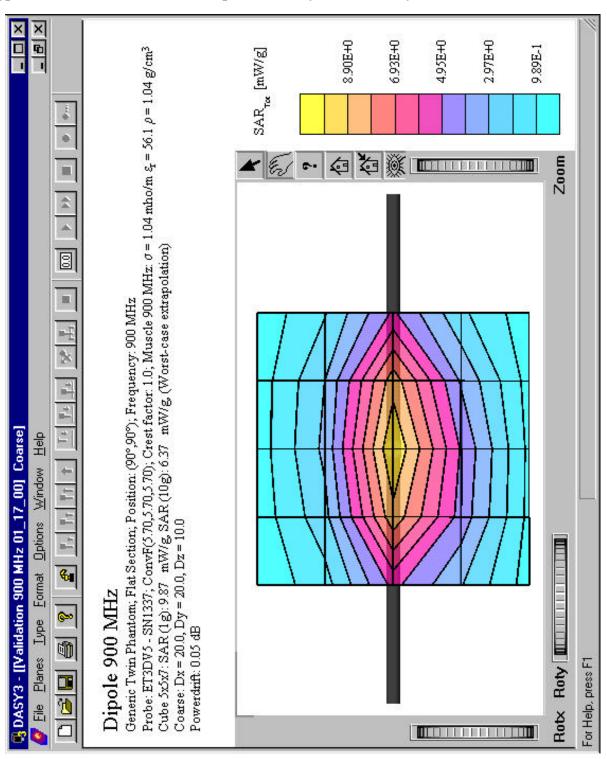
Test commands entered through the keypad were used to control the device during the SAR measurements. The phone was supplied with a fully-charged battery for the tests. The temperature of the test facility during the tests was 23.0 ± 1 °C, and the depth of the tissue simulating liquid was 14.7 cm.

mode	f (MHz)	Output Power (dBm)	SAR, 1g (W/kg)	
			measured	calculated to max. power ⁴
800	824	26.4	1.01	1.07
AMPS	837	26.0	0.914	0.968
	849	25.5	0.622	0.659
800	824	26.3	0.434	0.434
TDMA	837	26.3	0.398	0.398
	849	25.6	0.276	0.276
1900	1850	26.2	0.329	0.329
TDMA	1880	26.3	0.323	0.323
	1910	26.4	0.322	0.322

Table 1: SAR measurement results for the Ericsson R250d telephone at highest possible output power.

References

[1] C. Törnevik, "Ericsson SAR measurement specification, part 1: Introduction and Purpose," Internal Document ERA/T/U-98:446, February, 1999.

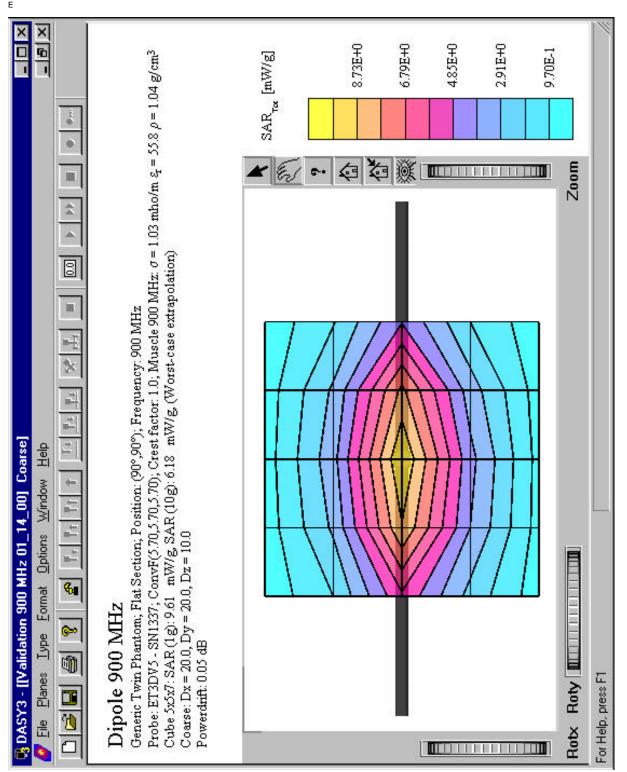

- [2] C. Törnevik, M. Siegbahn, T. Persson, M. Douglas, and R. Plicanic, "Ericsson SAR measurement specification", Internal Document ERA/T/U-98:442, February 1999.
- [3] Federal Communications Commission, "Tissue Dielectric Properties," http://www.fcc.gov/fcc-bin/dielec.sh.
- [4] Schmid and Partner Engineering AG, "DASY Dipole Validation Kit," Type: D1800V2, S/N: 238, December, 1998.

_

⁴ The maximum output power setting for each mode is measured at the middle of the transmit frequency band (see footnote 1). Therefore, the measured SAR is scaled to the maximum power by multiplying it by the ratio of the measured output power in the middle of the transmit band to the maximum output power setting. The same scaling factor applies across the band, regardless of what the output power is at the other frequencies.

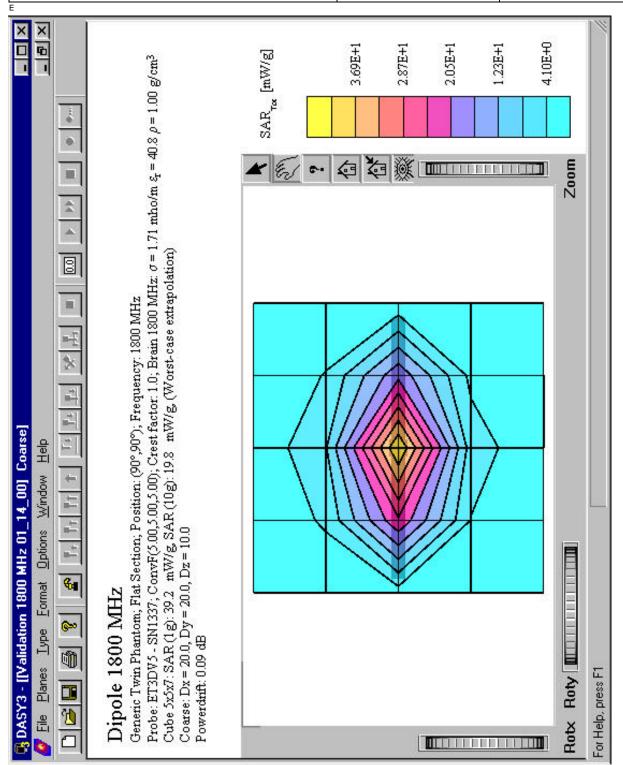
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:012	l 22/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Appendix 1: SAR distribution comparison for system accuracy verification


Prepared (also subject responsible if other)
RT/EUS/VR/X Mark Douglas

Approved
EUS/VR/X Mark Douglas

MGD

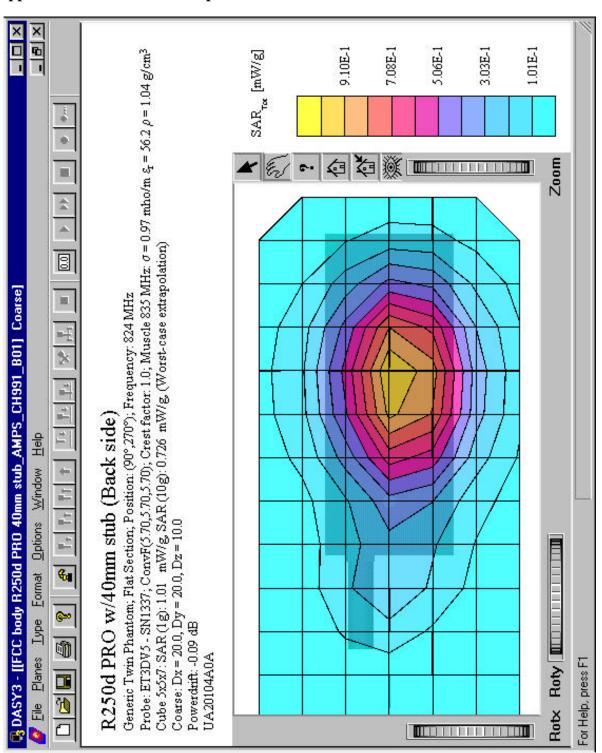

No.
EUS/VR-00:0122/REP

File
C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm)
stub) torso.doc

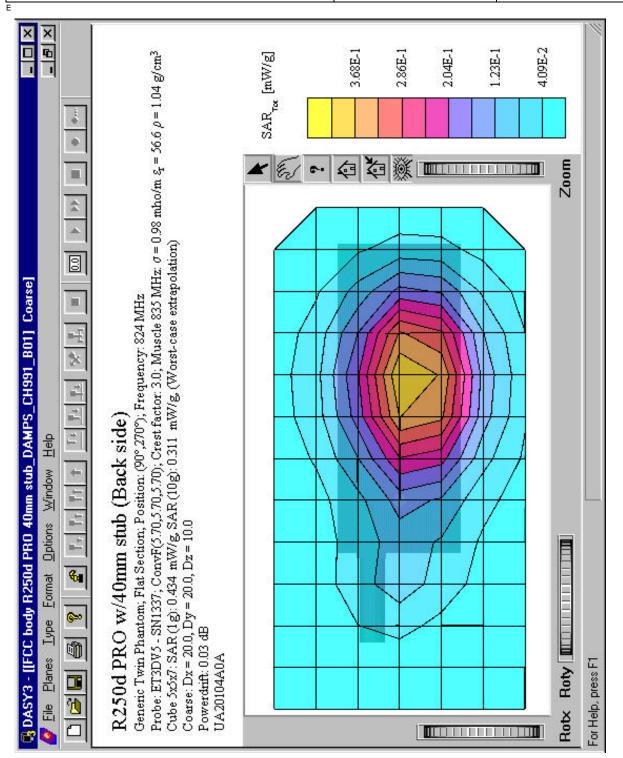
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-01-18		File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

1800 MHz SAR distribution of validation dipole antenna from system accuracy verification test.

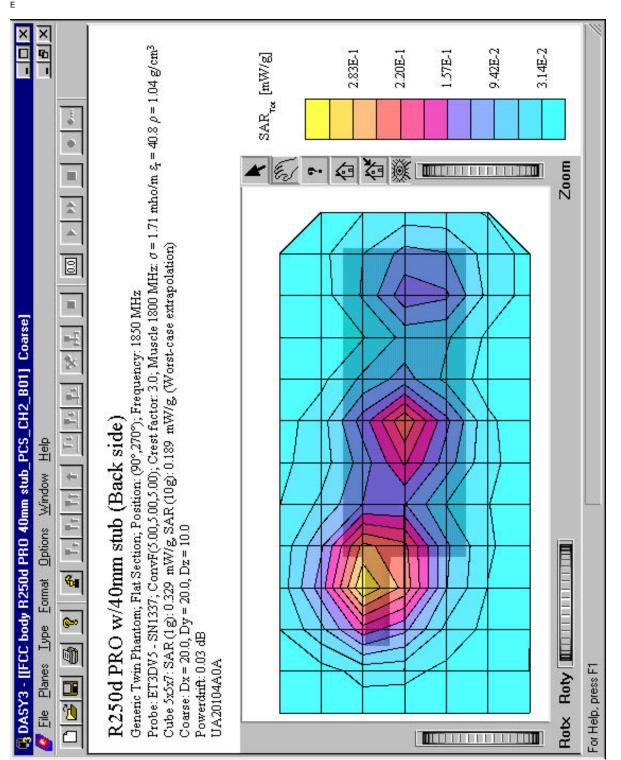
Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	I 22/REP	T , , ,
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-01-18		File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc


5.00E+0 1.00E+0 8.00E+0 6.00E+0 4.00E+0 3.00E+0 2.00E+0 SAR_{Tot} [mW/g] Validation Dipole D1800V2 SN:238, d=10mm Frequency: 1800 [MHz], Antenna Input Power: 250 [mW] Generic Twin Phantom; Flat Section; Grid Spacing. Dx = 15.0, Dy = 15.0, Dz = 10.0 Probe: ET3DV5 - SN1302DAE3; ConvFf4.604.604.603, Brain 1800 MHz. σ = 1.70 [mho/m] ϵ_i = 41.0 ρ = 1.00 [g/cm²] Cubes (2): Peak: 18.7 [mW/g] ± 0.05 dB, SAR (1g): 9.72 [mW/g] ± 0.05 dB, SAR (10g): 4.90 [mW/g] ± 0.05 dB, (Worst-case extrapolation) Validation SN238, 12/14/98

1800 MHz SAR distribution of validation dipole antenna provided by system manufacturer.


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:0122	2/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Appendix 2: SAR distribution plots


Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	
EUS/VR/X Mark Douglas	Checked MGD	1999-01-18		File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Distribution of maximum SAR in 800 TDMA band.

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:0122	/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18		File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Confidential	
REPORT	

ERICSSON >		REPORT		13 (16)
Prepared (also subject responsible if other)		No.	0/DED	1
RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:0122	Z/REP	
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	1999-01-18	Α	C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Appendix 3: Photographs of the device under test

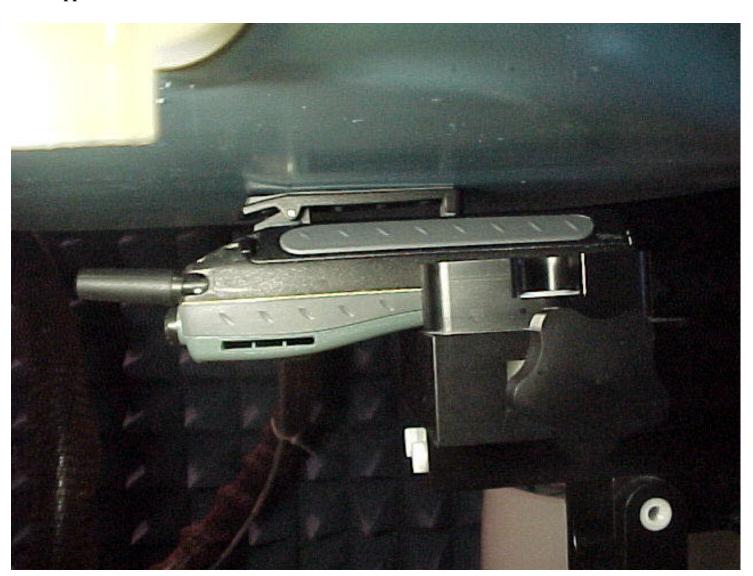
Front view of device.

Confidential REPORT

14 (16)

RT/EUS/VR/X Mark Douglas	919-472-6334	EUS/VR-00:0122	2/REP	I
Approved	Checked	Date	Rev	File
EUS/VR/X Mark Douglas	MGD	1999-01-18	Α	C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Side view of device.



Confidential REPORT

REPORT 15 (16)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	l 22/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	Date 1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Appendix 4: Position of device on Generic Twin Phantom

16 (16)

Prepared (also subject responsible if other) RT/EUS/VR/X Mark Douglas	919-472-6334	No. EUS/VR-00:012	22/REP	
Approved EUS/VR/X Mark Douglas	Checked MGD	1999-01-18	Rev A	File C:\WINDOWS\TEMP\R250d (Ditto Lornetta 40mm stub) torso.doc

Appendix 5: Probe calibration parameters for ET3DV5 SN:1337

ET3DV SN:1337

DASY3 - Parameters of Probe: ET3DV SN:1337

Sensitivity in Free Space

NormX	2.32	μV/(V/m)²
NormY	2.09	μ V/(V/m) ²
NormZ	2.16	$\mu V/(V/m)^2$

Diode Compression

DCP X	98	mV
DCP Y	98	mV
DCP Z	98	mV

Sensitivity in Tissue Simulating Liquid

450 MHz	ConvF X	6.0	extrapolated	ε _r =	48 ± 5%
	ConvF Y	6.0	extrapolated	σ=	0.50 ± 10% mho/m
	ConvF Z	6.0	extrapolated	(brain tissu	e simulating liquid)
900 MHz	ConvF X	5.7	± 10%	ε _r =	42.5 ± 5%
	ConvF Y	5.7	± 10%	σ=	0.86 ± 10% mho/m
	ConvF Z	5.7	± 10%	(brain tissu	e simulating liquid)
1500 MHz	ConvF X	5.3	interpolated	ε _r =	41 ± 5%
	ConvF Y	5.3	interpolated	σ=	1.32 ± 10% mho/m
	ConvF Z	5.3	interpolated	(brain tissue simulating liquid)	
1800 MHz	ConvF X	5.0	± 10%	ε _r =	41 ± 5%
	ConvF Y	5.0	± 10%	σ=	1.69 ± 10% mho/m
	ConvF Z	5.0	± 10%	(brain tissu	e simulating liquid)

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Surface to Probe Tip	1.9 ± 0.2	mm