LABORATORY TEST REPORT

RADIO PERFORMANCE MEASUREMENTS

for the

TBDH3G BASE STATION Transceiver

Tested in accordance with:

FCC 47 CFR Parts 22 and 90

Report Revision:

Issue Date: 20 February 2018

1

PREPARED BY: Alf Schinkelshoek

CHECKED & APPROVED BY: M. C. James

Laboratory Technical Manager

Test Technician

FCC REGISTRATION: 838288

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation.

This document must not be reproduced except in full, without the written permission of the Compliance Laboratory Manager

TELTEST Laboratories (A Division of Tait Communications) PO Box 1645, 558 Wairakei Road, Christchurch, New Zealand.

Telephone: 64 3 358 3399 FAX: 64 3 359 4632

FCC ID: CASTBDH3G Page 1 of 28 Report Revision: 1 Issue Date: 20 February 2018

TABLE OF CONTENTS

	, U
REVISIONINTRODUCTION	. 4
STATEMENT OF COMPLIANCE	. 5
MODULATION TYPES, NECESSARY BANDWIDTH & EMISSION DESIGNATORS	6
TEST RESULTS	. 7
TRANSMITTER OUTPUT POWER (CONDUCTED)	. 7
TRANSMITTER AUDIO FREQUENCY RESPONSE - PRE-EMPHASIS	. 8
TRANSMITTER MODULATION LIMITING	. 9
TRANSMITTER OCCUPIED BANDWIDTH AND SPECTRUM MASKS	10
TRANSMITTER SPURIOUS EMISSIONS (RADIATED)	18
TRANSIENT FREQUENCY BEHAVIOR	21
TRANSMITTER FREQUENCY STABILITY - TEMPERATURE	24
TRANSMITTER FREQUENCY STABILITY - VOLTAGE	25
TEST EQUIPMENT LIST	26
ANNEX A – TEST SETUP DETAILS	28

FCC ID: CASTBDH3G

REVISION

Date	Revision	Comments
20 February 2018	1	Initial test report

INTRODUCTION

Type approval testing of the TBDH3G, 40 Watt, BASE STATION transceiver in order to demonstrate compliance with FCC 47 Parts 22 & 90. This radio supports analogue, digital FFSK and Digital Mobile Radio (DMR).

REPORT PREPARED FOR

Tait Ltd 245 Wooldridge Road Harewood Christchurch 8051 New Zealand

DESCRIPTION OF SAMPLE

Manufacturer

Tait Limited

Equipment:

BASE STATION Transceiver

Type:

Product Code:

TBDH3G TB7310-H3B0-0000-0000-10

Serial Number(s): 18269202 Frequency range 470 → 520 MHz

Modulation		Channel Spacing	Speech Channels	Symbol Rate (symbols/sec)	Data Rate (bps)
Analogue FM		12.5 kHz	1	-	-
FFSK	Fast Frequency Shift Keying	12.5 kHz	-	1200	1200
Digital Mobile Radio (DMR)	4 Level FSK (2 slot TDMA) (ETSI TS102 361-1)	12.5 kHz	2	4800	9600

HARDWARE & SOFTWARE

Quantity: 1

Module	Product Code	Serial Number	Firmware Version	Hardware Version
Reciter	T01-01403-MAAA	18268655	Dmr-2.40.00.0004	01.00
Power Amplifier	T01-01405-MAZZ	18265804	n/a	00.01
Front Panel	T01-01410-AAAA	2998625	1.09.00.0002	00.01

TEST CONDITIONS

All testing was performed between 22 January 2018 → 20 February 2018, and under the following

conditions:

Ambient temperature:

15°C → 30°C

Relative Humidity:

20% → 75%

Standard Test Voltage 13.8 V_{DC}

FCC ID: CASTBDH3G

Page 4 of 28 Issue Date: 20 February 2018

STATEMENT OF COMPLIANCE

We, TELTEST LABORATORIES of 558 Wairakei Road, Christchurch, New Zealand, declare under our sole responsibility that the product:

Equipment:

Base Station Transceiver

Type:

TBDH3G

Product Code:

TB7310-H3B0-0000-0000-10

Serial Number(s):

18269202

16 March 2018

Quantity:

1

to which this declaration relates, is in conformity with the following standards:

FCC 47 CFR Parts 22 and 90

Signature: Mefe

M. C. James

Laboratory Technical Manager

Date:

FCC ID: CASTBDH3G

Page 5 of 28 Issue Date: 20 February 2018

MODULATION TYPES, NECESSARY BANDWIDTH & EMISSION DESIGNATORS

MODULATION TYPES:

F3E

Analogue Frequency Modulation (FM)

F2D

FXW

9600 bps

FXD

DMR Digital Voice DMR Digital Data

9600 bps

CHANNEL SPACING:

12.5 kHz

EMISSION DESIGNATORS:

	12.5 kHz
Analog FM	11K0F3E
FFSK Data 1200 bps	6K60F2D
Digital Voice DMR	7K60FXW
Digital Data DMR	7K60FXD

CALCULATIONS

Equation: Bn = 2M + 2Dk

(M is highest modulating frequency; D is peak allowable deviation; k is a constant of 1 for FM)

Analogue Voice 12.5 kHz Bandwidth

Necessary bandwidth

M = 3.0 kHz

D = 2.5 kHz

 $Bn = (2x3.0) + (2x2.5) \times 1$ = 11.0 kHz

Emission Designator

11K0F3E

F3E represents an FM voice transmission

Fast Frequency Shift Keying (FFSK - 1200 bps) 12.5 kHz Bandwidth

Necessary bandwidth

Emission Designator

M = 1.8 kHz

6K60F2D

D = 1.5 kHz (60% of peak deviation)

 $Bn = (2 \times 1.8) + (2 \times 1.5) \times 1$ $= 6.6 \, \text{kHz}$

F2D represents a FM data transmission with

the use of a modulating sub carrier

Digital Voice 12.5 kHz Bandwidth DMR

99% bandwidth

Emission Designator

= 7.6 kHz

7K60FXW

FXW represents a FM Time Division Multiple Access (TDMA) combination of data and telephony

Digital Data 12.5 kHz Bandwidth DMR

99% bandwidth

FCC ID: CASTBDH3G

Emission Designator

= 7.6 kHz

7K60FXD

FXD represents FM Time Division Multiple Access (TDMA) data only

Page 6 of 28 Issue Date: 20 February 2018

TEST RESULTS

TRANSMITTER OUTPUT POWER (CONDUCTED)

SPECIFICATION:

FCC 47 CFR 2.1046

GUIDE:

TIA/EIA-603D 2.2.1

MEASUREMENT PROCEDURE:

- 1. Refer Annex A for Equipment set up.
- 2. The coaxial attenuator has an impedance of 50 Ohms.
- 3. The unmodulated output power was measured with an RF Power meter.

MEASUREMENT RESULTS:

Manufacturer's Rated Output Power:

Switchable: 40 W and 2 W

Nominal 40 W

	Measured	Variation (%)	Variation (dB)
495.1 MHz	36.9	-7.8	-0.4
Measuremen	t Uncertainty	± 0.	6 dB

Nominal 2 W

	Measured	Variation (%)	Variation (dB)
495.1 MHz	1.8	-12.3	-0.6
Measuremen	t Uncertainty	± 0.	6 dB

LIMIT CLAUSES:

FCC 47 CFR 90.205 (s)

The output power shall not exceed by more than 20%... the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

FCC ID: CASTBDH3G

Page 7 of 28 Issue Date: 20 February 2018

TRANSMITTER AUDIO FREQUENCY RESPONSE - PRE-EMPHASIS

SPECIFICATION:

FCC 47 CFR 2.1047 (a)

GUIDE:

TIA/EIA-603D 2.2.6

MEASUREMENT PROCEDURE:

1. Refer Annex A for Equipment set up.

- An audio input tone of 1000 Hz was applied with the level set to obtain 20% of maximum deviation. This was used as the 0 dB reference point.
- 3. The AF was varied while the audio level was held constant.
- 4. The response in dB relative to 1000 Hz was measured.

MEASUREMENT RESULTS:

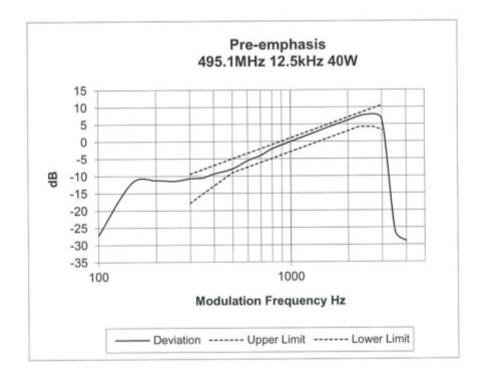
See the plot for 12.5 kHz channel spacing tested at 40 W transmit power.

LIMIT CLAUSE:

TIA/EIA-603D 3.2.6

MEASUREMENT UNCERTAINTY:

± 1.5 %


SPECIFICATION:

FCC CFR 2.1047 (a)

Tx FREQUENCY:

495.1 MHz

12.5 kHz Channel Spacing

TRANSMITTER MODULATION LIMITING

SPECIFICATION:

FCC 47 CFR 2.1047 (b)

GUIDE:

TIA/EIA-603D 2.2.3

MEASUREMENT PROCEDURE:

1. Refer Annex A for Equipment set up.

2. The modulation response was measured at three audio frequencies while varying the input level.

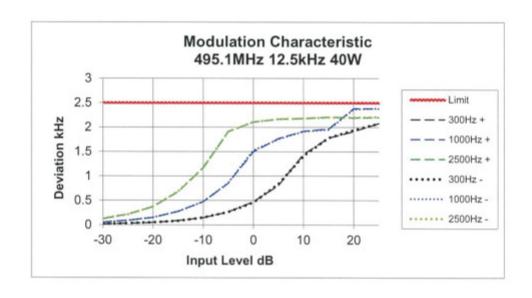
3. Measurements were made for both Positive and Negative Deviation.

MEASUREMENT RESULTS:

See the plot for 12.5 kHz channel spacing tested at 40 W transmit power.

LIMIT CLAUSE:

TIA/EIA-603D 1.3.4.4


MEASUREMENT UNCERTAINTY:

± 1.5 %

Tx FREQUENCY:

495.1 MHz

12.5 kHz Channel Spacing

TRANSMITTER OCCUPIED BANDWIDTH AND SPECTRUM MASKS

SPECIFICATION:

FCC 47 CFR 2.1049 (c)

GUIDE:

TIA/EIA-603D 2.2.11 (Analog) TIA-102.CAAA-C 2.2.5 (Digital)

MEASUREMENT PROCEDURE:

1. Refer Annex A for Equipment Set up.

For analog measurements: The EUT was modulated by a 2500 Hz tone at an input level 16 dB
above a level that produced 50% deviation. The input level was established at the frequency of
maximum response of the audio modulating circuit.
 For Data measurements: The EUT was modulated with an internally generated pseudo random bit

sequence at the appropriate Baud rates.

3. The Occupied Bandwidth was measured on the Spectrum Analyser, with bandwidth settings as

follows.

Emission Mask D – Resolution Bandwidth = 100 Hz, Video Bandwidth = 1 kHz

MEASUREMENT RESULTS:

See the plots on the following pages for 12.5 kHz channel spacing.

MEASUREMENT UNCERTAINTY 95%

±0.65dB

LIMIT CLAUSE:

FCC 47 CFR 90.210

EMISSION MASKS

Emission Mask D

12.5 kHz Channel Spacing

Analog, FFSK, Digital Voice/data

DATA SPEED

Digital Voice/Data

FCC ID: CASTBDH3G

12.5 kHz Channel Spacing

9600 bps

FFSK

12.5 kHz Channel Spacing

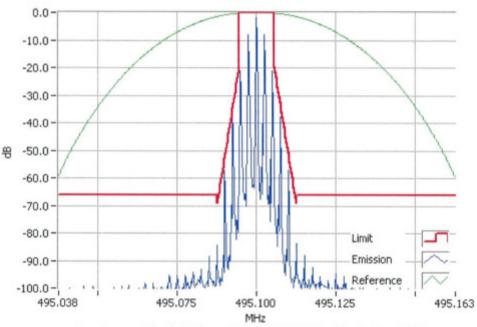
1200 bps

Page 10 of 28 Issue Date: 20 February 2018

Occupied Bandwidth and Spectrum Masks

ANALOG VOICE

SPECIFICATION:

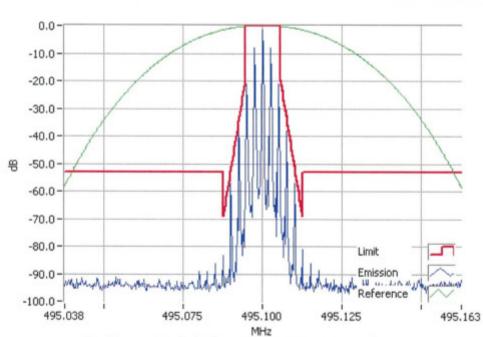

FCC CFR 2.1049 (c)

Tx FREQUENCY:

495.1 MHz

40 W

12.5 kHz Channel Spacing


Analogue Modulation 495.1000MHz Mask D 40W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass

Tx FREQUENCY:

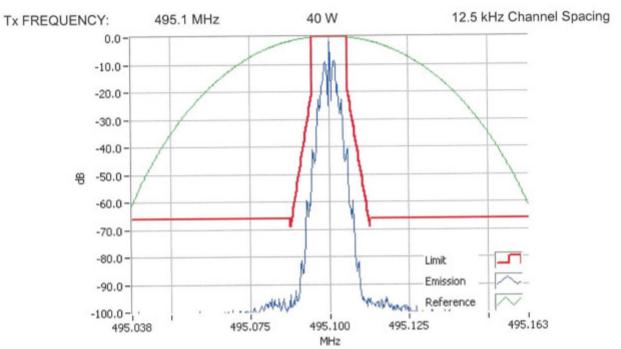
495.1 MHz

2 W

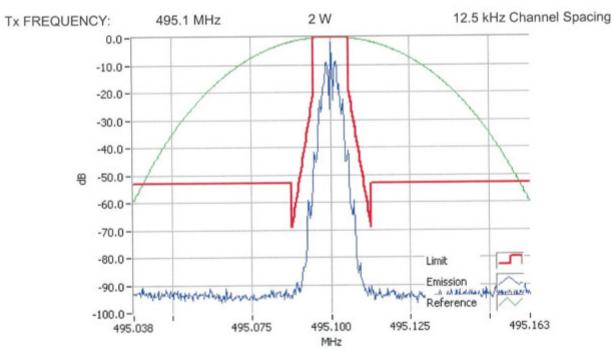
12.5 kHz Channel Spacing

Analogue Modulation 495.1000MHz Mask D 2W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass

FCC ID: CASTBDH3G


Page 11 of 28 Issue Date: 20 February 2018

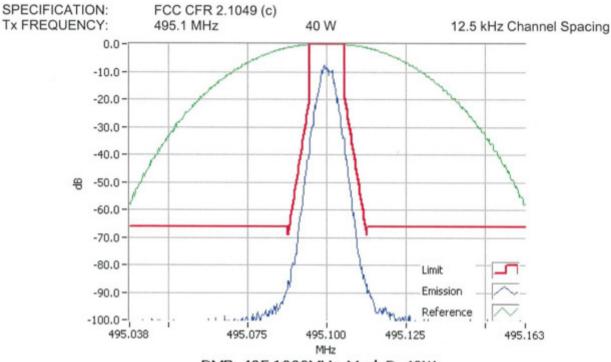
Occupied Bandwidth and Spectrum Masks


FFSK 1200

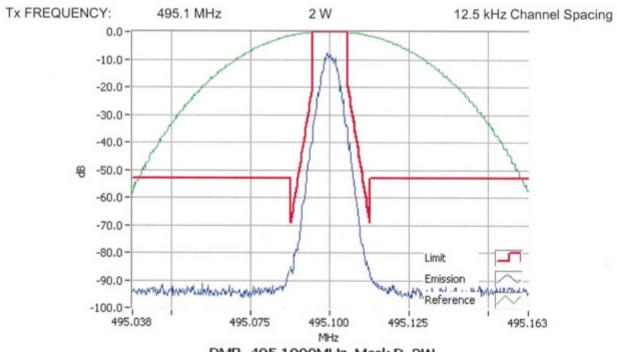
SPECIFICATION:

FCC CFR 2.1049 (c)

FFSK 495.1000MHz Mask D 40W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass


FFSK 495.1000MHz Mask D 2W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass

FCC ID: CASTBDH3G


Page 12 of 28 Issue Date: 20 February 2018

Occupied Bandwidth and Spectrum Masks

DMR

DMR 495.1000MHz Mask D 40W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass

DMR 495.1000MHz Mask D 2W RBW=100Hz, VBW=1000Hz, Detector Mode=Peak Result=Pass

FCC ID: CASTBDH3G

Page 13 of 28 Issue Date: 20 February 2018

TRANSMITTER SPURIOUS EMISSIONS (CONDUCTED)

SPECIFICATIONS:

FCC 47 CFR 2.1051

GUIDE:

TIA/EIA-603D 2.2.13

MEASUREMENT PROCEDURE:

1. Refer Annex A for equipment set up.

 The frequency range examined was from the lowest frequency generated within the EUT, to a frequency higher than the 10th Harmonic: 100 kHz to Fc-BW

Fc+ BW to 10Fc GHz

 A Pre-scan is performed with a resolution bandwidth of 1 kHz, and a video bandwidth of 3 kHz. If any emissions are found to be within 20 dB of the limit a second measurement is made with the carrier modulated, and a resolution bandwidth of 10 kHz, and a video bandwidth of 30 kHz.

Spurious emissions which were attenuated by more than 20 dB below the limit were not recorded.

A photograph of the test set-up is included below.

MEASUREMENT RESULTS:

See the tables and plots on the following pages for 12.5 kHz channel spacing.

LIMIT CLAUSES:

FCC ID: CASTBDH3G

FCC 47 CFR 90.210

Photo: Conducted Emissions Test Setup

Page 14 of 28 Issue Date: 20 February 2018

Spurious Emissions (Tx Conducted)

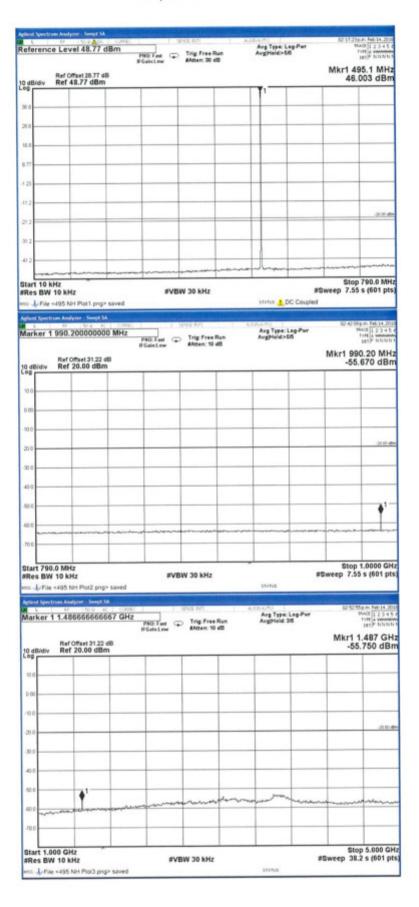
SPECIFICATION:

FCC CFR 2.1051

12.5 kHz Channel Spacing

495.1 MHz @ 40 W

Emission Mask D


Emission Frequency (MHz)	Level (dBm)	Level (dBc)
~	~	~

12.5 kHz Channel Spacing

495.1 MHz @ 2 W

Emission Mask D

Level (dBm)	Level (dBc)
~	~
⊴2.75 GH	Hz ± 3.0 dB
	~

FCC ID: CASTBDH3G

Spurious Emissions (Tx Conducted)

SPECIFICATION:

FCC CFR 2.1051

LIMITS:

FCC 47 CFR 90.210

Carrier Output Power	Emission 12.5 kHz Cha 50 + 10 Lo	nnel Spacing
40 W	-20 dBm	-66 dBc
2 W	-20 dBm	-63 dBc

FCC ID: CASTBDH3G

Page 17 of 28 Issue Date: 20 February 2018

TRANSMITTER SPURIOUS EMISSIONS (RADIATED)

SPECIFICATION:

FCC 47 CFR 2.1053

GUIDE:

TIA/EIA-603D 2.2.12

MEASUREMENT PROCEDURE:

Initial Scan:

- The EUT is placed in the S-Line TEM cell and emissions are measured from 30 MHz to 800 MHz. Any emission within 20 dB of the limit is then re-tested on the OATS.
- The EUT is placed in the reverberation chamber and emissions are measured from 800 MHz to the upper frequency required. Any emission within 20 dB of the limit is then re-tested on the OATS
- The harmonics emissions up to the 6th harmonic of the fundamental frequency are measured on the OATS

OATS Measurement:

- The EUT is placed on a wooden turntable at a distance of three metres from the test antenna.
 The output terminal is connected to an RF dummy load.
- The test antenna is raised from 1 m to 4 m to obtain a maximum reading; the turntable is then
 rotated through 360° to obtain the maximum response of each spurious emission. Valid emissions
 are determined by switching the EUT on and off.
- The EUT is then replaced by a signal generator and substitution antenna to make measurements by the substitution method.

MEASUREMENT RESULTS:

See the tables on the following pages

LIMIT CLAUSE:

FCC ID: CASTBDH3G

FCC 47 CFR 90.210

Page 18 of 28 Issue Date: 20 February 2018

Spurious Emissions (Tx Radiated) - Continued

SPECIFICATION:

FCC CFR 2.1053

12.5 kHz Channel Spacing

495.1 MHz @ 40 W

Emission Mask D

Emission Frequency (MHz)	Level (dBm)	Level (dBc)
~	~	~

12.5 kHz Channel Spacing

495.1 MHz @ 2 W

Emission Mask D

mission Frequency (MHz)	Level (dBm)	Level (dBc)
~	~	~
Measurement Uncertainty	± 4.	6 dB

LIMITS:

FCC CFR 2.1053

Carrier Output Power	Emissior 12.5 kHz Cha 50 + 10 Lo	annel Spacing
40 W	-20 dBm	-66 dBc
2 W	-20 dBm	-63 dBc

FCC ID: CASTBDH3G

Page 19 of 28 Issue Date: 20 February 2018

Open Area Test Site Results:

12.5 kHz Channel Spacing

495.1 MHz @ 40 W

Emission Mask D

Harmonics Emission Frequency (MHz)	Level (dBm)	Level (dBc)	
990.200000	-55.51	101.51	
1485.300000	-61.34	107.34	
1980.400000	-62.07	108.07	
2475.500000	-57.59	103.59	
2970.600000	-75.01	121.01	
3465.700000	-57.63	103.63	
Measurement Uncertainty	± 4.6 dB		

Sample Calculation			Measuremen	t			
	Reference	Substitution				Result	
Emission Frequency (MHz)	Reference Level (dBm)	Sig-gen Level	Cable and Attenuator Gain	Antenna Gain (dBd)	Path and Boresight corrections	dBm	nW
990.200000	-90.63	-37.08	-17.43	-0.35	-0.65	-55.51	2.8
		А	В	С	D	E	

Result (E) = A+B+C+D

Photo: OATS Setup

FCC ID: CASTBDH3G Page 20 of 28
Issue Date: 20 February 2018

TRANSIENT FREQUENCY BEHAVIOR

SPECIFICATION:

FCC 47 CFR 90.214

GUIDE:

TIA/EIA-603D 2.2.19

MEASUREMENT PROCEDURE:

1. Refer Annex A for equipment set up.

2. Measurements and plots were made following the TIA/EIA procedure.

MEASUREMENT RESULTS:

See the tables and plots on the following pages for 12.5 kHz channel spacing.

LIMIT CLAUSES: FCC 47 CFR 90.214

FCC ID: CASTBDH3G

Page 21 of 28 Issue Date: 20 February 2018

Transient Frequency Behaviour

SPECIFICATION:

FCC 47 CFR 90.214

Tx FREQUENCY:

495.1 MHz

40 W

12.5 kHz Channel Spacing

495.1 MHz @ 40 W Tx

TRANSIENT RESPONSE	CARRIER PEAK VARIA	ATION FROM NORMAL
PERIOD	Key ON (kHz)	Key OFF (kHz)
t1	-0.6	N/A
t2	-0.8	N/A
t3	N/A	0.7

Confirm that during periods t1 and t3 the frequency difference	YES	NO
es not exceed the value of one channel separation.	✓	
Confirm that during the period t2 the frequency difference does	YES	NO
not exceed half a channel separation.	✓	
Confirm that during the period t2 to t3 the frequency difference does not exceed the frequency error limit.	YES	NO
	1	

Measurement Uncertainty:

Frequency ± 130 Hz;

Time ± 0.2%

LIMIT:

FCC 47 CFR 90.214

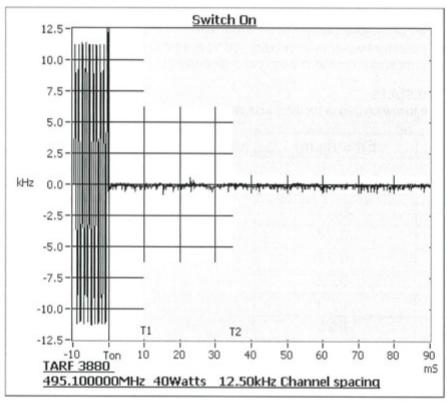
	FREQUENCY RANGE		
TRANSIENT PERIODS	150 MHz - 174 MHz	421 MHz – 512 MHz	
t1 (ms)	5 ms	10 ms	
t2 (ms)	20 ms	25 ms	
t3 (ms)	5 ms	10 ms	

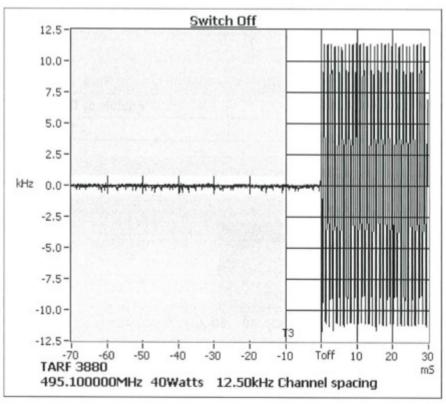
FCC ID: CASTBDH3G

Page 22 of 28 Issue Date: 20 February 2018

Transient Frequency Behaviour

SPECIFICATION:


FCC 47 CFR 90.214


Tx FREQUENCY:

495.1 MHz

40 W

12.5 kHz Channel Spacing

FCC ID: CASTBDH3G

Page 23 of 28 Issue Date: 20 February 2018

TRANSMITTER FREQUENCY STABILITY - TEMPERATURE

SPECIFICATION:

FCC 47 CFR 2.1055 (a) (1)

GUIDE:

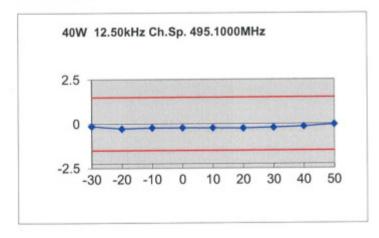
TIA/EIA-603D 2.2.2

MEASUREMENT PROCEDURE:

1. Refer Annex A for equipment set up.

The EUT was tested for frequency error from -30° C to +50° C in 10° C increments
 The frequency error was recorded in parts per million (ppm).

MEASUREMENT RESULTS:


See the plots on the following pages for 12.5 kHz channel spacing.

	Error (ppm)
Temperature (°C)	495.1 MHz
-30	-0.13
-20	-0.27
-10	-0.22
0	-0.22
10	-0.23
20	-0.25
30	-0.21
40	-0.15
50	-0.03
Measurement Uncertainty	± 7 x 10 ⁻⁸

LIMIT:

FCC 47 CFR 90.213

Channel Spacing (kHz)	Frequency Error (ppm)
12.5	2.5

FCC ID: CASTBDH3G

Page 24 of 28 Issue Date: 20 February 2018

TRANSMITTER FREQUENCY STABILITY - VOLTAGE

SPECIFICATION:

FCC 47 CFR 2.1055 (d) (1)

GUIDE:

TIA/EIA-603D 2.2.2

MEASUREMENT PROCEDURE:

1. Refer Annex A for equipment set up.

- The EUT was tested for frequency error at an input voltage to the radio of (Portable) nominal battery voltage and battery end point 85%
- 3. The frequency error was recorded in parts per million (ppm).

MEASUREMENT RESULTS:

	FREQU	ENCY ERROR (ppm) for 1	12.5 kHz
	13.8 V _{DC}	10.8 V _{DC}	15.6 V _{DC}
495.1 MHz	-0.25	-0.25	-0.24
Measurement	Uncertainty	±7>	10 ⁻⁸

LIMIT CLAUSES:	FCC 47 CFR	90.213
Channel Space	cing (kHz)	Frequency Error (ppm)
12.5	i	1.5

FCC ID: CASTBDH3G

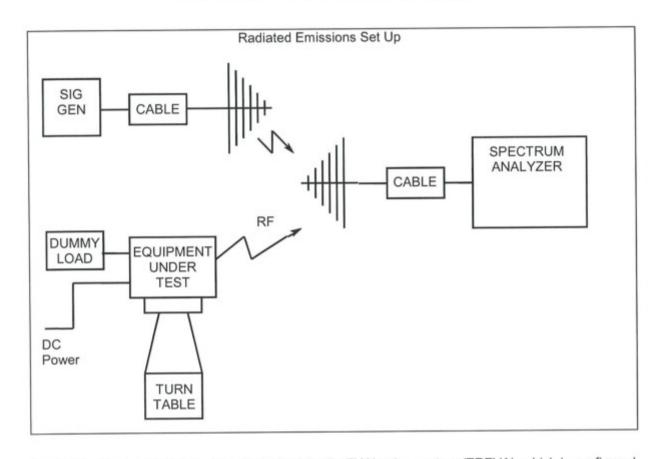
Page 25 of 28 Issue Date: 20 February 2018

TEST EQUIPMENT LIST

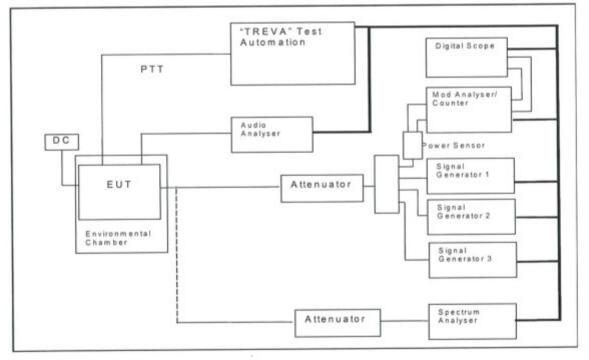
Equipment Type	Information	Manufacturer	Model No	Serial No#	Tait ID	Cal Due
Signal Generator	Analog 1GHz	Hewlett Packard	HP8648A	3430U00344	E3579	25-Sep-18
Signal Generator	Analog 4GHz	Agilent	E4422B	GB40050320	E3788	28-Sep-18
Signal Generator	Digital 3GHz	Agilent	E4438C	MY45093154	E4600	14-Oct-18
Power Supply	TREVA2 60V/25A	Agilent	N5767A	US09F4901H	E4656	7-Oct-19
Antenna	Reference Dipoles	Emco	3121C DB1	9510-1164	E3559	14-Apr-19
Antenna	18GHz DRG	Emco	DRG3115	9512-4638	E3560	15-May-20
Spectrum Analyser	26.5GHz	Agilent	PXA N9030A	MY49432161	E4907	18-Oct-18
RF Chamber	S-LINE TEM CELL	Rohde & Schwarz	1089.9296.02	338232/003	E3636	
Coax cable	OATS Turntable Cable 2	Intelcom	RG215	OATS3	E4995	1-Jan-19
RF Attenuator	20dB 25W	Weinschel	33-20-33	BD5871	E3673	20-Dec-18
RF Attenuator	TREVA2 20dB 150W	Weinschel	40-20-33	CJ405	E3733	20-Dec-18
Coax Cable	2m Black	Suhner	RG214HF/Nm/Nm/2000	TeltestBlack2	E4623	20-Dec-18
Coax Cable	2m Black	Suhner	RG214HF/Nm/Nm/2000	TeltestBlack3	E4624	20-Dec-18
Audio Analyser	TREVA2	Hewlett Packard	HP8903B	2818A04275	E3710	6-Oct-18
Spectrum Analyser	13.2GHz	Hewlett Packard	HP8562E	3821A00779	E3715	2-Oct-18
Power Supply	60V/50A/1000W	Hewlett Packard	HP6012B	2524A00616	E3712	30-Sep-19
Modulation Analyser	TREVA2	Hewlett Packard	HP8901B (Opt 002)	3704A05837	E3786	4-Oct-18
Signal Generator	TREVA2 Analog 3.3GHz	Rohde & Schwarz	SML03 1090.3000.13	100597	E4050	10-Oct-18
RF Attenuator	TREVA2 3dB	Weinschel	Model 1	BL9950	E4080	20-Dec-18
Spectrum Analyser	13.2GHz	Agilent	E4445A	MY42510072	E4139	15-Oct-18
Coax Cable	OATS Turntable Cable 1	Intelcom	RG214	OATS1	E4621	1-Jan-19
Coax Cable	OATS Tower Cable	Intelcom	RG214	OATS2	E4622	1-Jan-19
OATS	Antenna Tower	Electrometrics	EM-4720-2	112	E4447	
OATS	Controller	Electrometrics	EM-4700	119	E4445	
OATS	Turntable	Electrometrics	EM-4704A	105	E4446	
RF Attenuator	30dB 350W	Weinschel	67-30-33	BR0531	E4280	20-Dec-1
Antenna	Log Periodic	Schwarzbeck	VUSLP	9111-219	E4617	
Coax Cable	Reverb - 4.5m Multiflex 141	TeltestBlue6	MF 141	TeltestBlue6	E4843	20-Dec-1
Coax Cable	Reverb - 1m Multiflex 141	TeltestBlue2	MF 141	TeltestBlue2	E4847	20-Dec-1

FCC ID: CASTBDH3G

Page 26 of 28 Issue Date: 20 February 2018


RF Chamber	Reverb - Stirrer controller for reverb chamber	Teseq	Stirrer Controller	29765.1	E4854	
RF Chamber	Reverb - 0.5 - 18GHz Reverberation Chamber	Teseq	RVC XS	29765	E4855	
Antenna	Reverb - 1- 18GHz DRG	Schwarzbeck	BBHA 9120 D	9120D-885	E4857	
Antenna	Reverb - 1- 18GHz DRG	Schwarzbeck	BBHA 9120 D	9120D-884	E4858	
RF Amplifier	Pre-amplifier	Agilent	87405C	MY47010688	E4941	9-Oct-18
Power Supply	60V/25A	Agilent	N5767A	3111A05573	E4979	10-Oct-18
Coax Cable	2m Black	Suhner	RG214HF/Nm/Nm/2000	TeltestBlack8	E5005	1-Jan-19
Testware	S-Line Radiated Emissions		May 2016			
Testware	Reverb		28 May 2015			
Testware	Frequency Vs Temperature		May 2016	-	-	
Testware	Occupied Bandwidth		5/10/2012	2	-	
Testware	Radiated Emissions		September 2015	-	-	
Testware	Reverb Emissions		28 May 2015	-	-	
Testware	Sideband Spectrum		August 2015	-		
Testware	TREVA		December 2015	-	-	
RF Load	150W	Bird	8166	524	E3625	20-Dec-18
Coax Cable	3m Blue	Suhner	Sucoflex 104A	44611/4A	E4620	20-Dec-18
Coax Cable	2.5m Blue	Suhner	Sucoflex 104A	33449/4PEA	E4997	5-Oct-18
Transient Limiter	9kHz to 200MHz	Agilent	11947A	3107A03657	E4982	29-Sep-18

^{*} NOTE: Items without calibration dates are calibrated immediately before use, or set using calibrated instruments.


FCC ID: CASTBDH3G

Page 27 of 28 Issue Date: 20 February 2018

ANNEX A - TEST SETUP DETAILS

All other testing is performed using the Teltest Radio EVAluation system (TREVA), which is configured as shown below. The Spectrum Analyser is connected to the EUT via the attenuator network for Conducted Emissions testing, and Occupied Bandwidth.

FCC ID: CASTBDH3G

Page 28 of 28 Issue Date: 20 February 2018