

# Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

# FCC PART 15 SUBPART C TEST REPORT

**FCC PART 15.239** 

Report Reference No......: CTA25030600703 FCC ID......: : 2AW5W-CPDUO9

Compiled by

( position+printed name+signature)..: File administrators Joan Wu

Supervised by

( position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

( position+printed name+signature)..: RF Manager Eric Wang

Date of issue.....: Mar. 25, 2025

Testing Laboratory Name ...... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTIN

Applicant's name.....Rexing Inc

Address ...... 34 Ludwig St, Little Ferry, NJ, 07643 USA

Test specification ....:

Standard ..... FCC Part 15.239

## Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....: CarPlay

Trade Mark ...... REXING, Sprleaf

Manufacturer ...... KA FUNG TECHNOLOGY CO LIMITED

Model/Type reference.....: CPDuo-9

Listed Models ......CP101

Modulation .....:FM

Ratings ...... DC 5.0V From external circuit

Result.....: PASS

Page 2 of 23 Report No.: CTA25030600703

# TEST REPORT

CarPlay Equipment under Test

Model /Type CPDuo-9

**CP101** Listed Models

Model difference The PCB board, circuit, structure and interior of these models are the

same, but the model name is different.

**Rexing Inc** Applicant

Address 34 Ludwig St, Little Ferry, NJ, 07643 USA

KA FUNG TECHNOLOGY CO LIMITED Manufacturer

Rm.202, C5 Building, Hengfeng Industry Park, No.739 Zhoushi Rd, Address

Hangcheng Subdistrict, Bao'an Dist., Shenzhen, China

| Test Result: | PASS TING |
|--------------|-----------|
| (EII)        | TEST      |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 23 Report No.: CTA25030600703

# **Contents**

|       |            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|       | 1          | TEST STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4           |
|       | C          | TEST STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>4</u>    |
|       |            | - ATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _           |
|       | <u>2</u>   | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>5</u>    |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       | 2.1        | General Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5           |
|       | 2.2        | Product Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5           |
|       | 2.3        | Equipment Under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>5<br>6 |
|       | 2.4        | Short description of the Equipment under Test (EUT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5           |
|       | 2.5        | EUT operation mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6           |
|       | 2.6        | Block Diagram of Test Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6           |
| CTA " | 2.7<br>2.8 | Related Submittal(s) / Grant (s) Modifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6           |
| , 0 . | 2.0        | Modifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0           |
| 1     |            | TATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|       | <u>3</u>   | TEST ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> 7</u>   |
|       |            | TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|       | 3.1        | Address of the test laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -CT*NO      |
|       | 3.2        | Test Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TES 7       |
|       | 3.3        | Environmental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7           |
|       | 3.4        | Address of the test laboratory Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8           |
|       | 3.5        | Statement of the measurement uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8           |
|       | 3.6        | Equipments Used during the Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9           |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       | <u>4</u>   | TEST CONDITIONS AND RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10          |
|       | <u>-</u>   | TA TO STATE OF THE | <u></u>     |
|       | Cark       | 100 0 1 1 1 5 1 1 1 5 5 TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40          |
|       | 4.1        | AC Power Conducted Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10          |
|       | 4.2<br>4.3 | RADIATED MEASUREMENT 99% AND 20DB BANDWIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11          |
|       | 4.3<br>4.4 | Antenna Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20<br>22    |
|       | 4.4        | RADIATED MEASUREMENT 99% AND 20DB BANDWIDTH Antenna Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22          |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       | <u>5</u>   | TEST SETUP PHOTOS OF THE EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> 23</u>  |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       | 6-ING      | PHOTOS OF THE EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23          |
|       | 57"        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| CTAI  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| CTATE |            | CTA TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|       |            | CTATESTING CTATESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |

Report No.: CTA25030600703 Page 4 of 23

#### TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA25030600703 Page 5 of 23

# SUMMARY

#### 2.1 **General Remarks**

| 2.1 General Remarks            |   | TATESTING     |         |
|--------------------------------|---|---------------|---------|
| Date of receipt of test sample |   | Mar. 06, 2025 | TESTING |
| Testing commenced on           | : | Mar. 06, 2025 | CTATE   |
|                                |   |               |         |
| Testing concluded on           | : | Mar. 25, 2025 |         |

# Product Description

| Product Description:     | CarPlay                                                                                 |  |  |
|--------------------------|-----------------------------------------------------------------------------------------|--|--|
| Model/Type reference:    | CPDuo-9                                                                                 |  |  |
| Power supply:            | DC 5.0V From external circuit                                                           |  |  |
| Car Charger information: | Input: DC 12-24V<br>Output: DC 5V 3A                                                    |  |  |
| Hardware version:        | V1.0                                                                                    |  |  |
| Software version:        | V1.0                                                                                    |  |  |
| Testing sample ID:       | CTA250306007-1# (Engineer sample)<br>CTA250306007-2# (Normal sample)                    |  |  |
| FM                       |                                                                                         |  |  |
| Modulation:              | FM TING                                                                                 |  |  |
| Operation frequency:     | 88.1MHz~107.9MHz                                                                        |  |  |
| Channel number:          | 199                                                                                     |  |  |
| Channel separation:      | 100KHz                                                                                  |  |  |
| Channel frequency        | 88.1MHz~107.9MHz(Channel Number: 199,<br>Channel Frequency=88.1+0.1(K-1), K=1, 2, 3199) |  |  |
| Antenna type:            | Internal antenna                                                                        |  |  |
| Antenna gain:            | 0.00 dBi                                                                                |  |  |

# 2.3 Equipment Under Test

# Power supply system utilised

| 2.3 Equipment Under 1 Power supply system ut |     |                        | ESTING        |
|----------------------------------------------|-----|------------------------|---------------|
| Power supply voltage                         | : 0 | 230V / 50 Hz           | O 120V / 60Hz |
|                                              | 0   | 12 V DC                | O 24 V DC     |
|                                              | •   | Other (specified in bl | ank below)    |

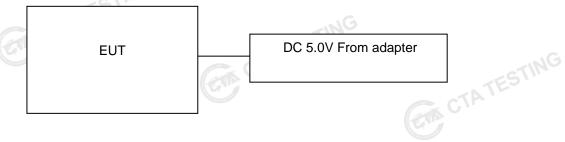
# DC 5.0V From external circuit

# 2.4 Short description of the Equipment under Test (EUT)

This is a CarPlay.

For more details, refer to the user's manual of the EUT.

Report No.: CTA25030600703 Page 6 of 23


#### 2.5 **EUT** operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel Low/Mid/High were selected to test.

**Operation Frequency:** 

| Channel | Frequency (MHz) |  |
|---------|-----------------|--|
| 00      | 88.1            |  |
| 19      | 98.1            |  |
| 39      | 107.9           |  |

#### 2.6 **Block Diagram of Test Setup**



#### 2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### **Modifications** 2.8

No modifications were implemented to meet testing criteria.

Page 7 of 23 Report No.: CTA25030600703

#### 3 TEST ENVIRONMENT

#### Address of the test laboratory 3.1

## Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

# Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

## **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission:

| Temperature:          | 23 ° C       |
|-----------------------|--------------|
|                       |              |
| Humidity:             | 44 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

# Conducted testing: CTATES

| Solidacied lesting:   |              | _     |
|-----------------------|--------------|-------|
| Temperature:          | 24 ° C       |       |
|                       | .00          |       |
| Humidity:             | 46 %         |       |
| TES                   |              |       |
| Atmospheric pressure: | 950-1050mbar | TING  |
|                       |              | TATES |
|                       |              |       |

Page 8 of 23 Report No.: CTA25030600703

# Summary of measurement results

| Applied Standard: FCC CFR 47 PART 15.239 |                                                     |           |  |  |
|------------------------------------------|-----------------------------------------------------|-----------|--|--|
| FCC Rules Description of Test            |                                                     | Result    |  |  |
| §15.239 (a)                              | Occupied Bandwidth                                  | Compliant |  |  |
| §15.239 (b)                              | §15.239 (b) Field Strength of Fundamental frequency |           |  |  |
| §15.205 (a)<br>§15.209 (a)               | Radiated Spurious Emissions                         | Compliant |  |  |
| §15.207 (a) AC Conducted Emissions       |                                                     | N/A       |  |  |
| §15.203                                  | Antenna Requirements                                | Compliant |  |  |

#### Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report

# Statement of the measurement uncertainty 3.5

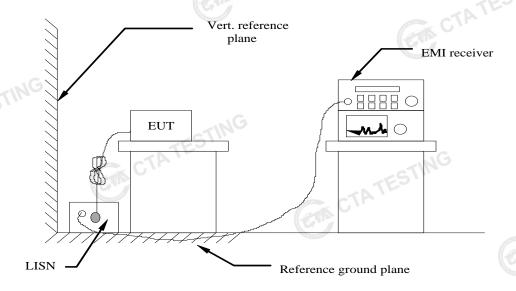
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

| Test                                     | Range       | Measurement<br>Uncertainty | Notes |
|------------------------------------------|-------------|----------------------------|-------|
| Radiated Emission                        | 9KHz~30MHz  | 3.02 dB                    | (1)   |
| Radiated Emission                        | 30~1000MHz  | 4.06 dB                    | (1)   |
| Radiated Emission                        | 1~18GHz     | 5.14 dB                    | (1)   |
| Radiated Emission                        | 18-40GHz    | 5.38 dB                    | (1)   |
| Conducted Disturbance                    | 0.15~30MHz  | 2.14 dB                    | (1)   |
| Output Peak power                        | 30MHz~18GHz | 0.55 dB                    | (1)   |
| Power spectral density                   | /           | 0.57 dB                    | (1)   |
| Spectrum bandwidth                       | /           | 1.1%                       | (1)   |
| Radiated spurious emission (30MHz-1GHz)  | 30~1000MHz  | 4.10 dB                    | (1)   |
| Radiated spurious emission (1GHz-18GHz)  | 1~18GHz     | 4.32 dB                    | (1)   |
| Radiated spurious emission (18GHz-40GHz) | 18-40GHz    | 5.54 dB                    | (1)   |

<sup>(1) (1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Page 9 of 23 Report No.: CTA25030600703

#### 3.6 **Equipments Used during the Test**


|        | Test Equipment                   | Manufacturer   | Model No.       | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|--------|----------------------------------|----------------|-----------------|------------------|---------------------|-------------------------|
|        | LISN                             | R&S            | ENV216          | CTA-308          | 2024/08/03          | 2025/08/02              |
|        | LISN                             | R&S            | ENV216          | CTA-314          | 2024/08/03          | 2025/08/02              |
|        | EMI Test Receiver                | R&S            | ESPI            | CTA-307          | 2024/08/03          | 2025/08/02              |
|        | EMI Test Receiver                | R&S            | ESCI            | CTA-306          | 2024/08/03          | 2025/08/02              |
|        | Spectrum Analyzer                | Agilent        | N9020A          | CTA-301          | 2024/08/03          | 2025/08/02              |
|        | Spectrum Analyzer                | R&S            | FSP             | CTA-337          | 2024/08/03          | 2025/08/02              |
|        | Vector Signal generator          | Agilent        | N5182A          | CTA-305          | 2024/08/03          | 2025/08/02              |
|        | Analog Signal<br>Generator       | R&S            | SML03           | CTA-304          | 2024/08/03          | 2025/08/02              |
|        | Universal Radio<br>Communication | CMW500         | R&S             | CTA-302          | 2024/08/03          | 2025/08/02              |
|        | Temperature and humidity meter   | Chigo          | ZG-7020         | CTA-326          | 2024/08/03          | 2025/08/02              |
|        | Ultra-Broadband<br>Antenna       | Schwarzbeck    | VULB9163        | CTA-310          | 2023/10/17          | 2024/10/16              |
|        | Horn Antenna                     | Schwarzbeck    | BBHA 9120D      | CTA-309          | 2023/10/13          | 2024/10/12              |
| ļ      | Loop Antenna                     | Zhinan         | ZN30900C        | CTA-311          | 2023/10/17          | 2024/10/16              |
|        | Broadband Horn<br>Antenna        | A-INFOMW       | LB-180500H-2.4F | CTA-336          | 2023/09/13          | 2026/09/12              |
|        | Amplifier                        | Schwarzbeck    | BBV 9745        | CTA-312          | 2024/08/03          | 2025/08/02              |
|        | Amplifier                        | Taiwan chengyi | EMC051845B      | CTA-313          | 2024/08/03          | 2025/08/02              |
|        | Directional coupler              | NARDA          | 4226-10         | CTA-303          | 2024/08/03          | 2025/08/02              |
|        | High-Pass Filter                 | XingBo         | XBLBQ-GTA18     | CTA-402          | 2024/08/03          | 2025/08/02              |
|        | High-Pass Filter                 | XingBo         | XBLBQ-GTA27     | CTA-403          | 2024/08/03          | 2025/08/02              |
| -<br>- | Automated filter bank            | Tonscend       | JS0806-F        | CTA-404          | 2024/08/03          | 2025/08/02              |
|        | Power Sensor                     | Agilent        | U2021XA         | CTA-405          | 2024/08/03          | 2025/08/02              |
|        | Amplifier                        | Schwarzbeck    | BBV9719         | CTA-406          | 2024/08/03          | 2025/08/02              |
|        | CTA TESTIN                       | 0              | TATESTING       |                  | TESTING             | 2020,00,0               |

Page 10 of 23 Report No.: CTA25030600703

# TEST CONDITIONS AND RESULTS

## **AC Power Conducted Emission**

#### **TEST CONFIGURATION**



# **TEST PROCEDURE**

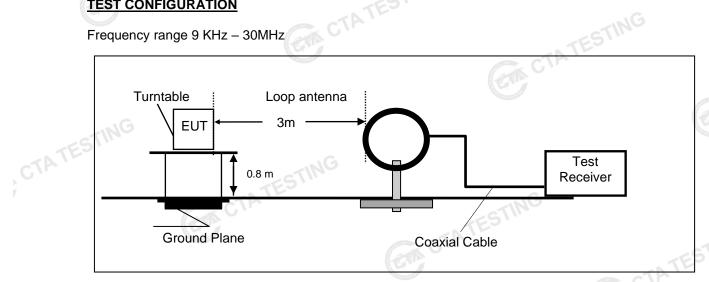
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

## **AC Power Conducted Emission Limit**

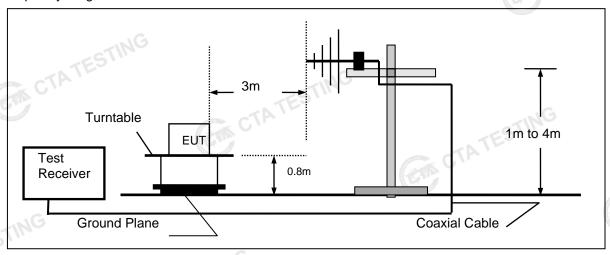
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Frequency range (MHz)                         | Limit (dBuV) |           |  |
|-----------------------------------------------|--------------|-----------|--|
|                                               | Quasi-peak   | Average   |  |
| 0.15-0.5                                      | 66 to 56*    | 56 to 46* |  |
| 0.5-5                                         | 56           | 46        |  |
| 5-30                                          | 60           | 50        |  |
| * Decreases with the logarithm of the frequen | ncy.         |           |  |

#### **TEST RESULTS**

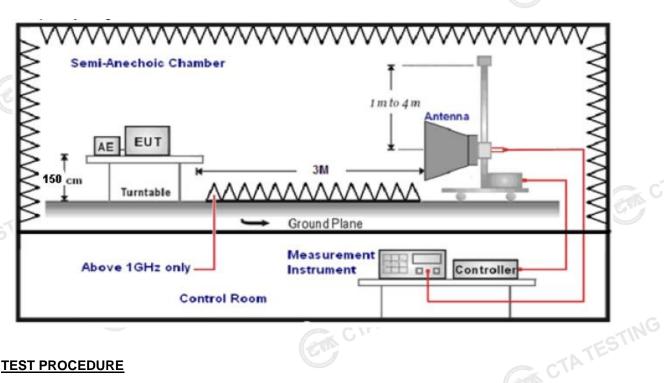

The EUT is an in-vehicle device, so this test item is not applicable for the EUT.

Report No.: CTA25030600703 Page 11 of 23


# RADIATED MEASUREMENT

# **TEST CONFIGURATION**

Frequency range 9 KHz – 30MHz




Frequency range 30MHz - 1000MHz



Frequency range above 1GHz-25GHz

Page 12 of 23 Report No.: CTA25030600703



## **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states: 6.

| Test Frequency range | Test Antenna Type          | Test Distance |  |
|----------------------|----------------------------|---------------|--|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |  |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |  |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |  |
| 18GHz-25GHz          | Horn Anternna              | 1             |  |

7. Setting test receiver/spectrum as following table states:

| Test Receiver/Spectrum Setting         | Detector                                                                                                                                     |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| RBW=200Hz/VBW=3KHz,Sweep time=Auto     | QP                                                                                                                                           |
| RBW=9KHz/VBW=100KHz,Sweep time=Auto    | QP                                                                                                                                           |
| RBW=120KHz/VBW=1000KHz,Sweep time=Auto | QP                                                                                                                                           |
| Peak Value: RBW=1MHz/VBW=3MHz,         | TING                                                                                                                                         |
| Sweep time=Auto                        | Peak                                                                                                                                         |
|                                        |                                                                                                                                              |
|                                        | RBW=200Hz/VBW=3KHz,Sweep time=Auto RBW=9KHz/VBW=100KHz,Sweep time=Auto RBW=120KHz/VBW=1000KHz,Sweep time=Auto Peak Value: RBW=1MHz/VBW=3MHz, |

# Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

## FS = RA + AF + CL - AG

| le calculation is as follows: |                                            |
|-------------------------------|--------------------------------------------|
| RA + AF + CL - AG             |                                            |
| Where FS = Field Strength     | CL = Cable Attenuation Factor (Cable Loss) |
| RA = Reading Amplitude        | AG = Amplifier Gain                        |
| AF = Antenna Factor           | 672                                        |

Page 13 of 23 Report No.: CTA25030600703

Transd=AF +CL-AG

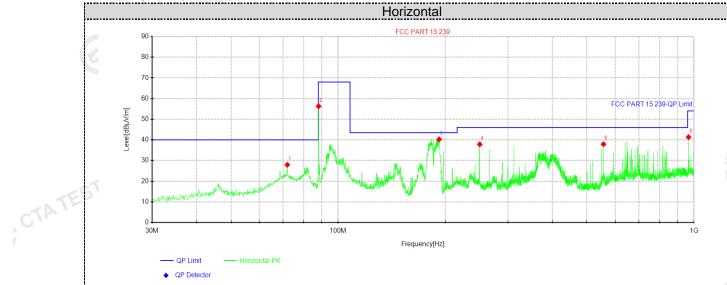
#### RADIATION LIMIT

According to §15.239 (b): The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                    | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |
| Above 960       | 3                    | 54.0                             | 500             |

#### **TEST RESULTS**

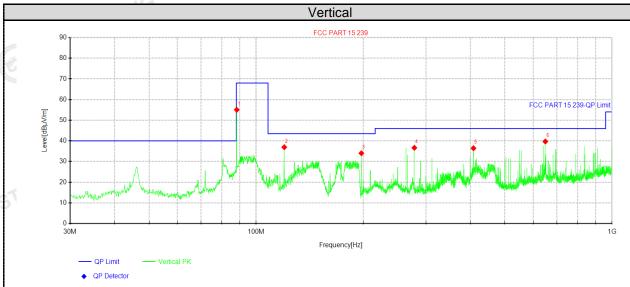

#### Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- fm were tested at Low, Middle, and High channel and recorded worst mode at High channel. 2.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found Inot re except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Report No.: CTA25030600703 Page 14 of 23

## TX Low Channel:



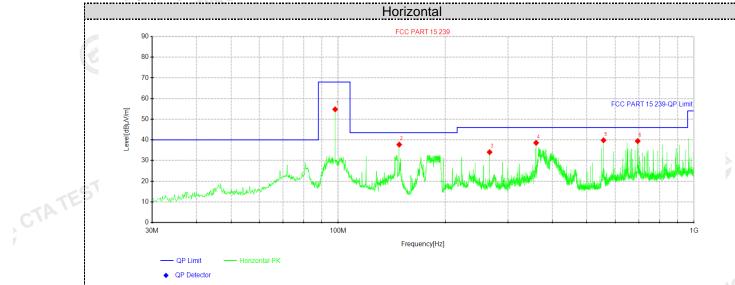

| Sus | pected Data    | List           |                   |                  |                   |                |             |              |      |            |
|-----|----------------|----------------|-------------------|------------------|-------------------|----------------|-------------|--------------|------|------------|
| NO  | Freq.<br>[MHz] | Reading [dBµV] | Level<br>[dBµV/m] | Factor<br>[dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle<br>[°] | Det  | Polarity   |
| 1   | 71.9525        | 43.18          | 27.95             | -15.23           | 40.00             | 12.05          | 100         | 167          | Peak | Horizontal |
| 2   | 88.1           | 71.38          | 56.27             | -15.11           | 68.00             | 11.73          | 100         | 122          | Peak | Horizontal |
| /   | 88.1           | 58.26          | 43.15             | -15.11           | 48.00             | 4.85           | 100         | 122          | AVG  | Horizontal |
| 3   | 192.2325       | 53.65          | 40.26             | -13.39           | 43.50             | 3.24           | 100         | 122          | Peak | Horizontal |
| 4   | 249.9475       | 49.95          | 37.84             | -12.11           | 46.00             | 8.16           | 100         | 167          | Peak | Horizontal |
| 5   | 556.8312       | 46.33          | 37.89             | -8.44            | 46.00             | 8.11           | 100         | 360          | Peak | Horizontal |
| 6   | 965.3225       | 43.35          | 41.34             | -2.01            | 54.00             | 12.66          | 100         | 54           | Peak | Horizontal |

CTATE

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

Report No.: CTA25030600703 Page 15 of 23



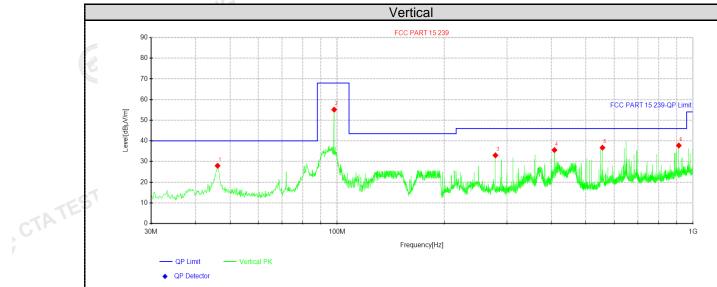

| S        | usp | ected Data     | List              |                   |               |                   |                |             |              |      |          |
|----------|-----|----------------|-------------------|-------------------|---------------|-------------------|----------------|-------------|--------------|------|----------|
| ٨        | 10. | Freq.<br>[MHz] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Factor [dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle<br>[°] | Det  | Polarity |
|          | 1   | 88.1           | 70.15             | 55.04             | -15.11        | 68.00             | 12.96          | 100         | 149          | Peak | Vertical |
|          | /   | 88.1           | 57.13             | 42.02             | -15.11        | 48.00             | 5.98           | 100         | 149          | AVG  | Vertical |
|          | 2   | 119.9675       | 50.82             | 36.96             | -13.86        | 43.50             | 6.54           | 100         | 204          | Peak | Vertical |
|          | 3   | 197.5675       | 47.02             | 34.02             | -13.00        | 43.50             | 9.48           | 100         | 48           | Peak | Vertical |
|          | 4   | 278.32         | 48.11             | 36.66             | -11.45        | 46.00             | 9.34           | 100         | 295          | Peak | Vertical |
| 324<br>M | 5   | 408.0575       | 46.55             | 36.44             | -10.11        | 46.00             | 9.56           | 100         | 328          | Peak | Vertical |
| 100      | 6   | 649.5875       | 45.13             | 39.72             | -5.41         | 46.00             | 6.28           | 100         | 318          | Peak | Vertical |

CTATE

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m) CTATESTING

Report No.: CTA25030600703 Page 16 of 23

# TX Mid Channel:




|     | Susp | ected Data     | List              |                   |               |                   |                |             |              |      | Ì          |
|-----|------|----------------|-------------------|-------------------|---------------|-------------------|----------------|-------------|--------------|------|------------|
|     | NO.  | Freq.<br>[MHz] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Factor [dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle<br>[°] | Det  | Polarity   |
|     | 1    | 98.1           | 68.07             | 54.79             | -13.28        | 68.00             | 10.21          | 100         | 55           | Peak | Horizontal |
|     | /    | 98.1           | 54.51             | 41.23             | -13.28        | 48.00             | 6.77           | 100         | 55           | AVG  | Horizontal |
|     | 2    | 148.4612       | 53.15             | 37.71             | -15.44        | 43.50             | 5.79           | 100         | 122          | Peak | Horizontal |
|     | 3    | 266.4375       | 45.81             | 34.07             | -11.74        | 46.00             | 11.93          | 100         | 223          | Peak | Horizontal |
| (3) | 4    | 360.0425       | 49.13             | 38.58             | -10.55        | 46.00             | 7.42           | 100         | 326          | Peak | Horizontal |
|     | 5    | 556.8312       | 48.26             | 39.82             | -8.44         | 46.00             | 6.18           | 100         | 356          | Peak | Horizontal |
|     | 6    | 694.6925       | 44.60             | 39.43             | -5.17         | 46.00             | 6.57           | 100         | 326          | Peak | Horizontal |
| '   |      |                |                   | CAL               |               |                   |                | - 1         | TES.         |      |            |

CTATE

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

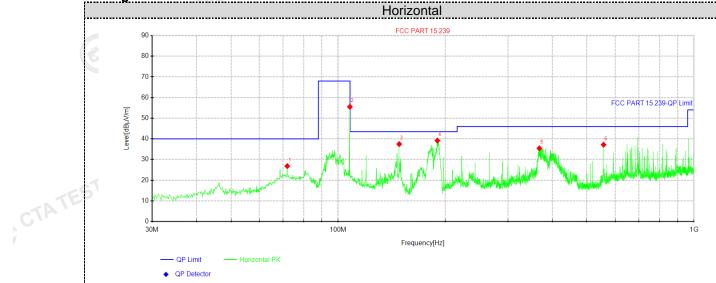
Report No.: CTA25030600703 Page 17 of 23



| S   | usp | ected Data     | List              |                   |                  |                   |                |                |              |      |          |
|-----|-----|----------------|-------------------|-------------------|------------------|-------------------|----------------|----------------|--------------|------|----------|
| N   | IO. | Freq.<br>[MHz] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Factor<br>[dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Det  | Polarity |
|     | 1   | 46.1262        | 39.34             | 27.97             | -11.37           | 40.00             | 12.03          | 100            | 295          | Peak | Vertical |
|     | 2   | 98.1           | 68.41             | 55.13             | -13.28           | 68.00             | 12.87          | 100            | 138          | Peak | Vertical |
|     | /   | 98.1           | 54.83             | 41.55             | -13.28           | 48.00             | 6.45           | 100            | 138          | AVG  | Vertical |
|     | 3   | 278.4413       | 44.47             | 33.02             | -11.45           | 46.00             | 12.98          | 100            | 307          | Peak | Vertical |
|     | 4   | 408.0575       | 45.68             | 35.57             | -10.11           | 46.00             | 10.43          | 100            | 316          | Peak | Vertical |
|     | 5   | 556.71         | 45.16             | 36.71             | -8.45            | 46.00             | 9.29           | 100            | 69           | Peak | Vertical |
| 100 | 6   | 912.0938       | 40.38             | 37.77             | -2.61            | 46.00             | 8.23           | 100            | 204          | Peak | Vertical |

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

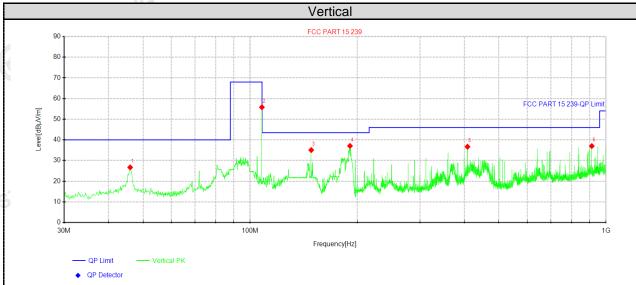

CTATE

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)

CTATESTING

Report No.: CTA25030600703 Page 18 of 23

TX High Channel:




| Susp | ected Data     | List              |                   |                  |                   |                |                |              |      |            |
|------|----------------|-------------------|-------------------|------------------|-------------------|----------------|----------------|--------------|------|------------|
| NO.  | Freq.<br>[MHz] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Factor<br>[dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Det  | Polarity   |
| 1    | 71.9525        | 42.08             | 26.85             | -15.23           | 40.00             | 13.15          | 100            | 167          | Peak | Horizontal |
| 2    | 107.9          | 68.75             | 55.53             | -13.22           | 68.00             | 12.47          | 100            | 9            | Peak | Horizontal |
| /    | 107.9          | 55.51             | 42.29             | -13.22           | 48.00             | 5.71           | 100            | 9            | AVG  | Horizontal |
| 3    | 148.4612       | 52.92             | 37.48             | -15.44           | 43.50             | 6.02           | 100            | 346          | Peak | Horizontal |
| 4    | 190.05         | 52.71             | 39.18             | -13.53           | 43.50             | 4.32           | 100            | 9            | Peak | Horizontal |
| 5    | 367.6812       | 46.00             | 35.44             | -10.56           | 46.00             | 10.56          | 100            | 200          | Peak | Horizontal |
| 6    | 556.9525       | 45.62             | 37.19             | -8.43            | 46.00             | 8.81           | 100            | 356          | Peak | Horizontal |

CTATE

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

Report No.: CTA25030600703 Page 19 of 23



| Susp | ected Data     | List              |                   |                  |                   |                |                |              |      |          |
|------|----------------|-------------------|-------------------|------------------|-------------------|----------------|----------------|--------------|------|----------|
| NO.  | Freq.<br>[MHz] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Factor<br>[dB/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Det  | Polarity |
| 1    | 46.005         | 38.09             | 26.70             | -11.39           | 40.00             | 13.30          | 100            | 279          | Peak | Vertical |
| 2    | 107.9          | 69.03             | 55.81             | -13.22           | 68.00             | 12.19          | 100            | 101          | Peak | Vertical |
| /    | 107.9          | 55.18             | 41.96             | -13.22           | 48.00             | 6.04           | 100            | 101          | Peak | Vertical |
| 3    | 148.4612       | 50.53             | 35.09             | -15.44           | 43.50             | 8.41           | 100            | 137          | AVG  | Vertical |
| 4    | 190.7775       | 50.56             | 37.08             | -13.48           | 43.50             | 6.42           | 100            | 357          | Peak | Vertical |
| 5    | 408.0575       | 46.81             | 36.70             | -10.11           | 46.00             | 9.30           | 100            | 303          | Peak | Vertical |
| 6    | 912.0938       | 39.63             | 37.02             | -2.61            | 46.00             | 8.98           | 100            | 199          | Peak | Vertical |

CTATE

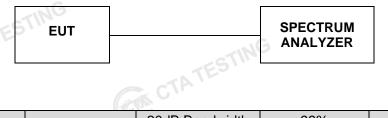
Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

CTATESTING

Page 20 of 23 Report No.: CTA25030600703

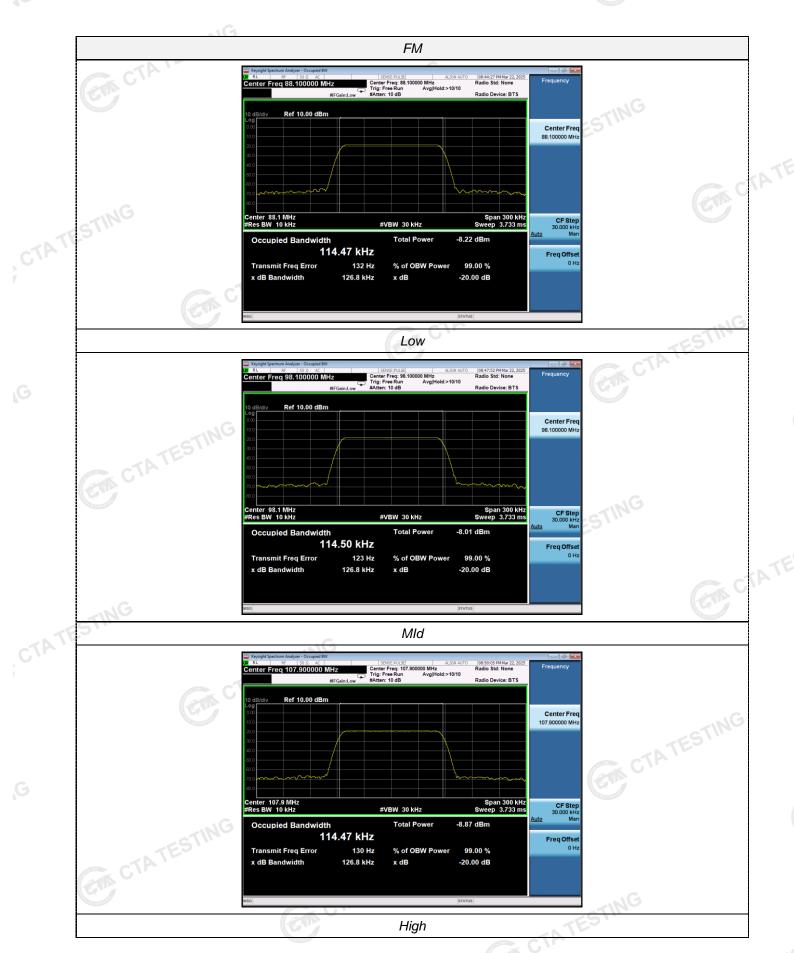
#### 99% AND 20DB BANDWIDTH 4.3


#### Limit

According to §15.239 (a) Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108MHz.

# **Test Procedure**

- 1:The transmitter shall be operated at its maximum carrier power measured under normal test conditions
- 2:The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- 3:The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) CTA TESTING and video bandwidth (VBW) shall be approximately 3x RBW.
- 4:Detector function = peak.
- 5:Trace = max hold.


## **Test Configuration**



## **Test Results**

| Test Results        |            | CTATE                   | ESTING                    |             |        |  |  |
|---------------------|------------|-------------------------|---------------------------|-------------|--------|--|--|
| Туре                | Channel    | 20dB Bandwidth<br>(KHz) | 99%<br>Bandwidth<br>(KHz) | Limit (KHz) | Result |  |  |
|                     | Low        | 126.8                   | 114.47                    |             |        |  |  |
| FM                  | Mid        | 126.8                   | 114.50                    | 200.00      | Pass   |  |  |
| 5/11                | High       | 126.8                   | 114.47                    |             |        |  |  |
| Test plot as follow | S: CTATEST | ING                     | TATESTING                 | >           |        |  |  |
|                     |            |                         |                           |             |        |  |  |

Report No.: CTA25030600703 Page 21 of 23



Page 22 of 23 Report No.: CTA25030600703

# **Antenna Requirement**

### Standard Applicable

# For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

# FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

## **Antenna Connected Construction**

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

CTATESTING

Report No.: CTA25030600703 Page 23 of 23

# <u>Test Setup Photos of the EUT</u>



# Photos of the EUT

Reference to the test report No. CTA25030600701 CTATEST \*\*\*\*\* End of Report \*\*\*\*\*\*\*\*\*\*\*\*\*\* CTATESTING