

APPLICATION CERTIFICATION FCC Part 15C On Behalf of XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

Massage Chair Model No.: EC-622B, OS-Pro Omni

FCC ID: YMX-EC622B

Prepared for Address	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, FUJIAN, CHINA
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290

Fax: (0755) 26503290

Report No.	:	ATE20172033
Date of Test	:	November 2, 2017
Date of Report	:	November 4, 2017

TABLE OF CONTENTS

Description

Page

Т	est Re	eport Certification	
1.	GE	NERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Carrier Frequency of Channels	6
	1.3.	Special Accessory and Auxiliary Equipment	6
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.	ME	EASURING DEVICE AND TEST EQUIPMENT	
3.	OP	ERATION OF EUT DURING TESTING	9
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	9
4.	TE	ST PROCEDURES AND RESULTS	
5.	PO	WER LINE CONDUCTED MEASUREMENT	
	5.1.	Block Diagram of Test	
	5.2.	Power Line Conducted Emission Measurement Limits	
	5.3.	Configuration of EUT on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Data Sample	
	5.7.	Power Line Conducted Emission Measurement Results	
6.	6D	B BANDWIDTH MEASUREMENT	
	6.1.	Block Diagram of Test Setup	17
	6.2.	The Requirement For Section 15.247(a)(2)	
	6.3.	EUT Configuration on Measurement	17
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.		XIMUM PEAK OUTPUT POWER	
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(b)(3)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5. 7.6.	Test Procedure	
8.		WER SPECTRAL DENSITY MEASUREMENT	
0.			
	8.1. 8.2.	Block Diagram of Test Setup	
	8.2. 8.3.	The Requirement For Section 15.247(e) EUT Configuration on Measurement	
	8.3. 8.4.	Operating Condition of EUT	
	8.4. 8.5.	Test Procedure	
	8.6.	Test Result	
9.		ND EDGE COMPLIANCE TEST	
	9.1.	Block Diagram of Test Setup	
	9.1. 9.2.	The Requirement For Section 15.247(d)	
	9.3.	EUT Configuration on Measurement	

Shenzhen Accurate Technology Co., Ltd.

Report No.: ATE20172033 Page 3 of 52

		0
9.4.	Operating Condition of EUT	
9.5.	Test Procedure	
9.6.	Test Result	
10. RA	DIATED SPURIOUS EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	Data Sample	
10.8.	The Field Strength of Radiation Emission Measurement Results	
11. AN	TENNA REQUIREMENT	

AN'	TENNA REQUIREMENT	.52
11.1.	The Requirement	.52
	Antenna Construction	

Test Report Certification

Applicant	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
Manufacturer	:	XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
EUT Description	:	Massage Chair
Model No.	:	EC-622B, OS-Pro Omni
Trade Mark	:	n.a.

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2017 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	November 2, 2017
Date of Report:	November 4, 2017
	BobWarg
Prepared by :	LECHNOLOG
	(Bo APPROVED Ser)
Approved & Authorized Signer : _	(emm v
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number	:	Massage Chair EC-622B, OS-Pro Omni (Note: We hereby state that these models are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. So we prepare the EC-622B for test.)
Trade Mark Bluetooth version Frequency Range Number of Channels Antenna Gain Antenna type Power Supply	: : : : :	2dBi PCB Antenna AC 110-120V; 60Hz
Modulation mode Applicant	:	GFSK XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD
Address	:	NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, FUJIAN, CHINA XIAMEN COMFORT SCIENCE & TECHNOLOGY
Manufacturer Address	:	GROUP CO., LTD NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN, FUJIAN, CHINA
Date of sample received Date of Test Sample No.	:	October 20, 2017 November 2, 2017 1701620

Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channel	Frequceny (MHz)	Channe 1	Frequceny (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.2.Carrier Frequency of Channels

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
	Listed by Innovation, Science and Economic Development Canada (ISEDC)
	The Registration Number is 5077A-2
	Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
	Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01 Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
	:

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

		т	C /NT		0 111 / 1 /1
Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2017	1 Year
				,	
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2017	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2017	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354	3791	Jan. 7, 2017	1 Year
		0-01			
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	1 Year
				,	
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	1 Year
	Sentralecter	2011/1202	<i>J</i> 1202 000	oun: 10, 2017	1 1001
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	1 Year
LICN	Dahda & Cabuyana	ECU2 75	100205	Ion 7 2017	1 Voor
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2017	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2017	1 Year
				,	
Highpass Filter	Wainwright	WHKX3.6/18	N/A	Jan. 7, 2017	1 Year
	Instruments	G-10SS			
Band Reject Filter	Wainwright	WRCG2400/2	N/A	Jan. 7, 2017	1 Year
5	Instruments	485-2375/2510			
		-60/11SS			
L		00/1100		1	

Table 1: List of Test and Measurement Equipment

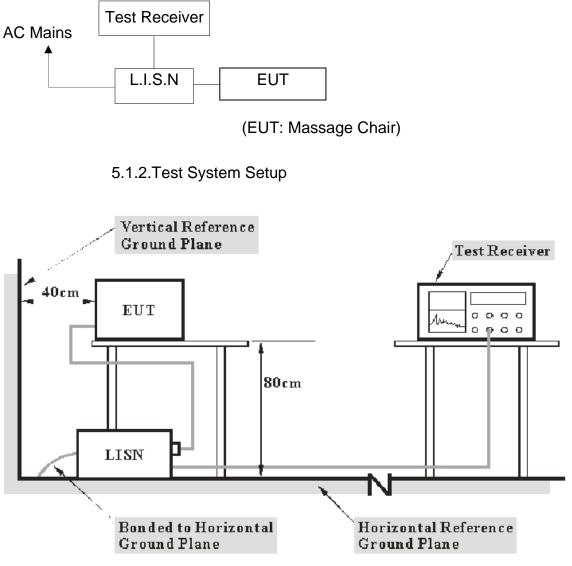
3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: **BLE Transmitting mode** Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

- Note: 1. Support units were connected to second LISN.
 - 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit d	B(μV)						
(MHz)	Quasi-peak Level	Average Level						
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *						
0.50 - 5.00	56.0	46.0						
5.00 - 30.00	60.0	50.0						
NOTE1: The lower limit sh	all apply at the transition fre	quencies.						
NOTE2: The limit decrease	NOTE2: The limit decreases linearly with the logarithm of the frequency in the							
range 0.15MHz to	o 0.50MHz.							

5.2. Power Line Conducted Emission Measurement Limits

5.3.Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.Test Procedure

The EUT is put on the plane 0.1 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6.Data Sample

Frequency (MHz)	Transducer value (dB)	QuasiPeak Level (dBµV)	Average Level (dBµV)	QuasiPeak Limit (dBµV)	Average Limit (dB _µ V)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
	(uD)	(αρμν)	(ασμν)	(ασμν)	(μομν)	(ub)	(uD)	
0.644	11.0	36.7	34.0	56.0	46.0	19.3	12.0	Pass

Frequency(MHz) = Emission frequency in MHz

Transducer value(dB) = Insertion loss of LISN + Cable Loss Level(dB μ V) = Quasi-peak Reading/Average Reading + Transducer value Limit (dB μ V) = Limit stated in standard Margin = Limit (dB μ V) - Level (dB μ V)

Calculation Formula:

5.7. Power Line Conducted Emission Measurement Results

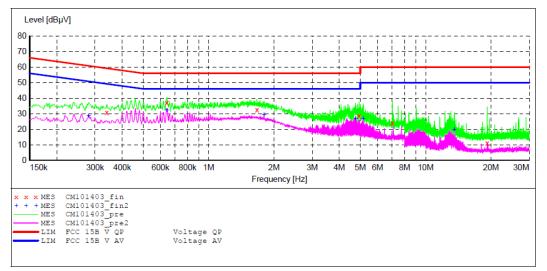
PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : BT communicating(AC 120V/60Hz) EUT mode : EC-622B												
MEASUREMENT RESULT: "CM101403_fin"												
2017-11-2 9:3 Frequency MHz	30 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE					
$\begin{array}{c} 0.340000\\ 0.642000\\ 1.670000\\ 4.935000\\ 7.025000\\ 19.205000\end{array}$	30.80 37.30 32.70 28.70 24.00 11.10	10.9 11.0 11.2 11.4 11.5 11.7	59 56 56 60 60	28.4 18.7 23.3 27.3 36.0 48.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND					
MEASUREMENT RESULT: "CM101403_fin2"												
2017-11-2 9:3 Frequency MHz	30 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE					
$\begin{array}{c} 0.280000\\ 0.642000\\ 1.800000\\ 4.760000\\ 5.160000\\ 13.555000\end{array}$	28.80 32.40 29.40 27.10 26.90 19.90	10.9 11.0 11.2 11.4 11.4 11.6	51 46 46 50 50	22.0 13.6 16.6 18.9 23.1 30.1	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND					
MEASUREMENT	RESULT	: "СМ10	1404_1	in"								
2017-11-2 9: Frequency MHz	33 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE					
$\begin{array}{c} 0.338000\\ 0.642000\\ 1.750000\\ 4.810000\\ 10.090000\\ 12.490000\end{array}$	30.40 38.20 32.40 21.90 18.00 18.20	10.9 11.0 11.2 11.4 11.6 11.6	59 56 56 60 60	28.9 17.8 23.6 34.1 42.0 41.8	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND					
MEASUREMENT	RESULT	: "СМ10	1404_1	fin2"								
2017-11-2 9: Frequency MHz	33 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE					
0.280000 0.646000 1.800000 4.740000 5.160000 12.895000	28.70 34.00 29.50 27.30 28.40 19.30	10.9 11.0 11.2 11.4 11.4 11.6	51 46 46 50 50	22.1 12.0 16.5 18.7 21.6 30.7	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND					

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: Manufacturer: Operating Condition: Test Site: Operator: Test Specification: Comment: Ctart of Test:	1#Shielding Room DING N 120V/60Hz Report NO.:ATE20172033
Start of Test:	2017-11-2 / 9:27:59

SCAN TABLE: "V 150K-30MHz fin"

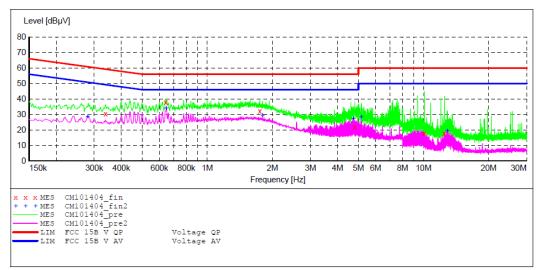
Short Desci	iption:		SUB STD VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "CM101403_fin"

2017-11-2 9: Frequency MHz	30 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
$\begin{array}{c} 0.340000\\ 0.642000\\ 1.670000\\ 4.935000\\ 7.025000\\ 19.205000\end{array}$	30.80 37.30 32.70 28.70 24.00 11.10	10.9 11.0 11.2 11.4 11.5 11.7	59 56 56 60 60	28.4 18.7 23.3 27.3 36.0 48.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "CM101403 fin2"

			_							
2017-11-2 9:30										
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE			
0.280000	28.80	10.9	51	22.0	AV	N	GND			
0.642000	32.40	11.0	46	13.6	AV	Ν	GND			
1.800000	29.40	11.2	46	16.6	AV	Ν	GND			
4.760000	27.10	11.4	46	18.9	AV	Ν	GND			
5.160000	26.90	11.4	50	23.1	AV	Ν	GND			
13.555000	19.90	11.6	50	30.1	AV	Ν	GND			


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

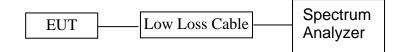
EUT: Manufacturer: Operating Condition: Test Site:	1#Shielding Room
Operator:	DING
Test Specification:	L 120V/60Hz
Comment: Start of Test:	Report NO.:ATE20172033 2017-11-2 / 9:31:02

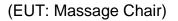
SCAN TABLE: "V 150K-30MHz fin"

Short Desc			SUB_STD_VTE	RM2 1.70		
	Stop	1	Detector	Meas.	IF	Transducer
	Frequency			Time	Bandw.	
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

MEASUREMENT RESULT: "CM101404_fin"

2017-11-2 9: Frequency MHz	33 Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.338000 0.642000 1.750000 4.810000 10.090000 12.490000	30.40 38.20 32.40 21.90 18.00 18.20	10.9 11.0 11.2 11.4 11.6 11.6	59 56 56 60 60	28.9 17.8 23.6 34.1 42.0 41.8	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND


MEASUREMENT RESULT: "CM101404_fin2"


			_								
2017-11-2 9:33											
Frequency	Level		Limit	2	Detector	Line	PE				
MHz	dBµV	dB	dBµV	dB							
0.280000	28.70	10.9	51	22.1	AV	L1	GND				
0.646000	34.00	11.0	46	12.0	AV	L1	GND				
1.800000	29.50	11.2	46	16.5	AV	L1	GND				
4.740000	27.30	11.4	46	18.7	AV	L1	GND				
5.160000	28.40	11.4	50	21.6	AV	L1	GND				
12.895000	19.30	11.6	50	30.7	AV	L1	GND				

6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

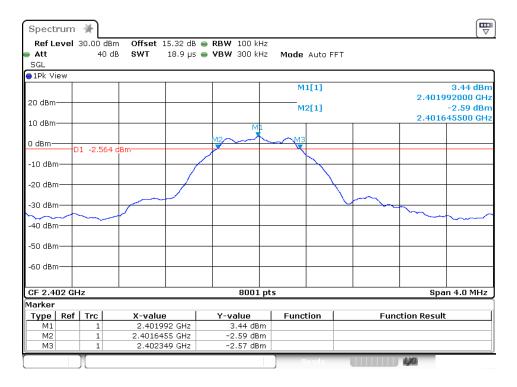
6.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

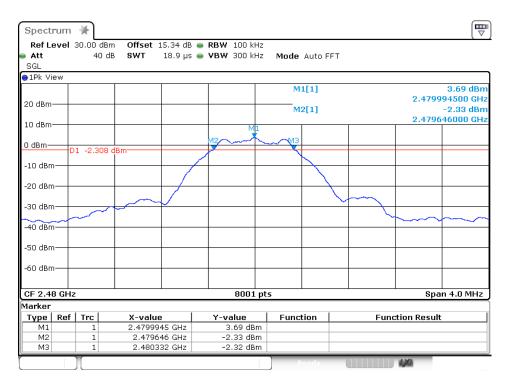
6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure

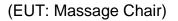

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to300 kHz.
- 6.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.6.Test Result


Channel	Frequency (MHz)	6 dB Bandwith (MHz)	Minimum Limit(MHz)	PASS/FAIL
0	2402	0.704	0.5	PASS
19	2440	0.697	0.5	PASS
39	2480	0.686	0.5	PASS

The spectrum analyzer plots are attached as below.

Spect	rum	₩								
Ref L Att SGL	evel	30.00 41	dBm Offset D dB SWT		RBW 100 kHz VBW 300 kHz		Auto FFT			<u> </u>
😑 1Pk Vi	iew									
20 dBm							1[1]		3.56 c 2.439991000	GHz
10 dBm						м	2[1]		-2.45 c 2.439639000	
0 dBm-					M2	<u></u>				
-10 dBn)1 -2.4	44 dBm	- /			<u> </u>			
-20 dBn	n									
-30 dBn	n		\sim	\downarrow				\sim		
-40 dBn										
-50 dBn	n									
-60 dBn	n+									
CF 2.4	4 GHz	z			8001 p	ts	I	I	Span 4.0 M	IHz
Marker					•				•	
Туре	Ref	Trc	X-valı	ie	Y-value	Func	tion	Func	tion Result	
M1		1		991 GHz	3.56 dBm					
M2		1		639 GHz	-2.45 dBm					
МЗ		1	2.4403	365 GHz	-2.45 dBm	<u> </u>				
		Л				, R	teady		4,70	



7. MAXIMUM PEAK OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

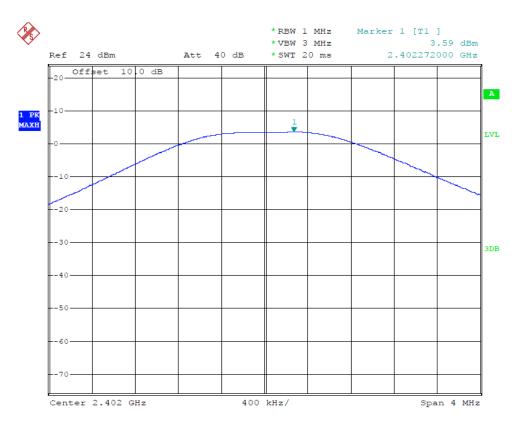
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

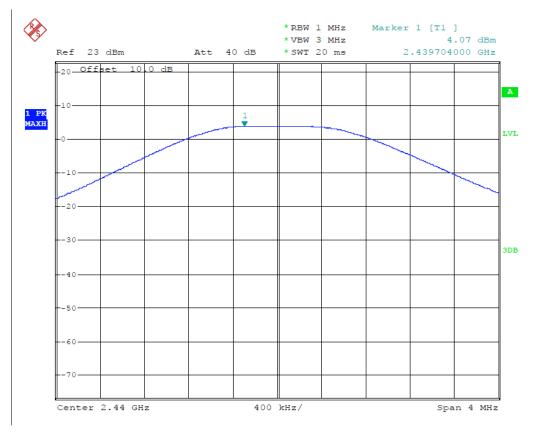
7.4.1.Setup the EUT and simulator as shown as Section 7.1.

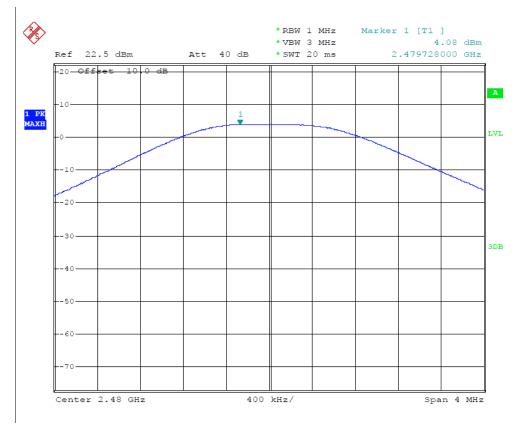
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

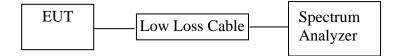

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3 MHz.
- 7.5.3.Measurement the maximum peak output power.

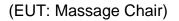
7.6.Test Result


Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
0	2402	3.59	30	PASS
19	2440	4.07	30	PASS
39	2480	4.08	30	PASS


The spectrum analyzer plots are attached as below.

channel 19





8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

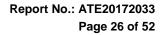
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

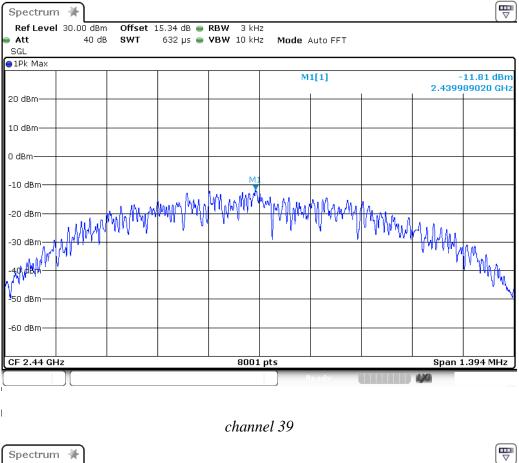
- 8.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

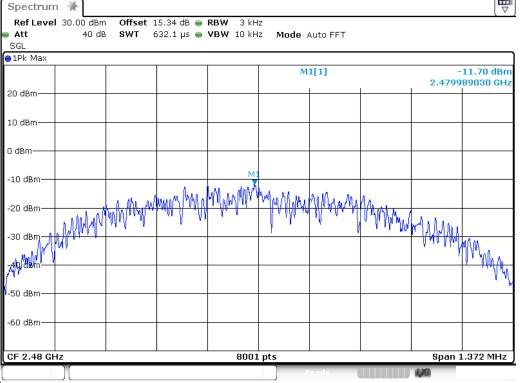
8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2. Measurement Procedure PKPSD:
- 8.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.4.Measurement the maximum power spectral density.

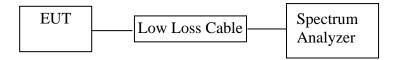


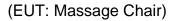
8.6.Test Result


CHANNEL NUMBER	FREQUENCY (MHz)	PSD (dBm/3KHz)	LIMIT (dBm/3KHz)	PASS/FAIL
0	2402	-11.95	8	PASS
19	2440	-11.81	8	PASS
39	2480	-11.70	8	PASS


The spectrum analyzer plots are attached as below.

P Spectrum ₩ Ref Level 30.00 dBm Offset 15.32 dB 👄 RBW 3 kHz Att 40 dB SWT 631.9 µs 👄 **VBW** 10 kHz Mode Auto FFT SGL ⊖1Pk Max M1[1] -11.95 dBm 2.401989620 GHz 20 dBm-10 dBm 0 dBm -10 dBm MMM HAAMMAMM WIMM on Ana YM MALINA MARAN ANA MM -20 dBm -30 dBm 40<mark>08</mark> -**5**0 dBm -60 dBm· CF 2.402 GHz 8001 pts Span 1.408 MHz





9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

- 9.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 9.5.3. Radiate Band Edge:
- 9.5.4. The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 9.5.5.The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.6.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.7.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

9.5.8.RBW=100kHz, VBW=300kHz

9.5.9. The band edges was measured and recorded.

9.6.Test Result

Pass

Channel	Frequency	Delta peak to band emission	Limit(dBc)
0	2.4GHz	33.74	20
39	2.4835GHz	35.41	20

Spectrum	*									
Ref Level				• RBW 100 kHz						
Att	40 (dB SWT 1	l32.6 µs 🧉	• VBW 300 kHz	: Mode	Auto F	FT			
SGL										
●1Pk Max										
					M	1[1]				3.44 dBm
20 dBm										199480 GHz
					M	2[1]				-37.18 dBm
10 dBm					M1				2.40	000000 GHz
					X					
0 dBm					1					
-10 dBm					11					
-20 dBm	01 -16.56	60 dBm								
20 0011					11.					
-30 d					<u> </u>					
L. T.			MЗ	M2	A.			and the second second	her ma	week the warment
V40 aBm	manine from the states	and the second	AND A REAL PROPERTY AND	washe warner	n y my	NAMMAN	-	- HAVANA (KHAVA	INNA INTEN	A REAL PROPERTY OF A REAL PROPER
-50 dBm										
co do-										
-60 dBm										
CF 2.4 GHz				8001 p	ts				Spa	n 60.0 MHz
Marker										
Type Ref	Trc	X-value		Y-value	Func	tion		Fun	ction Resu	t _
M1	1	2.40199	48 GHz	3.44 dBm						
M2	1		.4 GHz	-37.18 dBm						
M3	1		39 GHz	-38.78 dBm						
M4	1	2.37354	75 GHz	-35.13 dBm						
					R	eadv			1.00	

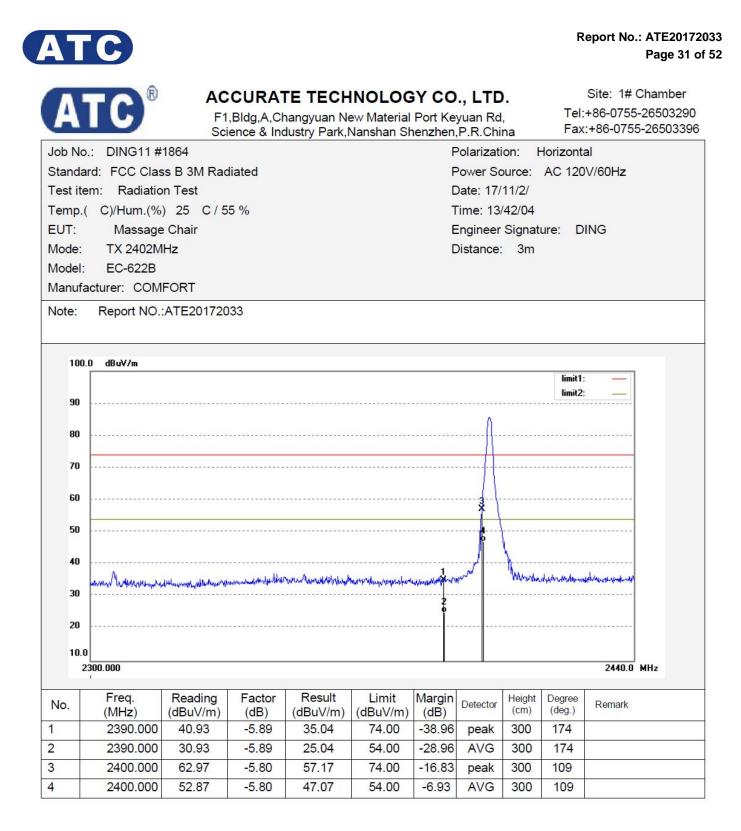
channel 39

Spectrum	*					
Ref Level	30.00 de	m Offset 15.34 d	3 🔵 RBW 100 kHz			,
Att	40 (dв SWT 132.6 µ	s 👄 VBW 300 kHz	Mode Auto I	FT	
SGL						
∋1Pk Max						
				M1[1]		3.46 dBn
20 dBm —						2.47999790 GH
				M2[1]		-38.87 dBn
10 dBm			M1	,	1	2.48350000 GH
			T T			
0 dBm		+	- / -			<u> </u>
-10 dBm						
C	1 -16.54	10 dBm				
-20 dBm						
-30 dBm			. 5			
			/ M2	M4	M3	
Manuel N	Win Jump	month of month	unation March March	However wind which	Mary Mary Mary Mary	and the property and the second
10 dbm						
-50 dBm						
-60 dBm						
CF 2.4835 C	217		8001 pt			Span 60.0 MHz
Marker	1112		0001 p			3pan 00.0 minz
	Trc	W	Y-value	Function	1	ction Result
Type Ref M1	1	2.4799979 GHz	3.46 dBm	Function	Fun	CUUN RESULT
M1 M2	1	2.4799979 GHZ 2.4835 GHz	-38.87 dBm			
M3	1	2.4635 GH2 2.5 GHz	-38.69 dBm			
M4	1	2.49076 GHz	-35.32 dBm			
	1 -	2.15010 012	00102 0011	·	1	
	Л			Ready		4,90

Radiated Band Edge Result

Date of Test:	November 2, 2017	Temperature:	25°C
EUT:	Massage Chair	Humidity:	50%
Model No.:	EC-622B	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2402MHz) GFSK	Test Engineer:	Ding

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBµV/m)	Limit(dl	BµV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2390.000	30.46	39.87	-5.89	24.57	33.98	54.00	74.00	-29.43	-40.02	Vertical
2400.000	56.01	66.62	-5.80	50.21	60.82	54.00	74.00	-3.79	-13.18	Vertical
2390.000	30.93	40.93	-5.89	25.04	35.04	54.00	74.00	-28.96	-38.96	Horizontal
2400.000	52.87	62.97	-5.80	47.07	57.17	54.00	74.00	-6.93	-16.83	Horizontal

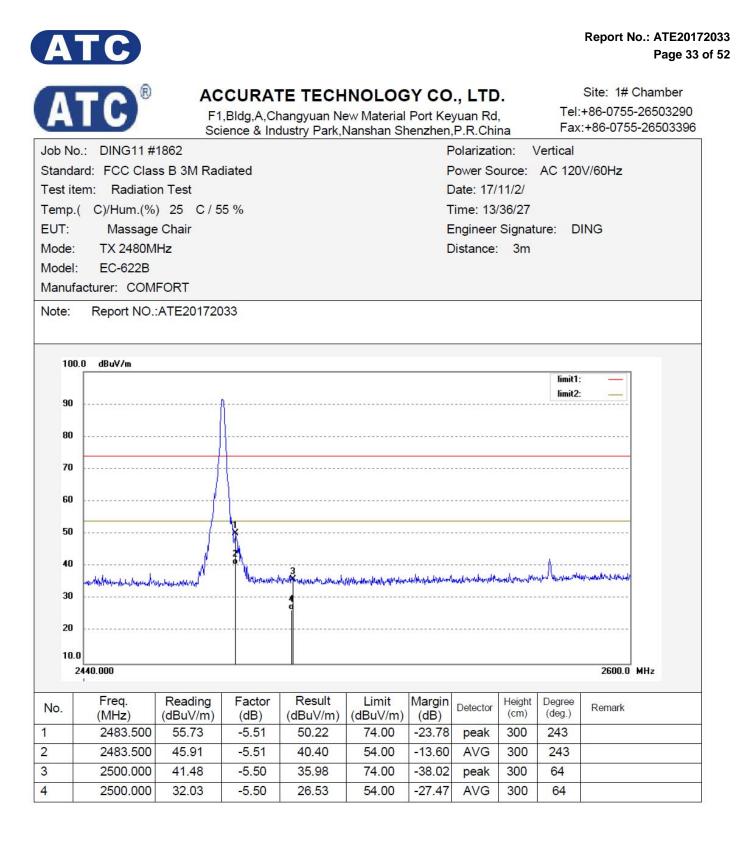

Date of Test:	November 2, 2017	Temperature:	25°C
EUT:	Massage Chair	Humidity:	50%
Model No.:	EC-622B	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2480MHz) GFSK	Test Engineer:	Ding

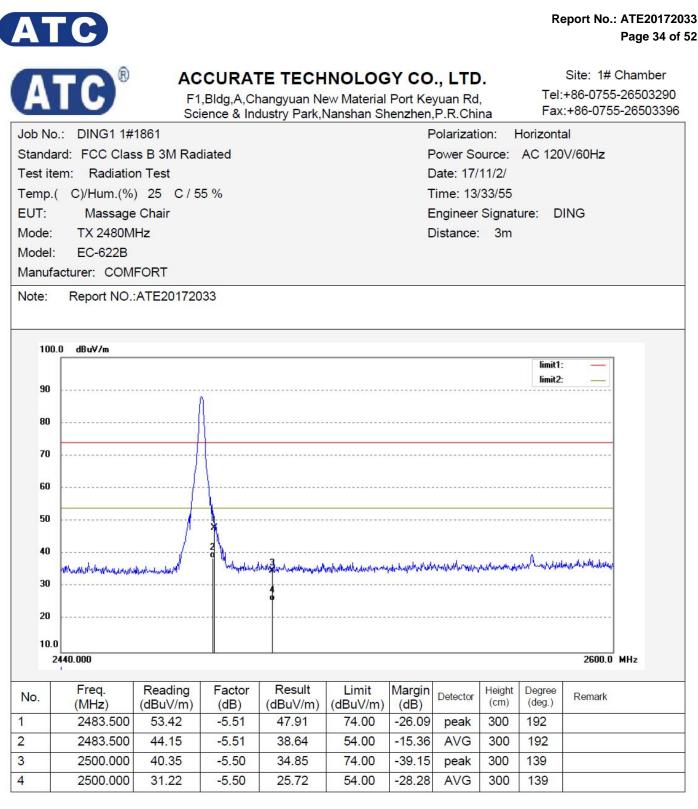
Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBµV/m)	Limit(dl	BµV/m)	Margi	n(dB)	Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
2483.500	45.91	55.73	-5.51	40.40	50.22	54.00	74.00	-13.60	-23.78	Vertical
2500.000	45.91	55.73	-5.50	26.53	35.98	54.00	74.00	-27.47	-38.02	Vertical
2483.500	44.15	53.42	-5.51	38.64	47.91	54.00	74.00	-15.36	-26.09	Horizontal
2500.000	31.22	40.35	-5.50	25.72	34.85	54.00	74.00	-28.28	-39.15	Horizontal

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.


Report No.: ATE20172033 Page 32 of 52


Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLC	DGY CO.,	LTD.
-------------------	----------	------

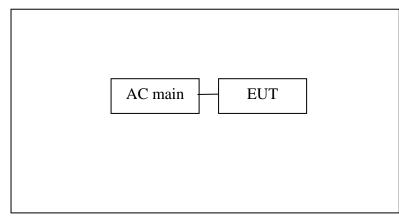
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: DING11 #1863 Polarization: Vertical											
Stand	Standard: FCC Class B 3M Radiated						Power Source: AC 120V/60Hz				
Test i	Test item: Radiation Test						Date: 17/11/2/				
Temp	emp.(C)/Hum.(%) 25 C / 55 %						Time: 13/39/33				
EUT:							Engineer Signature: DING				
Mode							Distance: 3m				
Model: EC-622B											
Manu	facturer: COM	FORT									
Note:	Report NO.	:ATE201720)33								
10	0.0 dBuV/m								limit1:		
									limit2:		
90							{				
80	- L										
00											
70											
							3				
60							¥(
50											
50							J.	0			
40								.\			
	appel recommenced the source of the market of the source o										
30	30										
20											
20											
10											
	2300.000									2440.0	MHz
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark	
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm) (cm)		(deg.)	Render	
1	2390.000	39.87	-5.89	33.98	74.00	-40.02		300	94		
2	2390.000	30.46	-5.89	24.57	54.00	-29.43		300	94		
3	2400.000	66.62	-5.80	60.82	74.00	- <mark>13</mark> .18	3400	300	225		
4	2400.000	56.01	-5.80	50.21	54.00	-3.79	AVG	300	225		
	2.00.000		0.00		0	0.10					

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

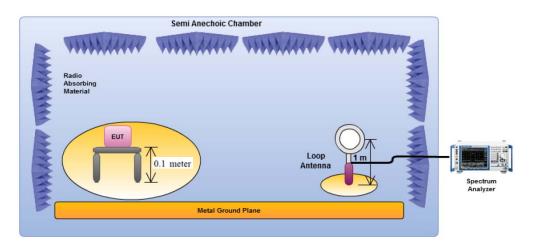
Result = Reading + Corrected Factor


3. Display the measurement of peak values.

10.RADIATED SPURIOUS EMISSION TEST

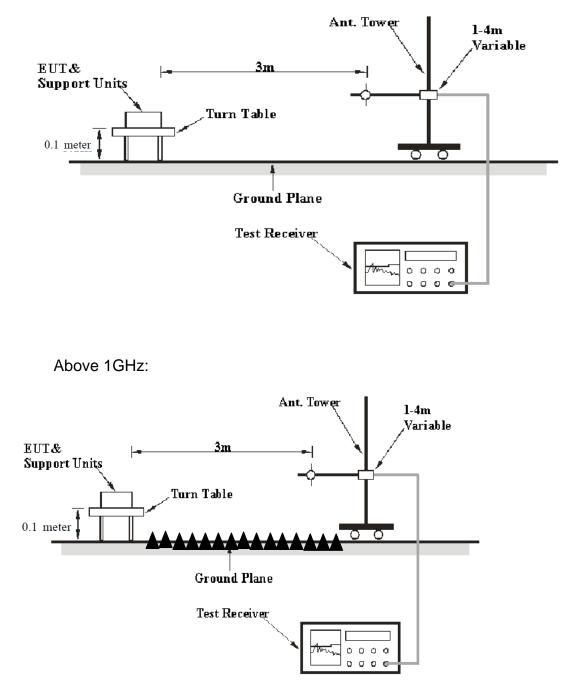
10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals



Setup: Transmitting mode

(EUT: Massage Chair)


10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 30MHz

Below 1GHz:

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging

over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(:	(a) Except as shown in paragraph (d) of this section, Only spurious emissions are									
	perm	nitted in any of the freque	ncy bands listed below:							
Hz		MHz	MHz	GHz						

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.5.Operating Condition of EUT

- 10.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2.Turn on the power of all equipment.
- 10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 25GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

10.7.Data Sample

Frequenc	y Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBμv)	(dB/m)	(dBμv/m)	(dBµv/m)	(dB)	
40.8444	42.80	-11.72	31.08	40.00	-8.92	QP

Frequency(MHz) = Emission frequency in MHz Reading(dB μ v) = Uncorrected Analyzer/Receiver reading Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain Result(dB μ v/m) = Reading(dB μ v) + Factor(dB/m) Limit (dB μ v/m) = Limit stated in standard Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m) QP = Quasi-peak Reading

Calculation Formula: Margin(dB) = Result (dB μ V/m)–Limit(dB μ V/m) Result(dB μ V/m)= Reading(dB μ V)+ Factor(dB/m) The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8. The Field Strength of Radiation Emission Measurement Results PASS.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

3. The radiation emissions from 18-25GHz are not reported, because the test values lower than the limits of 20dB.

Job No.: JC #187

EUT:

Mode:

Model:

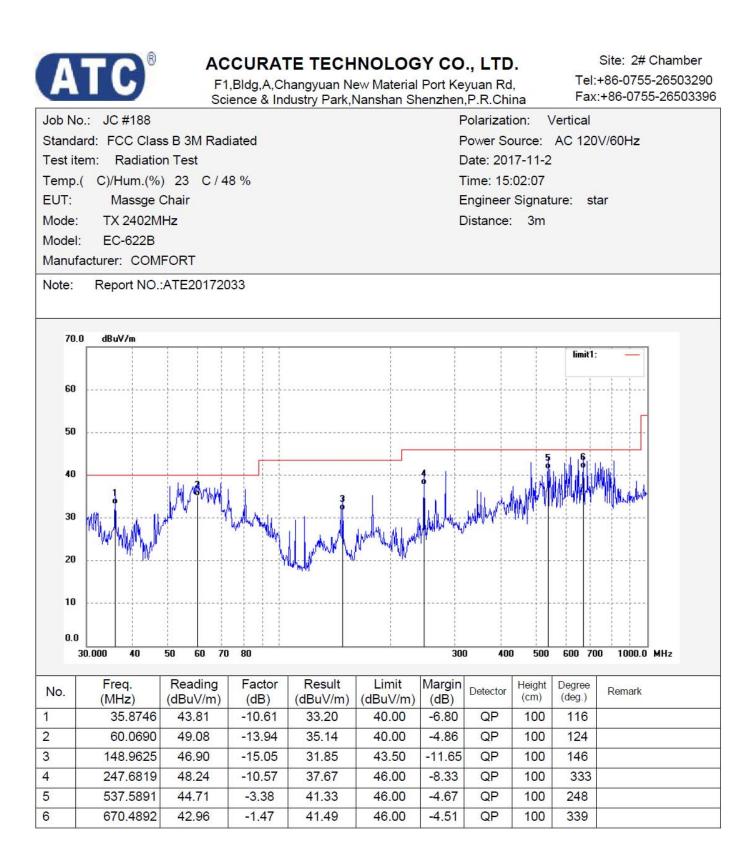
Site: 2# Chamber

Report No.: ATE20172033

Page 40 of 52

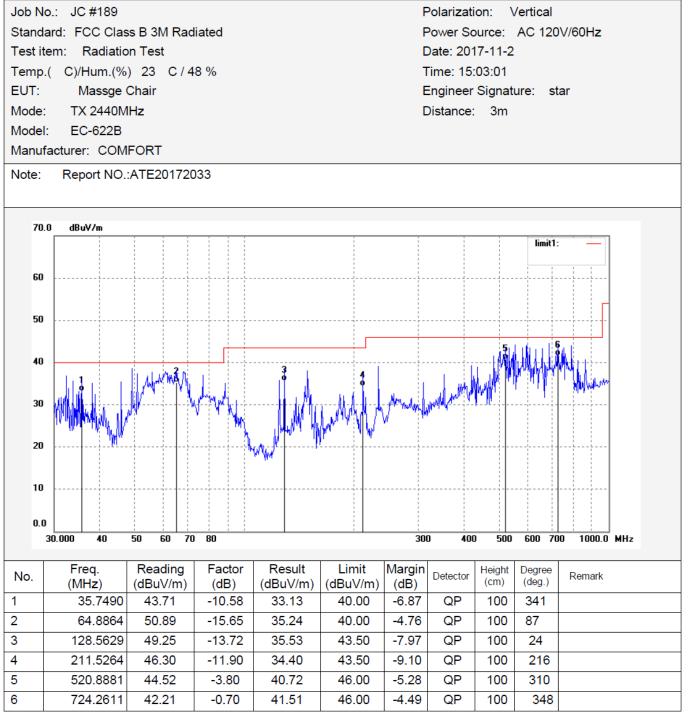
Note: Report NO.:ATE20172033

Massge Chair


TX 2402MHz

EC-622B Manufacturer: COMFORT

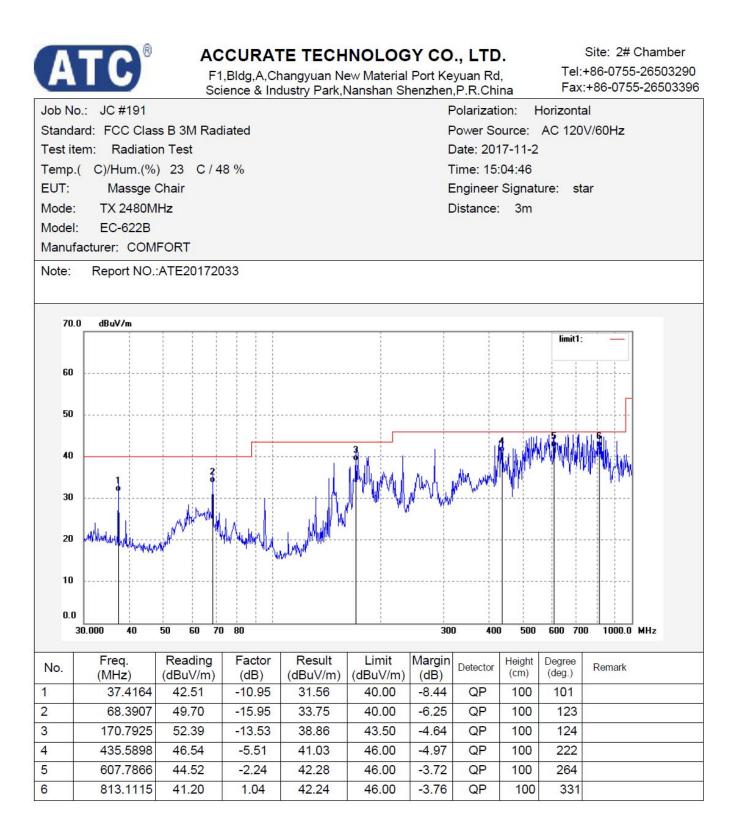
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	40.8444	42.80	-11.72	31.08	40.00	-8.92	QP	100	134	
2	60.0690	47.51	-13.94	33.57	40.00	-6.43	QP	100	126	
3	150.5378	53.11	-15.03	38.08	43.50	-5.42	QP	100	243	
4	435.5898	45.74	-5.51	40.23	46.00	-5.77	QP	100	46	
5	590.9737	44.02	-2.46	41.56	46.00	-4.44	QP	100	111	
6	755.3872	41.35	-0.21	41.14	46.00	-4.86	QP	100	123	



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

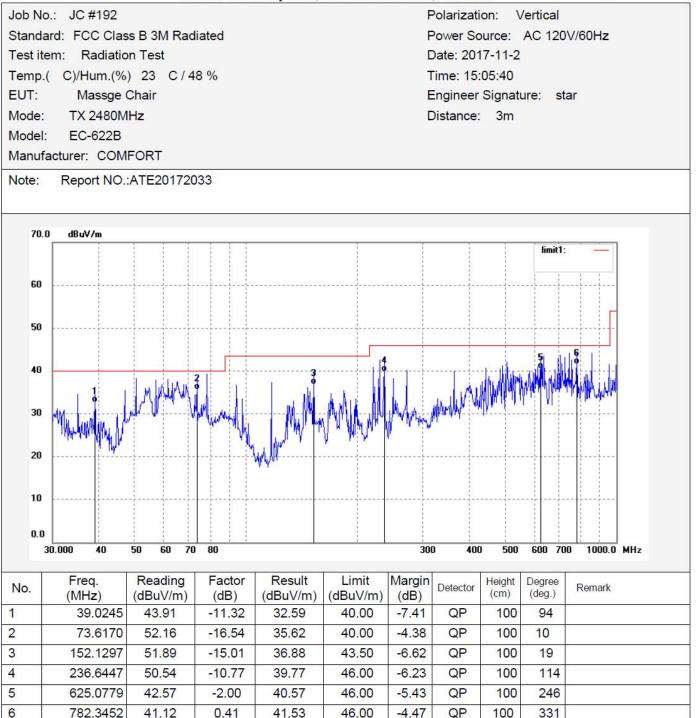
Report No.: ATE20172033

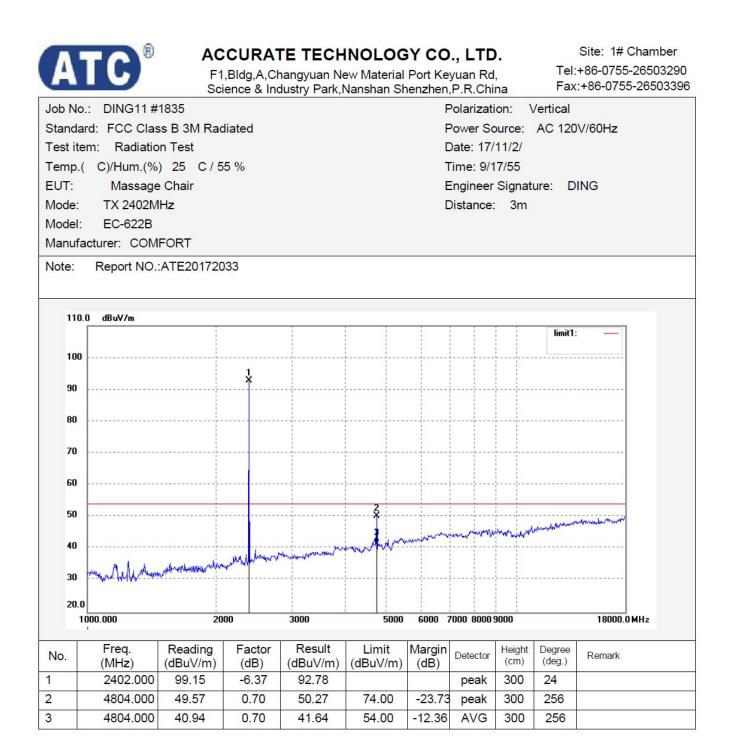
Page 42 of 52



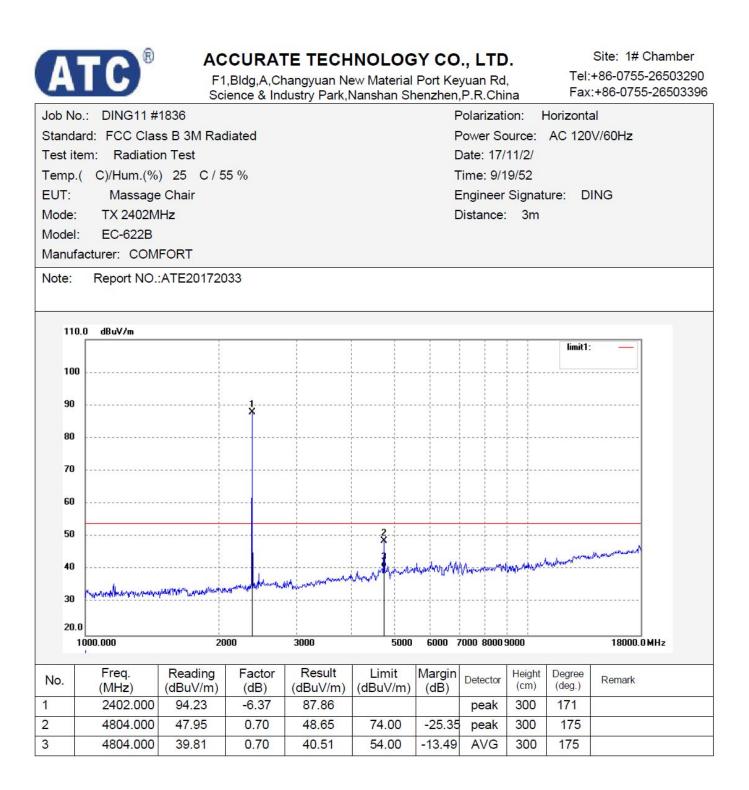
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

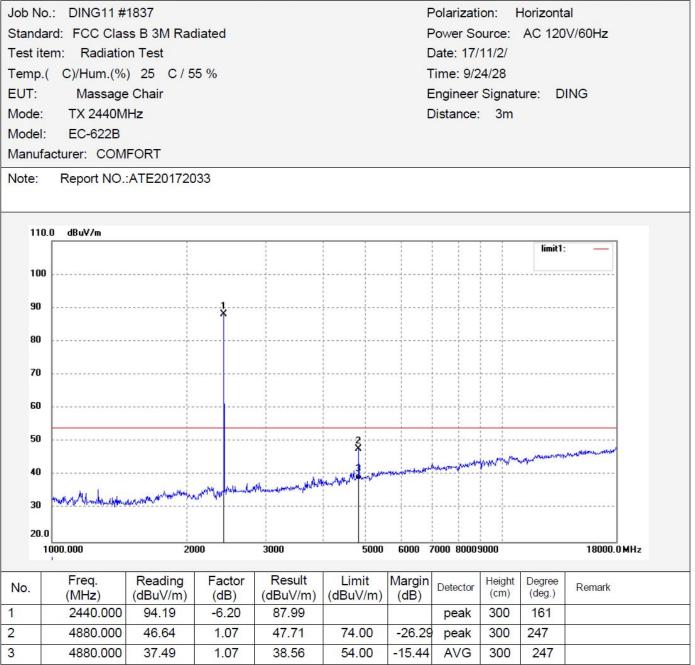
lob N	o.: JC #190			, ,			Polarizati		lorizonta	al
	ard: FCC Clas	s B 3M Rad	iated		Power Sc					
	em: Radiatio						Date: 201			
	.(C)/Hum.(%)			Time: 15:						
EUT:	Massge (Engineer		ure: st	ar
Aode:	and the second sec						Distance:			
Aodel	: EC-622B									
/anuf	acturer: COM	FORT								
lote:	Report NO.:	ATE201720	33							
70.	0 dBuV/m									
									limit1:	
60										
50										
50									-	
40							1	M M	IL ANY LUMPHA	MARK I
40					3		he will	I LAN		
30		2			AL WAR	Much	1 Dry Marrie	. Mail		, regard
30	1	LAN		l.	Mult H	, inv				
20	dime. All	Madanten .	Mark	MUN						
20	AN COUNTRY AND	W	MAN NAV	WWW H						
10										
0.0										
	30.000 40	50 60 70	80		i	30	0 400	500	600 70	0 1000.0 MHz
	From	Pooding	Factor	Popult	Limit	Margin		Llaight	Degree	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	34.6385	35.56	-10.39	25.17	40.00	-14.83	QP	100	248	
	55.8046	44.73	-13.10	31.63	40.00	-8.37	QP	100	14	5
	187.0956	48.48	-12.53	35.95	43.50	-7.55	QP	100	36	5
	443.2943	47.55	-5.44	42.11	46.00	-3.89	QP	100	125	
,	588.9050	44.72	-2.48	42.24	46.00	-3.76	QP	100	302	
6	810.2653	41.67	0.99	42.66	46.00	-3.34	QP	100	314	




Report No.: ATE20172033 Page 45 of 52

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China



F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

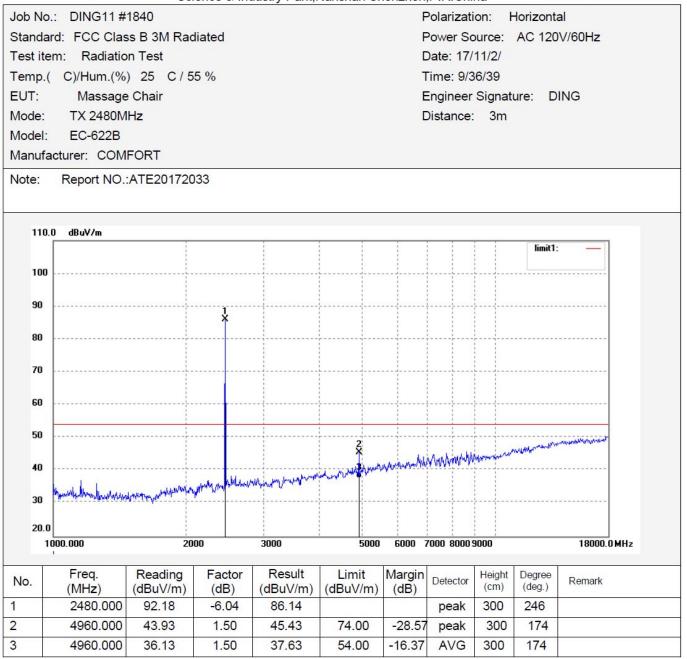
ATC ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

		SCI	ence & inc	dustry Park,I	vansnan Sn	enznen,	P.R.Chi	na	I ax	.+00-0700-2000338
ob No	o.: DING11 #	1838				F	Polarizati	on: ∖	/ertical	
Standa	ard: FCC Clas	ss B 3M Rad	liated			F	ower So	ource:	AC 120	V/60Hz
est ite	em: Radiatio	n Test				D)ate: 17/	11/2/		
emp.((C)/Hum.(%)) 25 C/5	5 %			Т	'ime: 9/2	7/28		
UT:	Massage	Chair				E	Ingineer	Signati	ure: D	ING
/lode:	TX 2440M	Hz				D	istance:	3m		
/lodel:	EC-622B									
/lanufa	acturer: COM	FORT								
lote:	Report NO.:	ATE201720)33							
110.	.0 dBuV/m								limit1:	_
100										
			1							
90			X							
80										
00										
70										
60										
50										
40 30	nothegas moderne providence	mahananang	un aller and the second	Manaparan	and the second second	www.	roomann	Www		/*************************************
20.0										
1	000.000	20	00	3000	5000	6000 7	000 8000 9	3000		18000.0 MHz
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Height	Degree	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)	
	2440.000	97.22	-6.20	91.02	=		peak	300	54	
	4880.000	46.48	1.07	47.55	74.00	-26.45		300	172	
	4880.000	39.76	1.07	40.83	54.00	-13.17	AVG	300	172	

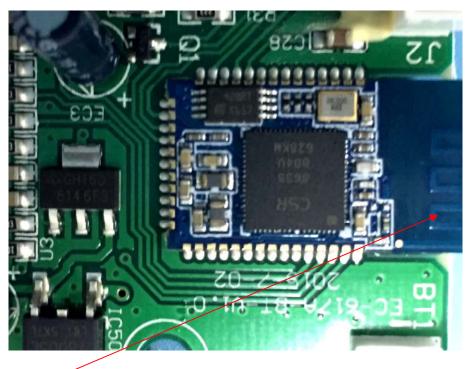
Report No.: ATE20172033 Page 50 of 52


ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

b No.	: DING11 #	NUMBER OF		austry Park,			olarizati		/ertical	
tanda	rd: FCC Clas	s B 3M Rad	liated			F	ower So	ource:	AC 120	V/60Hz
est ite	m: Radiatio	n Test				C	ate: 17/	11/2/		
emp.(C)/Hum.(%) 25 C/5	5 %			Т	ime: 9/3	35/24		
UT:	Massage					E	ngineer	Signat	ure: D	ING
lode:	TX 2480M						istance:	2		
lodel:	EC-622B									
lanufa	cturer: COM	FORT								
ote:	Report NO.	:ATE201720)33							
110.	0 dBu∀/m			-					limit1:	-
100										
			1							
90			****							
80										
70										
60										
					z					
50]				- Mananananananananananananananananananan	Knowline
40			www.herebench	man	normally another	Allapareneway	Newboline	ever and a second		
30	hid flow with how the way	Martha and the second			1 					
20.0										
	D00.000	20	00	3000	5000	6000 7	000 8000	9000		18000.0 MHz
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2480.000	97.74	-6.04	91.70			peak	300	111	
	4960.000	49.77	1.50	51.27	74.00	-22.73	peak	300	231	
				42.34	4	-11.66	AVG	2	231	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China


11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with external Antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2.0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna