Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature)..: File administrators Peter Xiao

Supervised by

(position+printed name+signature)..: Test Engineer Jenny Zeng

Approved by

(position+printed name+signature)..: Manager Simon Hu

Date of issue...... May.19, 2022

Representative Laboratory Name.: Shenzhen Global Test Service Co.,Ltd.

Street, Longgang District, Shenzhen, Guangdong, China

Street, Longgang District, Shelizhen, Guanguong, Chir

Applicant's name...... Hangzhou Meari Technology Co., Ltd.

Binjiang District, Hangzhou, zhejiang, China

Test specification:

FCC Part 15.247: Operation within the bands 902-928 MHz, 2400-

ANSI C63.10-2013

TRF Originator...... Shenzhen Global Test Service Co..Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description IP CAMERA

Trade Mark N/A

Manufacturer Hangzhou Meari Technology Co., Ltd.

Model/Type reference...... Speed 4S

Operation Frequency...... From 2412MHz to 2462MHz

Hardware Version SPEED4S-T3MB-MIS1-REV1 0

Rating DC 5.0V/1.0A by Adapter

Result..... PASS

Report No.: GTS20220418002-1-40 Page 2 of 62

TEST REPORT

Test Penert No :	GTS20220418002-1-40	May.19, 2022
Test Report No. :	G1020220410002-1-40	Date of issue

Equipment under Test : IP CAMERA

Model /Type : Speed 4S

Listed model : Speed 4T, Speed 6S, Speed 6T, WIFICI21CGY, LV-PWR3

Applicant : Hangzhou Meari Technology Co., Ltd.

Address Room 604-605, Building 1, No.768 Jianghong Road, Changhe street,

Binjiang District, Hangzhou, zhejiang, China

Manufacturer : Hangzhou Meari Technology Co., Ltd.

Address 4F of Building 1 and 2-4F of Building 2, No. 91 Chutian Road, Xixing

Street, Binjiang District, Hangzhou, Zhejiang, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	
2.1. General Remarks	5
2.2. Product Description	5
2.3. Equipment Under Test	6
2.4. Short description of the Equipment under Test (EUT)	6
2.5. EUT operation mode	6
2.6. Block Diagram of Test Setup	6
2.7. Related Submittal(s) / Grant (s)	7
2.8. EUT Exercise Software	7
2.9. Special Accessories	7
2.10. External I/O Cable	7
2.11. Modifications	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	8
3.3. Environmental conditions	8
3.4. Statement of the measurement uncertainty	8
3.5. Test Description	9
3.6. Equipments Used during the Test	10
4. TEST CONDITIONS AND RESULTS	11
4.1. AC Power Conducted Emission	11
4.2. Radiated Emission	16
4.3. Maximum Peak Output Power	26
4.4. Power Spectral Density	27
4.5. 6dB Bandwidth	30
4.6. Conducted Spurious Emissions and Band Edge Compliance of RF Emission	33
4.7. Antenna Requirement	44
5. TEST SETUP PHOTOS OF THE EUT	45
6 EXTERNAL AND INTERNAL PHOTOS OF THE FILT	48

Report No.: GTS20220418002-1-40 Page 4 of 62

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 DTS Meas Guidance v05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247. Report No.: GTS20220418002-1-40 Page 5 of 62

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		May.01, 2022
Testing commenced on	• •	May.01, 2022
Testing concluded on		May.18, 2022

2.2. Product Description

Product Name	IP CAMERA
Trade Mark	N/A
Model/Type reference	Speed 4S
List Models	Speed 4T, Speed 6S, Speed 6T, WIFICI21CGY, LV-PWR3
Model Declaration	PCB board, structure and internal of these model(s) are the same, Only the model name and Appearance different, So no additional models were tested; All models have two versions version A and version B, the two versions are only difference is the light board, and the Sensor matching circuit are different. The EMC part has been tested.
Power supply:	DC 5.0V/1.0A by Adapter
Sample ID	GTS20220418002-1-15#& GTS20220418002-1-16#& GTS20220418002-1-17#
WIFI(2.4G Band)	
Frequency Range	2412MHz ~ 2462MHz
Channel Spacing	5MHz
Channel Number 11 Channel for 20MHz bandwidth(2412~2462MHz) 7 channels for 40MHz bandwidth(2422~2452MHz)	
Modulation Type	802.11b: DSSS; 802.11g/n: OFDM
Antenna Description	FPC Antenna, 3,00dBi(Max.)

Report No.: GTS20220418002-1-40 Page 6 of 62

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 5.0V

2.4. Short description of the Equipment under Test (EUT)

This is a IP CAMERA.

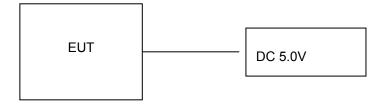
For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode

The application provider specific test software to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Antenna	Chain 0		Cha	Chain 1		
Bandwidth Mode	20MHz	40MHz	20MHz	40MHz	1	
IEEE 802.11b	Ø	d –				
IEEE 802.11g	Ø					
IEEE 802.11n	$\overline{\checkmark}$	V				


Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

The EUT has been tested under operating condition.

AC main conducted emission pre-test voltage at both AC 120V/60Hz and AC 240V/60Hz, recorded worst case; AC main conducted emission pre-test at charge from PC modes, recorded worst case;

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position. Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11g mode (MCH).

2.6. Block Diagram of Test Setup

Report No.: GTS20220418002-1-40 Page 7 of 62

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AG7C-SPEED4T** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (IPOP order) provided by application.

2.9. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN TIANYIN ELECTRONICS CO.,LTD.	Adapter	TPA-46B050100UU		SDOC
SHENZHEN GREENPOWERONE CO., LTD.	Adapter	GTA92-0501000US		SDOC

2.10. External I/O Cable

I/O Port Description Quantity		Cable
DC IN Port	1	1.0M, Unscreened Cable

2.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20220418002-1-40 Page 8 of 62

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong, China.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L8169)

Shenzhen Global Test Service Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2019 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA (Certificate No. 4758.01)

Shenzhen Global Test Service Co., Ltd. has been assessed by the American Association for Laboratory Accreditation (A2LA). Certificate No. 4758.01.

Industry Canada Registration Number. is 24189.

FCC Designation Number is CN1234.

FCC Registered Test Site Number is165725.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C		
Humidity:	30-60 %		
Atmospheric pressure:	950-1050mbar		

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Test Description

Applied Standard: FCC Part 15 Subpart C										
ISED Rules	Description of Test	Test Sample	Result	Remark						
1	On Time and Duty Cycle	GTS20220418002-1-15#	1	1						
§15.247(b)	Maximum Conducted Output Power	GTS20220418002-1-15#	Compliant	Note 1						
§15.247(e)	Power Spectral Density	GTS20220418002-1-15#	Compliant	Note 1						
§15.247(a)(2)	6dB Bandwidth	GTS20220418002-1-15#	Compliant	Note 1						
§2.1047	99% Occupied Bandwidth	1	N/A	N/A						
§15.209, §15.247(d)	Conducted Spurious Emissions and Band Edges Test	GTS20220418002-1-15#	Compliant	Note 1						
§15.209, §15.247(d)	Radiated Spurious Emissions	GTS20220418002-1-16# GTS20220418002-1-17#	Compliant	Note 1						
§15.205	Emissions at Restricted Band	GTS20220418002-1-16# GTS20220418002-1-17#	Compliant	Note 1						
§15.207(a)	AC Conducted Emissions	GTS20220418002-1-16#	Compliant	Note 1						
§15.203 §15.247(c)	Antenna Requirements	GTS20220418002-1-15#	Compliant	Note 1						
§15.247(i)§2.1091	RF Exposure	1	Compliant	Note 2						

Remark:

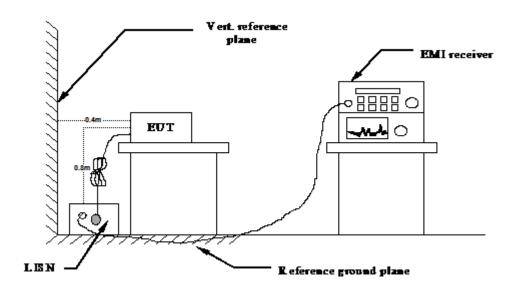
- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. Note 1 Test results inside test report;
- 4. Note 2 Test results in other test report (MPE Report).
- 5. We tested all test mode and recorded worst case in report

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10 th Harmonic	11n(40MHz)/OFDM	13.5Mbps	3/6/09
	11b/DSSS	1 Mbps	1/11
Dand Edua	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5Mbps	3/9

3.6. Equipments Used during the Test

	·		1		
Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	CYBERTEK	EM5040A	E1850400105	2021/07/17	2022/07/16
LISN	R&S	ESH2-Z5	893606/008	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESPI3	101841-cd	2021/07/17	2022/07/16
EMI Test Receiver	R&S	ESCI7	101102	2021/09/19	2022/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2021/09/19	2022/09/18
Spectrum Analyzer	R&S	FSV40	100019	2021/07/17	2022/07/16
Vector Signal generator	Agilent	N5181A	MY49060502	2021/07/17	2022/07/16
Signal generator	Agilent	N5182A	3610AO1069	2021/09/19	2022/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2021/09/19	2022/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2021/09/19	2022/09/18
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2021/09/19	2022/09/18
Bilog Antenna	Schwarzbeck	VULB9163	000976	2021/08/08	2022/08/07
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2021/09/19	2022/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2021/07/17	2022/07/16
Amplifier	Schwarzbeck	BBV9179	9719-025	2021/07/17	2022/07/16
Amplifier	EMCI	EMC051845B	980355	2021/07/17	2022/07/16
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2021/07/17	2022/07/16
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2021/07/17	2022/07/16
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2021/07/17	2022/07/16
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2021/07/17	2022/07/16
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2021/07/17	2022/07/16
Data acquisition card	Agilent	U2531A	TW53323507	2021/07/17	2022/07/16
Power Sensor	Agilent	U2021XA	MY5365004	2021/07/17	2022/07/16
Test Control Unit	Tonscend	JS0806-1	178060067	2021/07/17	2022/07/16
Automated filter bank	Tonscend	JS0806-F	19F8060177	2021/07/17	2022/07/16
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	1	1
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	1	1
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	1


Note: The Cal.Interval was one year.

Report No.: GTS20220418002-1-40 Page 11 of 62

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

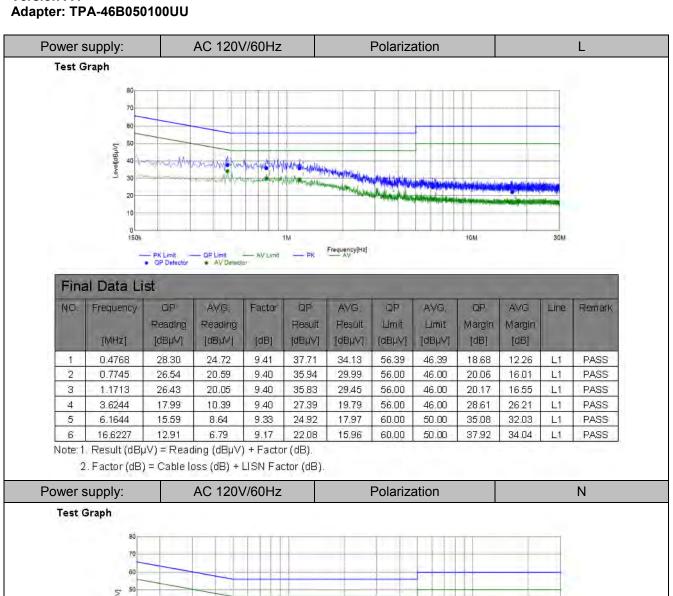
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013.
- 4 The EUT received DC 5V power, the adapter received AC120V/60Hz or AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

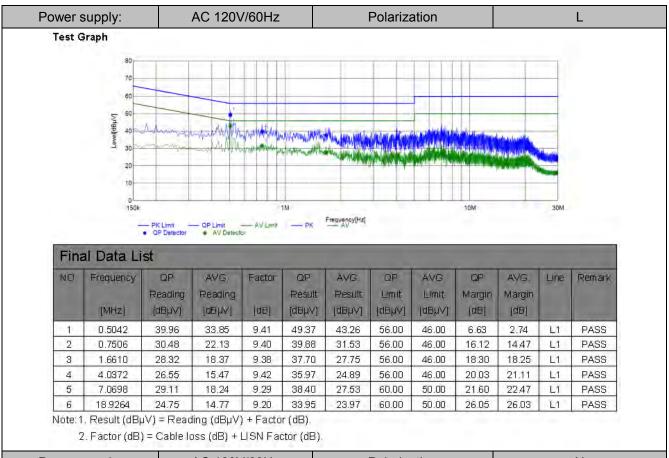
Eroquonov rango (MUz)	Limit (d	lBuV)				
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						


TEST RESULTS

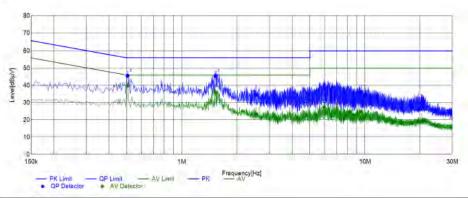
Remark: We measured Conducted Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode from 150 KHz to 30MHz in AC120V and the worst case was recorded.

Temperature	24 ℃	Humidity	55%
Test Engineer	Jenny Zeng	Configurations	IEEE 802.11g (MCH)

Report No.: GTS20220418002-1-40 Page 12 of 62


Version A:

	supply:	4	AC 120V	700112		'	Polariza	ation				N
Test (3raph											
	80 70 60 ≅ 50											
	2	MAN CONTRACT	WANTED TO THE STATE OF THE STAT	white this	H-InstAnilia	Market Land			-			
	20		Washington Company	"Tris-plan Marky	Chronical Chronical Marie	The same of the sa		PARTICIPATION TO THE				
	10											
	0 150k				1M				TOM		30M	
		PK Limit	OP Limit	— AV Limit		Frequency[Hz]			TOM		30M	
Fin			— CP Limit AV Desector	— AV Limit		Frequency[Hz]			10M		30M	
Fin	150k		OP Limit AV Destects AVG.	— AV Limit		Frequency[Hz]	QP	AVG.	10M	AVG.	30M	Remark
	al Data Li	ist		AV Limit	— PK	Ay	QP Limit [dBµV]	AVG: Limit [dBµV]		AVG Margin [dB]		Remark
	al Data Li	QP Reading	AVG. Reading	Factor	QP Result	AVG Result	Limit	Limit	QP Margin	Margin		Remark
NO.	al Data Li Frequency [MHz]	QP Reading [dBµV]	AVG Reading [dBµV]	Factor [dB]	QP Result [dBµV]	AVG Result	Limit [dBµ√]	Limit [dBµV]	QP Margin [dB]	Margin [dB]	Line	
NO.	al Data Li Frequency [MHz] 0.2092	QP Reading [dBµV] 28.92	AVG. Reading [dBpV] 21.51	Factor [dB]	QP Result [dBµV] 38,51	AVG Result [dBµV]	Limit [dBµ√] 63.24	Limit [dBµV] 53.24	QP Margin [dB]	Margin [dB] 22.14	Line N	PASS PASS
NO.	al Data Li Frequency [MHz] 0.2092 0.3350	QP Reading [dBµV] 28.92 27.15	AVG Reading [dBµV] 21.51 20.12	Factor [dB] 9.59 9.47	— PK	AVG. Result [dBµV] 31.10 29.59	Limit [dBµV] 63.24 59.33	Limit [dBµV] 53.24 49.33	QP Margin [dB] 24.73 22.71	Margin [dB] 22.14 19.74	Line N N	PASS
1 2 3	al Data Li Frequency [MHz] 0.2092 0.3350 0.5108	QP Reading dBµV 28.92 27.15 26.83	AVG Reading [dBµV] 21.51 20.12 18.90	Factor [dB] 9.59 9.47 9.40	QP Result [dBµV] 38.51 36.62 36.23	AVG: Result [dBµV] 31.10 29.59 28.30	Limit [dBµV] 63.24 59.33 56.00	Limit [dBµV] 53.24 49.33 46.00	QP Margin [dB] 24.73 22.71 19.77	Margin [dB] 22.14 19.74 17.70	Line N N	PASS PASS PASS

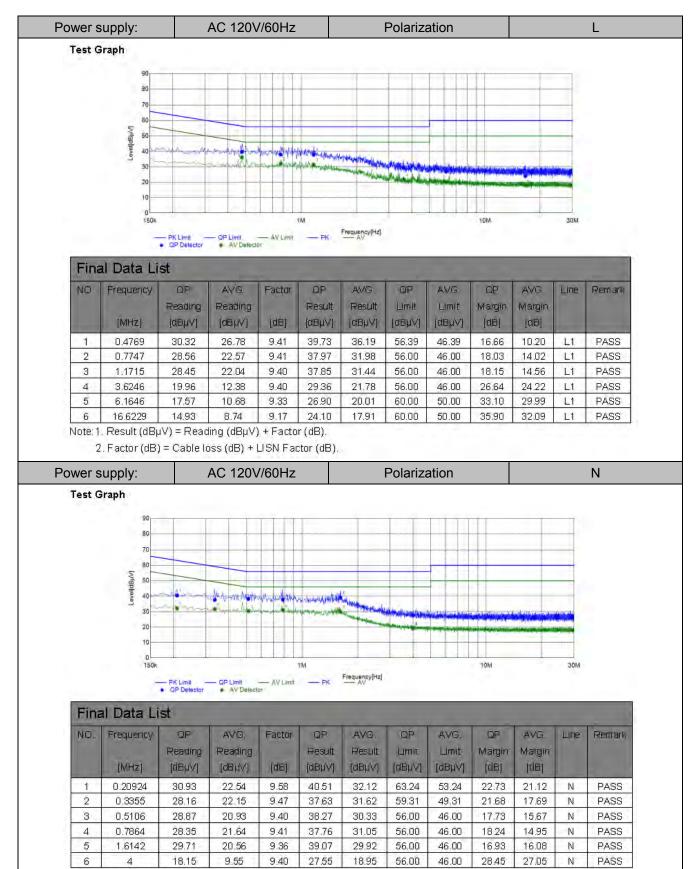

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Adapter: GTA92-0501000US

Power supply:	AC 120V/60Hz	Polarization	N
Test Granh	_	·	

Test Graph

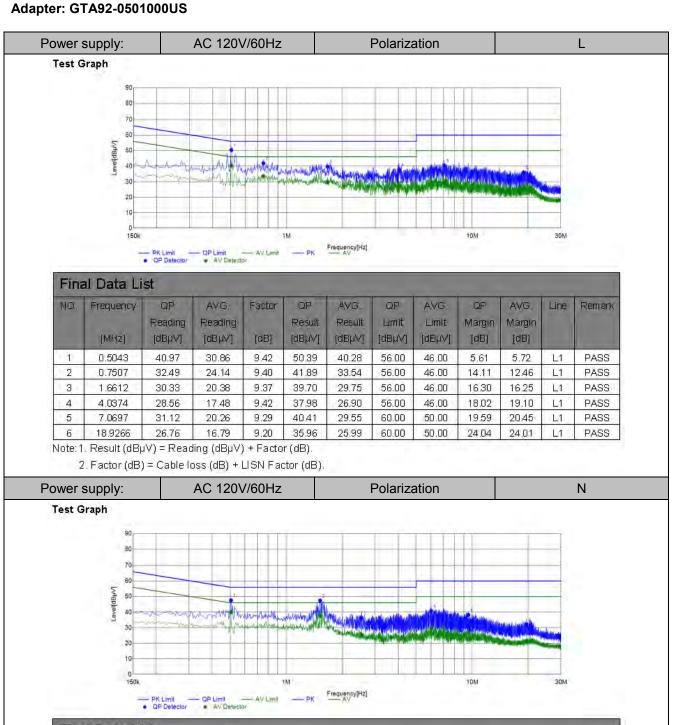
Fina	Final Data List											
NO.	Frequency [MHz]	QP Reading [dBµV]	AVG. Reading [dBµV]	Factor (dB)	QP Result (dBµ∀)	AVG. Result [dBµV]	QP Limit [dBµV]	.AVG. Limit (dBµV)	QP Margin [dB]	AVG. Margin [dB]	Line	Remark
1	19.5697	20.65	10.05	9.22	25.87	19.27	60.00	50.00	34.13	30.73	N	PASS
2	2.5391	25.01	14.15	9.34	34.35	23.49	56.00	46.00	21.65	22.51	N	PASS
3	9.5330	26.91	15.52	9.29	36.20	24.81	60.00	50.00	23.80	25.19	N	PASS
4	6.0115	29.51	17.84	9.32	38.83	27.16	60.00	50.00	21.17	22.84	N	PASS
5	1.5218	36.04	26.37	9.36	45.40	35.73	56.00	46.00	10.60	10.27	N	PASS
6	0.5050	36.22	30.52	9.40	45.62	39.92	56.00	46.00	10.38	6.08	N	PASS


Note: 1. Result ($dB\mu V$) = Reading ($dB\mu V$) + Factor (dB).

^{2.} Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Report No.: GTS20220418002-1-40 Page 14 of 62

Version B:


Adapter: TPA-46B050100UU

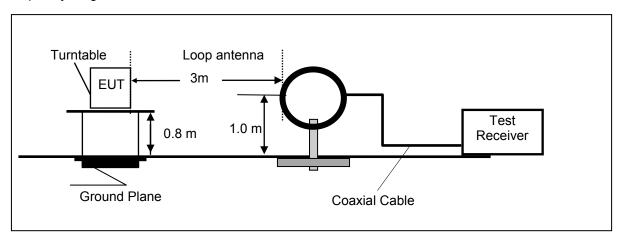
Note: 1. Result (dBµV) = Reading (dBµV) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

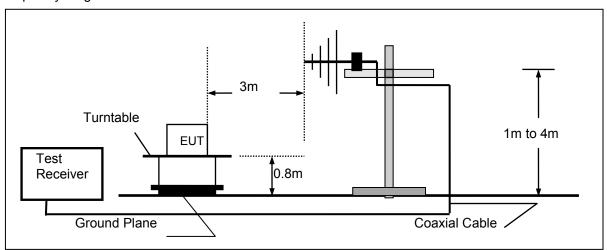
Report No.: GTS20220418002-1-40 Page 15 of 62

Final Data List												
NO.	Frequency [MHz]	QP Reading [dBµV]	AVG. Reading [dBµV]	Factor	QP Result [dBµV]	AVG Result [dBµV]	QP Limit [dBµV]	AVG. Limit [dBµV]	QF Margin [dB]	AVG Margin [dB]	Line	Remark
1	0.5054	38.23	30.54	9.40	47.63	39.94	56.00	46.00	8.37	6.06	N	PASS
2	1.5216	38.06	28.39	9.36	47.42	37.75	56.00	46.00	8.58	8.25	N	PASS
3	2.5395	27.03	16.17	9.34	36.37	25.51	56.00	46.00	19.63	20.49	N	PASS
4	6.0118	31.53	19.86	9.33	40.86	29.19	60.00	50.00	19.14	20.81	N	PASS
5	9.5334	28.93	17.54	9.29	38.22	26.83	60.00	50.00	21.78	23.17	N	PASS
6	19.5694	22.67	12.07	9.22	31.89	21.29	60.00	50.00	28.11	28.71	N	PASS

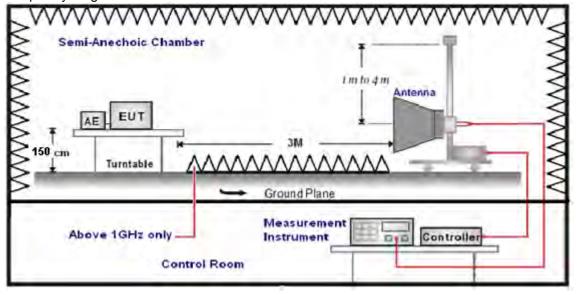
Note: 1. Result (dBµV) = Reading (dBµV) + Factor (dB).


2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Report No.: GTS20220418002-1-40 Page 16 of 62


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 30MHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 30MHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

Report No.: GTS20220418002-1-40 Page 18 of 62

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: We measured Radiated Emission at 802.11b/802.11g/802.11n HT20/802.11n HT40 mode from 30 MHz to 25GHz in AC120V and the worst case was recorded.

Temperature	24 ℃	Humidity	55%
Test Engineer	Jenny Zeng	Configurations	IEEE 802.11g (MCH)

For 9 KHz~30MHz

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

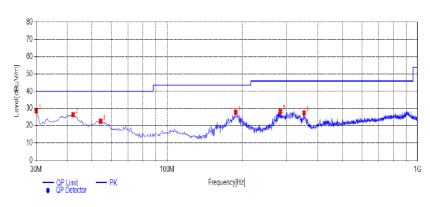
Report No.: GTS20220418002-1-40 Page 19 of 62

Version A:

Adapter: TPA-46B050100UU

For 30MHz-1GHz

Test Graph **Body Street Graph** **Test Grap

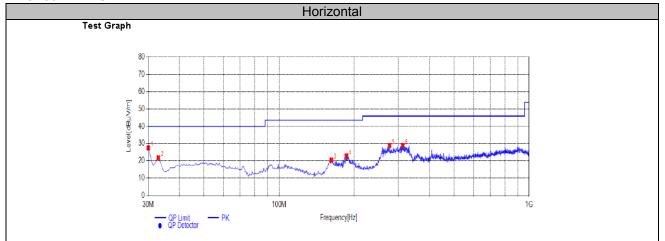

St	usp	ected Lis	st									
N	0.	Frequency [MHz]	Reading	Factor	Result	⊔mit	Margin	Height	Angle	Detector	Polarity	Remark
		[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
	1	30.0000	39.08	-11.50	27.58	40.00	12.42	100	119	PK	Horizonta	PASS
2	2	32.9100	32.88	-11.02	21.86	40.00	18.14	100	67	PK	Horizonta	PASS
3	3	71.7100	29.75	-11.10	18.65	40.00	21.35	100	128	PK	Horizonta	PASS
	1	193.9300	30.60	-9.43	21.17	43.50	22.33	100	112	PK	Horizonta	PASS
	5	278.8050	38.24	-7.73	30.51	46.00	15.49	100	257	PK	Horizonta	PASS
6	6	324.3950	36.79	-6.60	30.19	46.00	15.81	100	115	PK	Horizonta	PASS

Note: 1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB).

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Test Graph

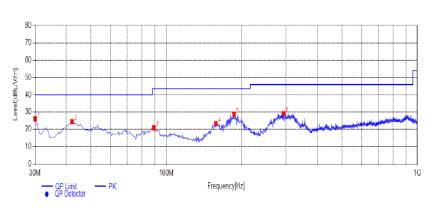

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	⊔mit	Margin	Height	Angle	Detector	Polarity	Remark
	, ,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	40.12	-11.50	28.62	40.00	11.38	100	238	PK	Vertical	PASS
2	42.1250	34.41	-8.01	26.40	40.00	13.60	100	9	PK	Vertical	PASS
3	54.2500	29.79	-7.15	22.64	40.00	17.36	100	357	PK	Vertical	PASS
4	188.1100	37.76	-9.91	27.85	43.50	15.65	100	38	PK	Vertical	PASS
5	283.6550	35.81	-7.52	28.29	46.00	17.71	100	138	PK	Vertical	PASS
6	352.5250	32.94	-5.46	27.48	46.00	18.52	100	131	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20220418002-1-40 Page 20 of 62

Adapter: GTA92-0501000US

For 30MHz-1GHz


Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	∟imit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	38.97	-11.50	27.47	40.00	12.53	100	136	PK	Horizonta	PASS
2	32.9100	32.80	-11.02	21.78	40.00	18.22	100	358	PK	Horizonta	PASS
3	161.9200	31.80	-11.36	20.44	43.50	23.06	100	119	PK	Horizonta	PASS
4	186.1700	33.04	-10.20	22.84	43.50	20.66	100	84	PK	Horizonta	PASS
5	276.8650	36.67	-7.82	28.85	46.00	17.15	100	251	PK	Horizonta	PASS
6	312.7550	35.68	-6.81	28.87	46.00	17.13	100	97	PK	Horizonta	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Test Graph

Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	∟imit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	37.60	-11.50	26.10	40.00	13.90	100	145	PK	Vertical	PASS
2	42.1250	32.47	-8.01	24.46	40.00	15.54	100	87	PK	Vertical	PASS
3	89.1700	31.48	-10.55	20.93	43.50	22.57	100	258	PK	Vertical	PASS
4	157.5550	35.54	-12.13	23.41	43.50	20.09	100	35	PK	Vertical	PASS
5	186.1700	38.87	-10.20	28.67	43.50	14.83	100	2	PK	Vertical	PASS
6	292.8700	36.21	-7.11	29.10	46.00	16.90	100	80	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20220418002-1-40 Page 21 of 62

Version B:

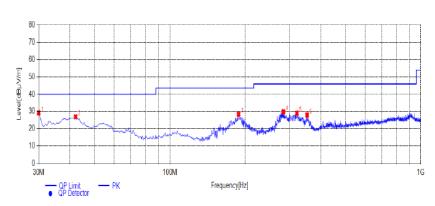
Adapter: TPA-46B050100UU

For 30MHz-1GHz

Test Graph **Test Graph** **

Susp	ected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	⊔mit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	39.58	-11.50	28.08	40.00	11.92	100	119	PK	Horizonta	PASS
2	49.8850	26.98	-6.66	20.32	40.00	19.68	100	234	PK	Horizonta	PASS
3	71.7100	30.25	-11.10	19.15	40.00	20.85	100	128	PK	Horizonta	PASS
4	193.9300	31.10	-9.43	21.67	43.50	21.83	100	112	PK	Horizonta	PASS
5	278.8050	39.74	-7.73	32.01	46.00	13.99	100	257	PK	Horizonta	PASS
6	408.3000	32.94	-4.40	28.54	46.00	17.46	100	99	PK	Horizonta	PASS

Frequency[Hz]

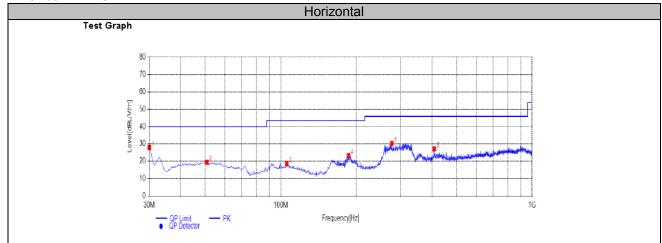

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

QP Limit
 QP Detector

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical

Test Graph

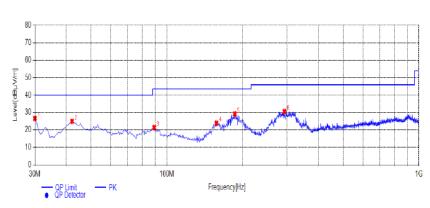

Susp	pected Lis	st									
NO.	Frequency [MHz]	Reading	Factor	Result	⊔mit	Margin	Height	Angle	Detector	Polarity	Remark
		[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	40.62	-11.50	29.12	40.00	10.88	100	238	PK	Vertical	PASS
2	42.1250	34.91	-8.01	26.90	40.00	13.10	100	9	PK	Vertical	PASS
3	188.1100	38.26	-9.91	28.35	43.50	15.15	100	38	PK	Vertical	PASS
4	283.6550	37.31	-7.52	29.79	46.00	16.21	100	138	PK	Vertical	PASS
5	321.0000	35.55	-6.55	29.00	46.00	17.00	100	212	PK	Vertical	PASS
6	352.5250	33.44	-5.46	27.98	46.00	18.02	100	131	PK	Vertical	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

Report No.: GTS20220418002-1-40 Page 22 of 62

Adapter: GTA92-0501000US

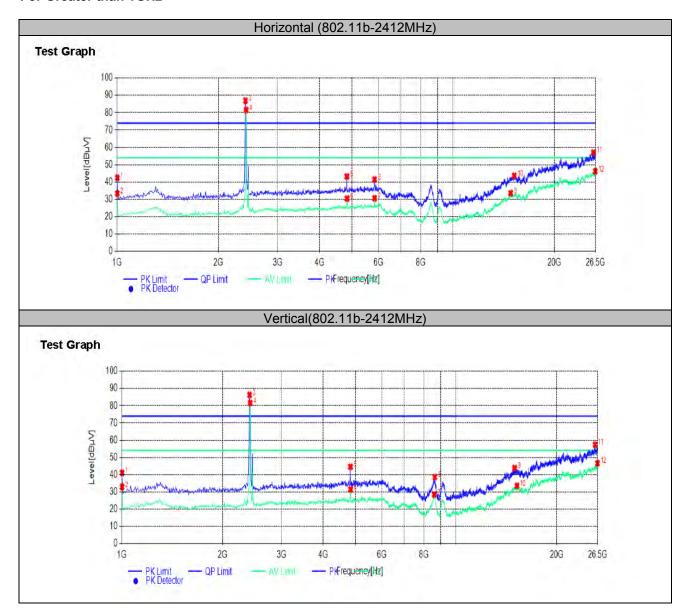
For 30MHz-1GHz

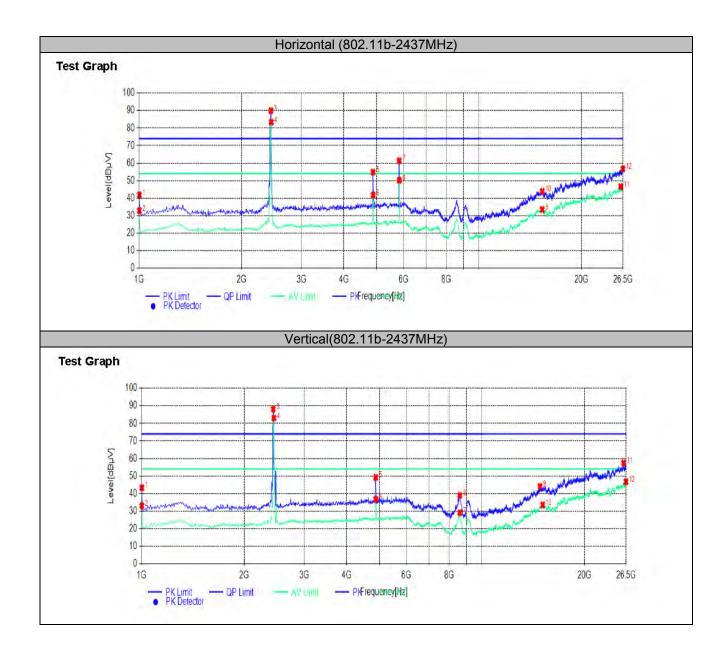

	Susp	ected Lis	st									
	NO.	Frequency [MHz]	Reading	Factor	Result	⊔mit	Margin	Height	Angle	Detector	Polarity	Remark
		,	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
L	1	30.0000	39.47	-11.50	27.97	40.00	12.03	100	136	PK	Horizonta	PASS
L	2	50.8550	26.03	-6.55	19.48	40.00	20.52	100	107	PK	Horizonta	PASS
L	3	105.6600	26.76	-8.11	18.65	43.50	24.85	100	306	PK	Horizonta	PASS
L	4	186.1700	33.54	-10.20	23.34	43.50	20.16	100	84	PK	Horizonta	PASS
L	5	276.8650	38.17	-7.82	30.35	46.00	15.65	100	251	PK	Horizonta	PASS
L	6	408.3000	31.56	-4.40	27.16	46.00	18.84	100	100	PK	Horizonta	PASS

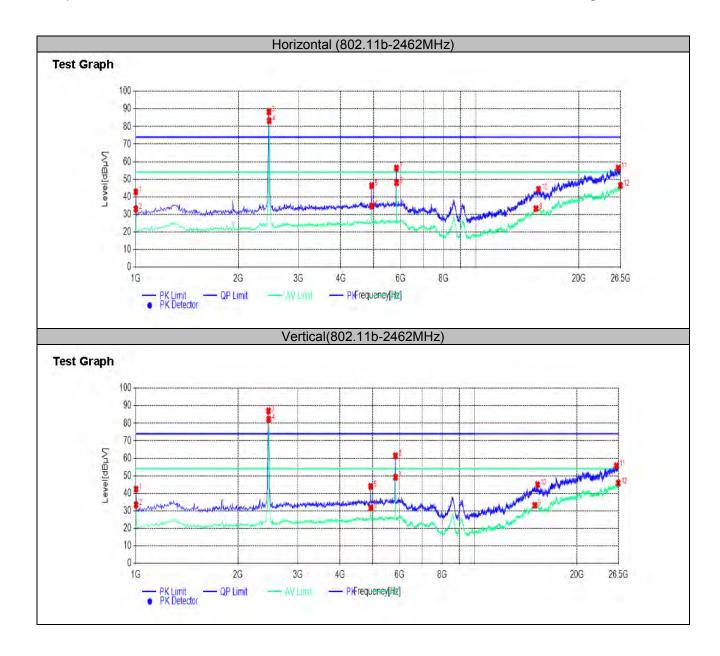
Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Vertical


Test Graph




Susp	Suspected List										
NO.	Frequency [MHz]	Reading	Factor	Result	∟imit	Margin	Height	Angle	Detector	Polarity	Remark
	[]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]			
1	30.0000	38.10	-11.50	26.60	40.00	13.40	100	145	PK	Vertical	PASS
2	42.1250	32.97	-8.01	24.96	40.00	15.04	100	87	PK	Vertical	PASS
3	89.1700	31.98	-10.55	21.43	43.50	22.07	100	258	PK	Vertical	PASS
4	157.5550	36.04	-12.13	23.91	43.50	19.59	100	35	PK	Vertical	PASS
5	186.1700	39.37	-10.20	29.17	43.50	14.33	100	2	PK	Vertical	PASS
6	292.8700	37.71	-7.11	30.60	46.00	15.40	100	80	PK	Vertical	PASS

Note: 1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

For Greater than 1GHz

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Note: All modes for both Variants (A and B) have been tested and only the worst case mode have been recorded in this report.

The mode with the highest output power and the mode with the highest output power spectral density for each modulation family and variant (A and B) was determined and used for the worst case test.

Report No.: GTS20220418002-1-40 Page 26 of 62

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

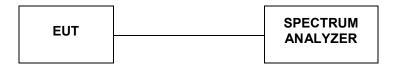
According to KDB558074 D01 15.247 Measurement Guidance v05r02 Section 8.3.1 Maximum peak conducted output power, 8.3.1.3 The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

LIMIT

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Temperature	23.4℃	Humidity	52.7%	
Test Engineer	Jenny Zeng	Configurations	IEEE 802.11b/g/n	


Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	19.71		Pass
802.11b	06	19.44	30.00	
	11	19.89		
	01	20.70		Pass
802.11g	06	20.37	30.00	
	11	20.84		
	01	20.74		Pass
802.11n(HT20)	06	20.42	30.00	
	11	20.76		
	03	20.05		Pass
802.11n(HT40)	06	20.04	30.00	
	09	20.08		

Note: 1.The test results including the cable lose. Duty cycle used in all test items: 100%

Report No.: GTS20220418002-1-40 Page 27 of 62

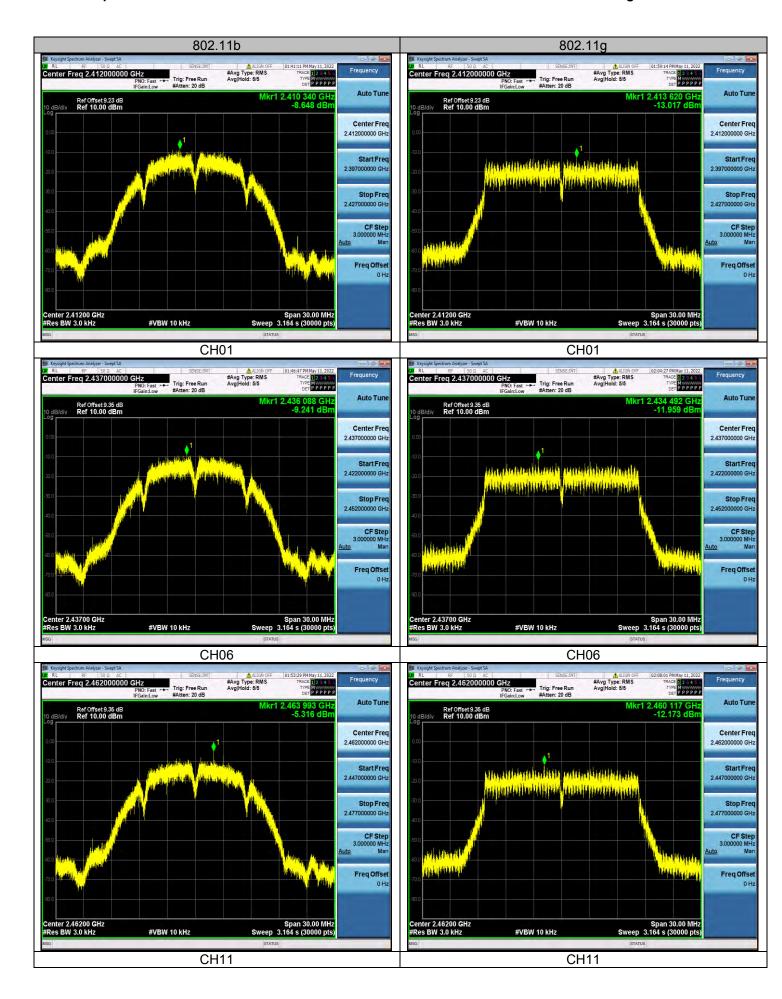
4.4. Power Spectral Density

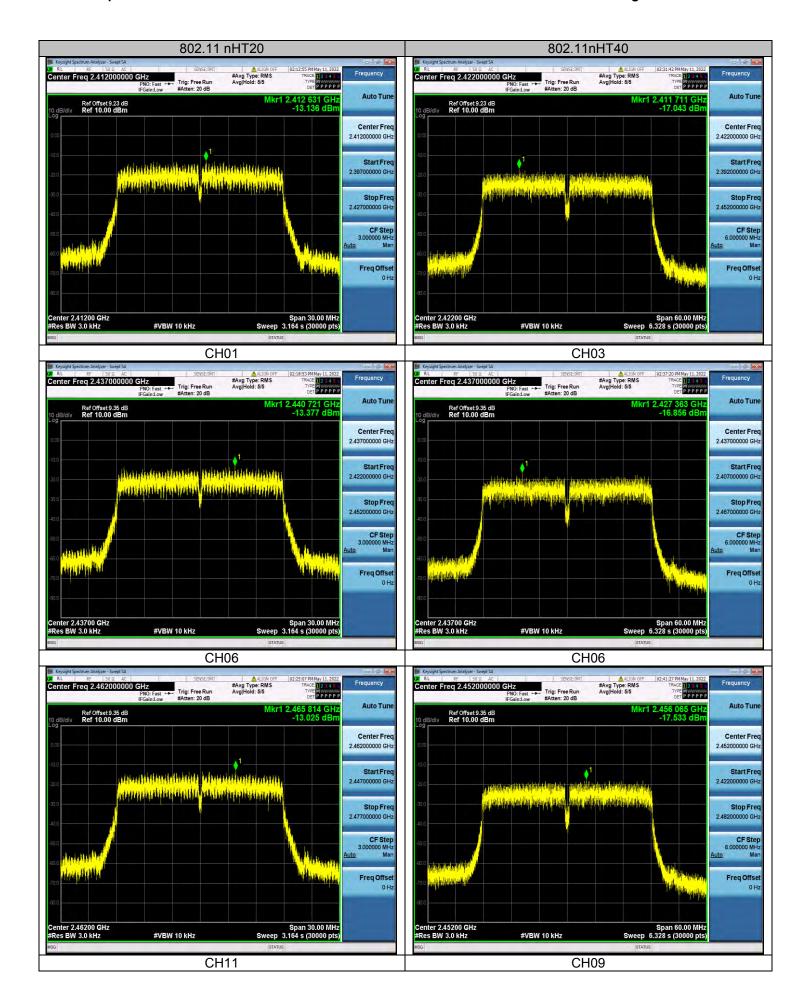
TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 Method PKPSD (peak PSD) This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

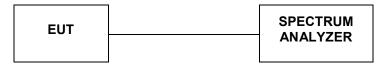

LIMIT


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Temperature	23.4℃	Humidity	52.7%
Test Engineer	Jenny Zeng	Configurations	IEEE 802.11b/g/n

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
	01	-8.65		Pass	
802.11b	06	-9.24	8.00		
	11	-5.32			
	01	-13.02		Pass	
802.11g	06	-11.96	8.00		
	11	-12.17			
	01	-13.14		Pass	
802.11n(HT20)	06	-13.38	8.00		
	11	-13.03			
	03	-17.04			
802.11n(HT40)	06	-16.86	8.00	Pass	
	09	-17.53			



Report No.: GTS20220418002-1-40 Page 30 of 62

4.5. 6dB Bandwidth

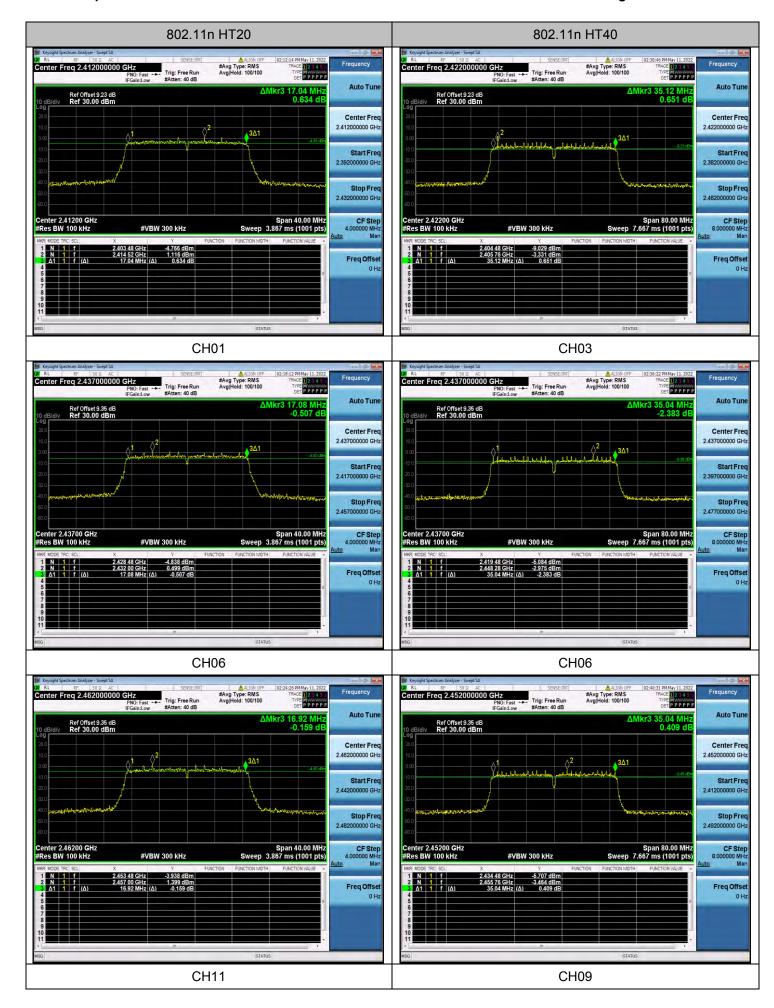
TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT


For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

TEST RESULTS

Temperature	23.4℃	Humidity	52.7%
Test Engineer	Jenny Zeng	Configurations	IEEE 802.11b/g/n

Type	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.080		Pass
802.11b	06	9.120	≥500	
	11	9.560		
	01	16.320		
802.11g	06	16.320	≥500	Pass
	11	16.320		
	01	17.040		Pass
802.11nHT20	06	17.080	≥500	
	11	16.920		
	03	35.120		
802.11nHT40	06	35.040	≥500	Pass
	09	35.040		

