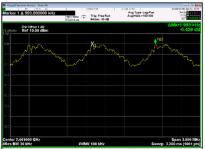



8.6 TEST RESULTS


	TX Mode_1Mbps						
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result			
CH00	2402	1.002	>(25KHz or 2/3*20dB Bandwidth)	PASS			
CH39	2441	0.993	>(25KHz or 2/3*20dB Bandwidth)	PASS			
CH78	2480	0.996	>(25KHz or 2/3*20dB Bandwidth)	PASS			

TX Mode_3Mbps						
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result		
CH00	2402	1.005	>(25KHz or 2/3*20dB Bandwidth)	PASS		
CH39	2441	1.002	>(25KHz or 2/3 [*] 20dB Bandwidth)	PASS		
CH78	2480	0.840	>(25KHz or 2/3*20dB Bandwidth)	PASS		

9BANDWIDTH TEST

9.1LIMIT

FCC Part15, Subpart C (15.247)				
Section Test Item				
15.247(a)(1)	Bandwidth			

9.2TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30 kHz, VBW=100 kHz, Sweep Time = Auto.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth
RBW	30kHz
VBW	100kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

9.4TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

TX Mode_1Mbps						
Channel	Frequency	20dB Bandwidth	99 % Emission Bandwidth	Result		
	(MHz)	(MHz)	(MHz)			
CH00	2402	0.882	0.8678	PASS		
CH39	2441	0.924	0.8697	PASS		
CH78	2480	0.926	0.8688	PASS		

2402MHz

2441MHz

2480MHz

Report No.: 24EFSS11090 02791

TX Mode_3Mbps						
Channel	Frequency	20dB Bandwidth	99 % Emission Bandwidth	Result		
	(MHz)	(MHz)	(MHz)			
CH00	2402	1.225	1.1405	PASS		
CH39	2441	1.227	1.1408	PASS		
CH78	2480	1.227	1.1423	PASS		

2402MHz

2441MHz

2480MHz

 Kopsight Spectrum Analysis - Occupied BA RL R^S 50.0 AC 		Center Freg: 2.441000000	a a/to GHz	66-43-15 FPC an 12, 20 Radio Std: None
	AfGuinLow	Trig: Free Run #Atten: 30 dB	Avg(Hold:>10/10	Radio Device: BTS
10 dB/dlv Ref 10.00 dBm				
0.00		A A.A		
10.0	1		m -	
20	1		<u>\</u>	
	1			
man	·		~	man an
ລາ				
d11				
Center 2.441 GHz				Span 3 Mi
eRes BW 30 kHz		#VBW 100 kHz		Sweep 3.2 n
Occupied Bandwidt	h	Total Power	8.86 dBm	
1.	1408 MHz			
Transmit Freq Error	-32.684 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	1.227 MHz	x dB	-20.00 dB	

~~~~		~~~~~
~~~~		~~~~
		~~~~
		~~~~
eVBW 100 ki	Hz	Span 3 M Sweep 3.2 n
Total Power	8.76 dBm	
Hz x dB	-20.00 dB	
	IZ Hz % of OBW Powe	IZ Hz % of OBW Power 99.00 %

10MAXIMUM OUTPUT POWER

10.1LIMIT

FCC Part15 , Subpart C (15.247)					
Section Test Item Limit					
15.247(a)(1) Maximum Output Power 0.125Watt or 21dBm					

Note:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB band width of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

10.2TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

10.3MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

10.4TEST SETUP

EUT	SPECTRUM	Ī
	ANALYZER	

10.5EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

TX Mode_1Mbps							
Channel	Frequency	Output Power	Output Power	Result			
Channel	(MHz)	(dBm)	(W)	Result			
CH00	2402	2.438	0.001753	PASS			
CH39	2441	2.094	0.001620	PASS			
CH78	2480	1.905	0.001551	PASS			
Limit	21dBm /0.125W						

CH00

CH39

CH78

Kopsight Spectrum Amaguan Securit SA		e 3 👪	Koyvight Spectrum Analysis - Sweet SA			e 3 163	Koysight Spectrum Analyse: Secret SA			e 3 🕰
Marker 1 2.401769000000 GHz		A.35k A/TO 09 35 25 FM Der 36, 3524 Avg Type: Log-Pwr 15k 26 PL 154 26 26 27 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Marker 1 2,440955000000	SENGESVIT	Avg Type: Log-Pwr Avg Hold: 100/100	09:33:35 FM Dec 20, 2024 19400 1 2 24 4 10 1	Marker 1 2.479892000000 G	SENSE OVT	Avg Type: Log-Par Avg Hold: 100100	09:33:04 FM Det 20, 2024
	PRO: Love Trig: Free Run IFGainLove #Atten: 30 dB	AvgHold: 100/100 Tirts Hardon		PND: Event Trig: Free Run If CainLow #Atten: 30 dB	Avg/Hold: 100/100	TYPE H WAAWAA		PRO: Lost Trig: Free Run (Coint.ow #Atter: 30 dB	Avg/Hold: 100/100	TITE H MANDAW
	Il Gani,Low Avenue, 27 68	Mkr1 2.401 769 GHz		E Gamboo Avena, aven		kr1 2.440 955 GHz		Il GamiLou Avenue, aven		kr1 2.479 892 GHz
10 dB/die Ref 10.00 dBm		2.438 dBm	10 dlUdie Ref 10.00 dBm			2.094 dBm	10 dil\die Ref 0ffset 1 dB Ref 10.00 dBm			1.905 dBm
	↓ ¹		C00	↓ ¹				↓ ¹		
0.00			0.00				0.00			
-13.3			-13.7				-13.3			
-23.0			-23.5				-20.0			
30.2			20.0				20.3			
-0.1			-0.1				-(1)			
-93			433				-53.2			
ຄວ			600				60.0			
							211			
-83.5			-85.5				-83.5			
Center 2.402000 GHz #Res BW 3.0 MHz	#VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz	#VBW 8.0 MHz	Sive	Span 3.000 MHz p 1.000 ms (1001 pts)	Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 8.0 MHz	Sive	Span 3.000 MHz ep 1.000 ms (1001 pts)
vsc		573795	V56		20705		vsc		\$7,57,6	

TX Mode_2Mbps							
Channel	Frequency	Output Power	Output Power	Result			
	(MHz)	(dBm)	(W)	Result			
CH00	2402	3.110	0.002046	PASS			
CH39	2441	2.881	0.001941	PASS			
CH78	2480	2.577	0.001810	PASS			
Limit	21dBm /0.125W						

CH00

CH39

CH78

Koyojet Sputner Anajour Sensi SA R R R R R Sessi SA Marker 1 2:4020120000000 GHz PRD Law PRD Law	SPIGESHT ALSH ALTO Avg Type: Log-Pwr Trig: Free Run Avg/Hold: 100/100 KAtter: 30 dB	09/35/95 FM Bet 20, 2024	III Koviet Sectore Anger: Sect SA Sector Anger: Sect SA Sector Anger: Sector SA III A 86 26.0 AC Marker: 1 2:4409910000000 GHz Marker: 37.00 France If Katalise Katalise Katalise	3.356 Julto 69.36 60 Febra 26, 2024 Ang Type: Log-Pair Fixed 10 FE 10 F AvgType: Log-Pair Fixed 10 FE 10 F AvgType: Log-Pair Fixed 10 FE 10 F AvgType: Log-Pair Fixed 10 F	Im Spright Sections Analysis Section Section Section Im R BP 26.5 AC Section Section Marker 1.2.4800095000000 GHz FRCL Leat	A 20% A/TO 002/45 Firlder 25, 2024 Avg Type: Log-Par 196/27 Birlder 25, 2024 Avg/Held: 100/100 017
Ref Offset 1 dB		Mkr1 2.402 012 GHz 3.110 dBm	Ref Offset 1 dB	Mkr1 2.440 991 GHz 2.881 dBm	Ref Offset 1 dB 10 clludie Ref 10.00 dBm	Mkr1 2.480 099 GHz 2.577 dBm
	¢1					
			.113		-112	
-23.5			-22.5		-222	
222			20.5		20.0	
4.1			-01		-0.1	
<u>م</u>			45.2		£)	
655			653		63.0	
411			911 		(1)	
1335						
Center 2.402000 GHz #Res BW 3.0 MHz #VE		Span 3.000 MHz eep 1.000 ms (1001 pts)	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)	Center 2,480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 3.000 MHz Sweep 1.000 ms (1001 pts)
¥56	57×735		V56	\$7.7US	V56	57,4705

TX Mode_3Mbps							
Channel	Frequency	Output Power	Output Power	Result			
	(MHz)	(dBm)	(W)	Result			
CH00	2402	3.367	0.002171	PASS			
CH39	2441	3.135	0.002058	PASS			
CH78	2480	2.843	0.001924	PASS			
Limit	21dBm /0.125W						

CH00

CH39

CH78 Mar Mar Avg Type: Log-Par Avg Hold: 100/100 Avg Type: Log-Pwr Avg Hold: 100100 Avg Type: Log-Pwr AvgHold: 100/100 -Trig: Free Run Trig: Free Run Trig: Free Run tef Offset 1 dB Ref Offset 1 dB Ref Offset 1 dB Ref 10.00 dE Span 3.000 Center 2.441000 G #Res BW 3.0 MHz Span 3.0 1.000 ms (10 Span 3.000 1.000 ms (100 Center 2.480000 #Res BW 3.0 MH

11CONDUCTED SPURIOUS EMISSION

11.1LIMIT

For FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

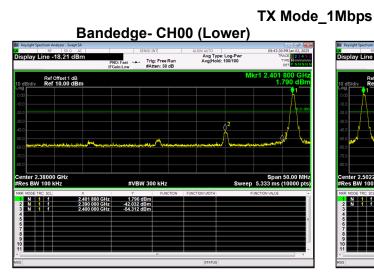
11.2TEST PROCEDURE AND SETTING

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100 kHz, VBW=300 kHz, Sweep time = Auto.

11.3MEASUREMENT INSTRUMENTS LIST

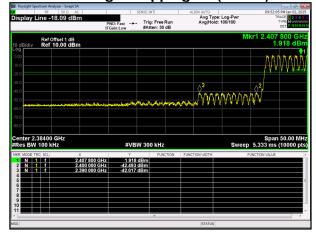
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum analyzer	KEYSIGHT	N9010A	MY55150427	2025/05/22
2	Attenuator	Mini-Circuits	BW-S10W2	101109	N/A
3	RF Cable	Mi-cable	C10-01-01-1	100309	N/A

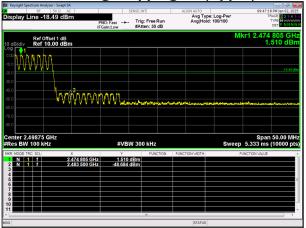
11.4TEST SETUP



11.5EUT OPERATION CONDITIONS

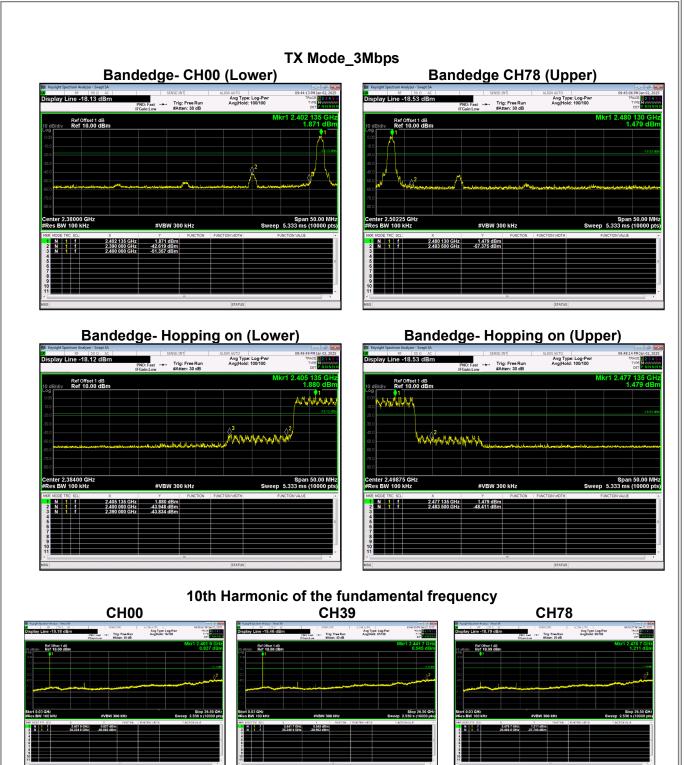
The EUT tested system was configured as the statements of 4.5 unless otherwise a special operating condition is specified in the follows during the testing.





Banchedge CH78 (Upper)

Bandedge- Hopping on (Lower)


BandedgeHopping on (Upper)

10th Harmonic of the fundamental frequency

END OF TEST REPORT