

Test Report # 318065F

Equipment Under Test:

Lumina RF Wall Switch

Lumina RF Wireless Load Control 20A Switching Relay

Test Date(s): 12/17/18

Dmitriy Moskovkin

Leviton Manufacturing Co., Inc.

Prepared for: Energy Management, Controls and Automation (EMC&A)

20497 SW Teton Avenue

Tualatin, OR 97062

Report Issued by: Shane Dock, EMC Engineer

Signature:

Date: 3/24/2020

Report Reviewed by: Adam Alger, Quality Manager

Signature: Adam O My Date: 3/6/2020

Report Constructed by: Shane Dock, EMC Engineer

Signature:

Date: 3/21/2019

This test report may not be reproduced, except in full, without written approval of Laird Technologies, Inc.

Company: Leviton Manufacturing Co., Inc.

Report: 318065F

Job: C-2944

Page **1** of **12**

Name: See Section 2

Model: See Section 2

Serial: Engineering Sample

CONTENTS

Conter	nts	2
Laird	d Technologies Test Services in Review	3
1 Te	est Report Summary	4
2 CI	ient Information	5
2.1	Equipment Under Test (EUT) Information	5
2.2	Product Description	5
2.3	Modifications Incorporated for Compliance	5
2.4	Deviations and Exclusions from Test Specifications	5
2.5	Additional Information – ZS057-D0Z, ZS057-30Z	Error! Bookmark not defined.
2.6	Additional Information – ZS10S-D0Z	6
3 R	eferences	6
4 U	ncertainty Summary	7
5 Te	est Data	8
5.1	Fundamental Emission – ZS057-D0Z, ZS057-30Z	Error! Bookmark not defined.
5.2	Fundamental Emission – ZS10S-D0Z	8
6 Ex	cclusion Calculation	10
6.1	FCC	10
6.2	Industry Canada	11
7 R	evision History	12

Laird Technologies Test Services in Review

The Laird Technologies, Inc. laboratory located at W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA is recognized through the following organizations:

A2LA – American Association for Laboratory Accreditation

Accreditation based on ISO/IEC 17025: 2005 with Electrical (EMC) Scope

A2LA Certificate Number: 1255.01

Scope of accreditation includes all test methods listed herein, unless otherwise noted.

Federal Communications Commission (FCC) - USA

Accredited recognition of two 3 meter Semi-Anechoic Chambers

Accredited Test Firm Registration Number: 953492

Innovation, Science and Economic Development Canada

ISED Site listing of two 3 meter Semi-Anechoic Chambers based on RSS-GEN – Issue 4

File Number: IC 3088A-2 File Number: IC 3088A-3

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2
Report: 318065C	Page 3 of 12	Model: See Section 2
Joh: C-2944		Serial: Engineering Sample

1 Test Report Summary

During **12/17/18** the Equipment Under Test (EUT), **Various EUT's (See Section 2)**, as provided by **Leviton Manufacturing Co., Inc.** was tested to the following requirements:

Requirement	Description	Specification	Method	Result
FCC Part 1.1307, 2.1091, 2.1093	RF Exposure and equipment authorization requirements	Reported	FCC KDB 447498	Reported
ISED Canada RSS-102	Radiofrequency Radiation Exposure Evaluation: Portable	Reported	RSS-102 Section 2.5.2	Reported

Notice:

The results relate only to the item tested and described in this report. Any modifications made to the equipment under test after the specified test date(s) may invalidate the data herein.

If the resulting measurement margin is seen to be within the uncertainty value, as listed in this report, the possibility exists that this unit may not meet the required limit specification if subsequently tested.

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2	
Report: 318065C	Page 4 of 12	Model: See Section 2	
Job: C-2944		Serial: Engineering Sample	

2 CLIENT INFORMATION

Company Name	Leviton Manufacturing Co., Inc.
Contact Person	Dmitriy Moskovkin
Address	20497 SW Teton Ave Tualatin, OR 97062

2.1 Equipment Under Test (EUT) Information

The following information has been supplied by the client

Product Name	Lumina RF Wall Switch Lumina RF Wireless Load Control 20A Switching Relay
Model Number	ZS10S-D0Z LU20S-DNW
Serial Number	Engineering Sample
FCC/IC Number	FCC: QGH-B167602 IC: 2473A-B167602

2.2 Product Description

ZS10S-D0Z: Zigbee 2.4GHz Decora Digital Wall Station with switch. 50/60Hz, 10A Load. Load Controller Switching Relay 50/60Hz, 10-20A Load.

2.3 Modifications Incorporated for Compliance

None noted at time of test

2.4 Deviations and Exclusions from Test Specifications

None noted at time of test

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2	
Report: 318065C	Page 5 of 12	Model: See Section 2	
Job: C-2944		Serial: Engineering Sample	

2.5 Additional Information – ZS10S-D0Z, LU20S-DNW

Channels tested are 11, 18, 24 and 25. The full power channels (designated as Low [11], Mid [18], High [24]) have a power setting of 20, with channel 25 at a power setting of 14. EUT programmed with Simplicity Studio through a serial connection. This unit uses 277VAC, 60 Hz. In addition, a load controller (ZS10S-D0Z) was also tested, which features a different enclosure.

Low - Channel 11 - 2405 MHz

Mid – Channel 18 – 2440 MHz

High - Channel 24 - 2470 MHz

Channel 25 - 2475 MHz

3 REFERENCES

Publication	Edition	Date
CFR 47 Part 15	-	2018
ANSI C63.10	-	2013
RSS-247	2	2017
RSS GEN	5	2014
RSS-102	5	2015
CFR 47 Part 1 and 2	-	2018
FCC KDB 447498	6	2015

4 UNCERTAINTY SUMMARY

Using the guidance of the following publications the calculated measurement uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k = 2.

References	Version / Date
CISPR 16-4-1	Ed. 2 (2009-02)
CISPR 16-4-2	Ed. 2 (2011-06)
CISPR 32	Ed. 1 (2012-01)
ANSI C63.23	2012
A2LA P103	February 4, 2016
A2LA P103c	August 10, 2015
ETSI TR 100-028	V1.3.1 (2001-03)

Measurement Type	Configuration	Uncertainty ±
Radiated Emissions	Biconical Antenna	5.0 dB
Radiated Emissions	Log Periodic Antenna	5.3 dB
Radiated Emissions	Horn Antenna	4.7 dB
AC Line Conducted Emissions	Artificial Mains Network	3.4 dB
Telecom Conducted Emissions	Asymmetric Artificial Network	4.9 dB
Disturbance Power Emissions	Absorbing Clamp	4.1 dB
Radiated Immunity	3 Volts/meter	2.2 dB
Conducted Immunity	CDN/EM/BCI	2.4/3.5/3.4 dB
EFT Burst/Surge	Peak pulse voltage	164 volts
ESD Immunity	15 kV level	1377 Volts

Parameter	ETSI U.C.±	U.C. ±
Radio Frequency, from F0	1x10 ⁻⁷	0.55x10 ⁻⁷
Occupied Channel Bandwidth	5 %	2 %
RF conducted Power (Power Meter)	1.5 dB	1.2 dB
RF conducted emissions (Spectrum Analyzer)	3.0 dB	1.7 dB
All emissions, radiated	6.0 dB	5.3 dB
Temperature	1° C	0.65° C
Humidity	5 %	2.9 %
Supply voltages	3 %	1 %

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2
Report: 318065C	Page 7 of 12	Model: See Section 2
Job: C-2944		Serial: Engineering Sample

5 TEST DATA

5.1 Fundamental Emission – ZS10S-D0Z, LU20S-DNW

Operator	Shane Dock	
Test Date	est Date 2/27/18	
Location	Conducted RF Area	
Temp. / R.H.	72 degrees F/ 29% RH	
Requirement	FCC: 15.247 (b)(3) IC: RSS-247 5.4 (d)	
Method	KDB 558074 Section 9.1.1	

Limits: (Measured as Average)

Maximum Conducted	Maximum Conducted	
Output Power (dBm)	Output Power (watts)	
30	1	

Test Parameters

Frequency	Frequency 2405-2480 MHz		
Settings	Low, Mid, and High Channels Measured		
Settings Unit measured at full power			

Table

Max Power (dBm)

Channel	Low	Mid	High	Channel 25
Output Power (dBm)	20.422	20.266	20.215	13.384

Worst Case Margin = Limit - Closest Measurement = 30.0 dBm - 20.422 dBm = 9.578 dB

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2
Report: 318065C	Page 8 of 12	Model: See Section 2
Job: C-2944		Serial: Engineering Sample

Plots

Maximum Power

Low Channel

Mid Channel

High Channel

Channel 25

Company: Leviton Manufacturing Co., Inc.
Report: 318065C

Report: 318065C Page **9** of **12**Job: C-2944

Name: See Section 2

Model: See Section 2

Serial: Engineering Sample

6 EXCLUSION CALCULATION

6.1 FCC

MP

Compliance to 2.1091 is to be demonstrated via MPE calculations at a customer-provided 20 cm separation distance. Unit ZS10S-D0Z is worst-case.

Output Power (dBm) = Measured Value (dBm) + Antenna Gain (dBi) + Tune-up Tolerance (dB)

Output Power = 20.4 dBm + 1.5 dBi + 0.4 dB = 22.3 dBm = 169.8 mW

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	20.80 (dBm)
Maximum peak output power at antenna input terminal:	120.226 (mW)
Antenna gain(peak):	1.5 (dBi)
Maximum antenna gain:	1.413 (numeric)
Prediction distance:	20 (cm)
Prediction frequency:	2405 (MHz)
PE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)

Power density at prediction frequency: 0.033785 (mW/cm^2)

As the power density value meets the MPE limit at the prediction frequency, the unit complies.

Company: Leviton Manufacturing Co., Inc.		Name: See Section 2	
Report: 318065C	Page 10 of 12	Model: See Section 2	
Job: C-2944		Serial: Engineering Sample	

6.2 Industry Canada

Per RSS-102 Section 2.52:

at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;

For 2437 MHz, the Exemption Limit is $.0131* f(MHz)^{.}6834 = 2.7 W$

Since 169.8 mW < 2.7 W, the EUT is exempt from routine evaluation.

7 REVISION HISTORY

Version	Date	Notes	Person
V0	3/24/20	First Draft	Shane Dock

END OF REPORT

Company: Leviton Manufacturing Co., Inc.

Report: 318065C

Job: C-2944

Page 12 of 12

Name: See Section 2

Model: See Section 2

Serial: Engineering Sample