FCC SAR Test Report APPLICANT : PAX Technology Limited EQUIPMENT : Mobile Payment Terminal BRAND NAME : PAX MODEL NAME : S920 MARKETING NAME : S920 FCC ID : V5PS920FDD-LTE **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2013 We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full. Prepared by: Mark Qu / Manager Mark Qu Approved by: Jones Tsai / Manager lac-MRA Report No.: FA5D2302 ### SPORTON INTERNATIONAL (SHENZHEN) INC. 1F & 2F,Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 FCC ID: V5PS920FDD-LTE Issued Date : Jan. 21, 2016 Page 1 of 47 Form version. : 151208 # **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Administration Data | | | 3. Guidance Standard | | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | 6 | | 4.2 General LTE SAR Test and Reporting Considerations | | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | | | 6.1 Introduction | | | 6.2 SAR Definition | | | 7. System Description and Setup | | | 7.1 E-Field Probe | | | 7.2 Data Acquisition Electronics (DAE) | | | 7.3 Phantom | | | 7.4 Device Holder | | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | 15 | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | _ | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Verification | 19 | | 10.2 System Performance Check Results | 20 | | 11. RF Exposure Positions | 21 | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Antenna Location | | | 14. SAR Test Results | | | 14.1 Body SAR | | | 15. Simultaneous Transmission Analysis | | | 15.1 Body Exposure Conditions | | | 16. Uncertainty Assessment | | | 17. References | 47 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | Issued Date : Jan. 21, 2016 Form version. : 151208 # **Revision History** Report No.: FA5D2302 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA5D2302 | Rev. 01 | Initial issue of report | Jan. 21, 2016 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 3 of 47 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **PAX Technology Limited**, **Mobile Payment Terminal**, **S920**, are as follows. Report No.: FA5D2302 | | | Highest SA | R Summary | | | |--------------------|-------------------|-------------------------|-----------|--|--| | Equipment
Class | Frequency
Band | | | | | | | WCDMA Band V | 0.74 | | | | | | WCDMA Band IV | 0.64 | | | | | | WCDMA Band II | 0.50 | | | | | PCB | LTE Band 17 | 0.59 | 0.87 | | | | | LTE Band 5 | 0.70 | | | | | | LTE Band 4 | 0.60 | | | | | | LTE Band 2 | 0.48 | | | | | DTS | WLAN 2.4GHz Band | 0.46 | 0.87 | | | | DSS | Bluetooth | <0.10 | 0.75 | | | | Date | of Testing: | 2015/12/24 ~ 2016/01/04 | | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. ### 2. Administration Data | Testing Laboratory | | | | | | | |--------------------|--|--|--|--|--|--| | Test Site | SPORTON INTERNATIONAL (SHENZHEN) INC. | | | | | | | Test Site Location | 1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China TEL: +86-755-8637-9589 | | | | | | | | FAX: +86-755-8637-9595 | | | | | | Report No.: FA5D2302 | Applicant Applicant | | | | | | |---------------------|--|--|--|--|--| | Company Name | PAX Technology Limited | | | | | | Address | Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong | | | | | | Manufacturer | | | | | | |--------------|---|--|--|--|--| | Company Name | PAX Computer Technology (Shenzhen) Co., Ltd. | | | | | | Address | 4/F, No.3 Building, Software Park, Second Central Science-Tech Road, High-Tech industrial Park, Shenzhen, Guangdong, P.R.C. | | | | | ### 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 # 4. Equipment Under Test (EUT) Information ### 4.1 General Information | Product Feature & Specification | | | | | | |--|--|--|--|--|--| | Equipment Name | Mobile Payment Terminal | | | | | | Brand Name | PAX | | | | | | Model Name | S920 | | | | | | Marketing Name | S920 | | | | | | FCC ID | V5PS920FDD-LTE | | | | | | IMEI Code | 864669020066004 | | | | | | Wireless Technology and
Frequency Range | WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 17: 706.5 MHz ~ 713.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz | | | | | | Mode | RMC 12.2Kbps HSDPA HSUPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM 802.11b/g/n HT20 Bluetooth v3.0+EDR, Bluetooth v4.0 LE NFC:ASK | | | | | | HW Version | v01.01.01 | | | | | | SW Version | 14.00.02 | | | | | | EUT Stage | Production Unit | | | | | | Remark: | | | | | | Report No.: FA5D2302 - 1. Voice call is not supported. - 2. 802.11n-HT40 is not supported in 2.4GHz WLAN. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 6 of 47 # 4.2 General LTE SAR Test and Reporting Considerations | Summarized necessary items addressed in KDB 941225 D05 v02r05 | | | | | | | | | | | | |--|---|--|------------|--------------------------|-----------|--------------|--------------|--------------|-----------------------------|--|--| | FCC ID | V5F | SPS920FDD-LTE | | | | | | | | | | | Equipment Name | Mol | lobile Payment Terminal | | | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE
LTE | TE Band 02: 1850.7 MHz ~ 1909.3 MHz
TE Band 04: 1710.7 MHz ~ 1754.3 MHz
TE Band 05: 824.7 MHz ~ 848.3 MHz
TE Band 17: 706.5 MHz ~ 713.5 MHz | | | | | | | | | | | LTE Band 02:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 04:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 05:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz | | | | | | | | | | | | | uplink modulations used | QP | QPSK, and 16QAM | | | | | | | | | | | LTE Voice / Data requirements | Dat | Data only | | | | | | | | | | | LTE Release Version | R8, | R8, Cat 8 | | | | | | | | | | | | | Table Modulation | | Market Street Market St. | SUSA NEWS | • | PR) for Pov | | MPR (dB) | | | | LTE MPR permanently built-in by design | | | 1.4
MHz | 3.0
MHz | 5
MHz | 10
MHz | 15
MHz | 20
MHz | | | | | | | QPSK | >5 | >4 | >8 | > 12 | > 16 | > 18 | ≤1 | | | | | | 16 QAM
16 QAM | ≤ 5
> 5 | ≤ 4
> 4 | ≤8
>8 | ≤ 12
> 12 | ≤ 16
> 16 | ≤ 18
> 18 | ≤ 1
≤ 2 | | | | LTE A-MPR | In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) | | | | | | | | | | | | Spectrum plots for RB configuration | me | | refore, sp | ectrum plo | | | | | R and powe onfiguration are | | | Report No.: FA5D2302 | | Transmission (H,
M, L) channel numbers and frequencies in each LTE band | | | | | | | | | | | | | | | |---|---|----------------|----------|----------------|---------|-------|----------------|---------------------------|------------|------------|---------------------------|----------------|----------|----------------|-------| | | LTE Band 2 | | | | | | | | | | | | | | | | | Bandwidth | n 1.4 MHz | Bandwid | th 3 MHz | Ban | dwid | th 5 MHz | Bandwidth 10 MHz Bandwidt | | | h 15 MHz Bandwidth 20 MHz | | | | | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | # | Freq.
(MHz) | Ch. # | Fre
(MI | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | | | L | 18607 | 1850.7 | 18615 | 1851.5 | 186 | 25 | 1852.5 | 18650 | 18 | 55 | 18675 | 1857.5 | 18700 | 1860 | | | М | 18900 | 1880 | 18900 | 1880 | 1890 | 00 | 1880 | 18900 | 18 | 80 | 18900 | 1880 | 18900 | 1880 | | | Н | 19193 | 1909.3 | 19185 | 1908.5 | 191 | 75 | 1907.5 | 19150 | 19 | 05 | 19125 | 1902.5 | 19100 | 1900 | | | | | | | | | | LTE Ba | nd 4 | | | | | | | | | | Bandwidth | 1.4 MHz | Bandwid | th 3 MHz | Ban | dwid | th 5 MHz | Bandwidt | h 10 N | ИHz | Bandwidt | | Bandw | idth 20 MHz | | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. | # | Freq.
(MHz) | Ch. # | Fre
(MI | eq.
Hz) | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | | | L | 19957 | 1710.7 | 19965 | 1711.5 | 199 | 75 | 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 20050 | 1720 | | | М | 20175 | 1732.5 | 20175 | 1732.5 | 201 | 75 | 1732.5 | 20175 | 173 | 2.5 | 20175 | 1732.5 | 20175 | 1732.5 | | | Н | 20393 | 1754.3 | 20385 | 1753.5 | 203 | 75 | 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 20300 | 1745 | | | | | | | | | | LTE Ba | nd 5 | | | | | | | | | | Ban | dwidth 1.4 I | MHz | Bar | ndwidth | h 3 N | ИHz | Bandwidth 5 MHz | | | Bandwidth 10 MHz | | | | | | | Ch. # | Fre | q. (MHz) | Ch. # | | Fre | eq. (MHz) | Ch. # | | Fre | eq. (MHz) | Ch. # | 1 | Freq. (MHz) | | | L | 20407 | , | 824.7 | 20415 | 0415 82 | | 825.5 | 20425 | 5 | | 826.5 | 20450 |) | 829 | | | М | 20525 | 5 | 836.5 | 20525 | 836.5 | | 836.5 | | 20525 | 5 | | 836.5 | 20525 | 5 | 836.5 | | Н | 20643 | | 848.3 | 20635 | , | | 847.5 | 20625 | 5 | | 846.5 | 20600 |) | 844 | | | | | | | | | | LTE Bar | nd 17 | | | | | | | | | | Bandwidth 5 MHz | | | | | | | | | | Bandwidt | h 10 MHz | | | | | | | Channel # | | | Freq.(N | MHz) | | | Chan | nel # | | | Freq. (M | Hz) | | | L | | 23755 | | | 706 | .5 | | | 237 | 780 | | | 709 | | | | М | | 23790 | | | 710 | 0 | | | 237 | 790 | | | 710 | | | | Н | | 23825 | | | 713 | .5 | | | 238 | 300 | | | 711 | | | Report No.: FA5D2302 ## 5. RF Exposure Limits #### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA5D2302 #### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ### 6. Specific Absorption Rate (SAR) #### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA5D2302 #### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA5D2302 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core | | |---------------|--|--| | | Built-in shielding against static charges | | | | PEEK enclosure material (resistant to organic | | | | solvents, e.g., DGBE) | | | Frequency | 10 MHz – >6 GHz | | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | | ± 0.5 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g – >100 mW/g | | | | Linearity: ±0.2 dB (noise: typically <1 μW/g) | | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | | Tip diameter: 2.5 mm (body: 12 mm) | | | | Typical distance from probe tip to dipole centers: 1 | | | | mm | | Report No.: FA5D2302 ### 7.2 <u>Data Acquisition Electronics (</u>DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 Form version.: 151208 FCC ID: V5PS920FDD-LTE Page 12 of 47 #### 7.3 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm; | | |-------------------|---|-----| | | Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.:
FA5D2302 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | \EET Hanton | | | |-----------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. #### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA5D2302 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 Form version.: 151208 FCC ID: V5PS920FDD-LTE ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA5D2302 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g FCC ID: V5PS920FDD-LTE Page 15 of 47 Form version.: 151208 #### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA5D2302 Issued Date: Jan. 21, 2016 #### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: $\Delta x_{Area},\Delta y_{Area}$ | When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be \leq the corresponding
device with at least one | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 FCC ID: V5PS920FDD-LTE Page 16 of 47 Form version.: 151208 #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA5D2302 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | | |--|-------------|---|--|--|--| | Maximum zoom scan s | patial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | grid | Δz _{Zoom} (n>1): between subsequent points | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | | Minimum zoom scan
volume | X V 7 | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting
in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 FCC ID: V5PS920FDD-LTE Page 17 of 47 Form version.: 151208 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 9. Test Equipment List | Manufacturer | Name of Equipment | Type/Model | Serial Number | Calibration
Last Cal. | Due Date | |---------------|------------------------------------|---------------|---------------|--------------------------|---------------| | SPEAG | 750MHz System Validation Kit | D750V3 | 1087 | Mar. 20, 2015 | Mar. 19, 2016 | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d200 | Aug. 20, 2015 | Aug. 19, 2016 | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1137 | Apr. 28, 2015 | Apr. 27, 2016 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d210 | Aug. 19, 2015 | Aug. 18, 2016 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 926 | Jul. 24, 2015 | Jul. 23, 2016 | | SPEAG | Data Acquisition Electronics | DAE4 | 1303 | Nov. 24, 2015 | Nov. 23, 2016 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3819 | Nov. 27, 2015 | Nov. 26, 2016 | | SPEAG | ELI4 Phantom | QD OVA 002 AA | TP-1149 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Anritsu | Radio communication analyzer | MT8820C | 6201300653 | Aug. 25, 2015 | Aug. 24, 2016 | | Agilent | Wireless Communication Test
Set | E5515C | MY50267224 | Aug. 07, 2015 | Aug. 06, 2016 | | R&S | Network Analyzer | ZVB8 | 100106 | Oct. 20, 2015 | Oct. 19, 2016 | | Speag | Dielectric Assessment KIT | DAK-3.5 | 1032 | NCR | NCR | | R&S | Signal Generator | SMBV100A | 258305 | Jan. 23, 2015 | Jan. 22, 2016 | | Anritsu | Power Sensor | MA2411B | 1207253 | Jan. 28, 2015 | Jan. 27, 2016 | | Anritsu | Power Meter | ML2495A | 1218010 | Jan. 28, 2015 | Jan. 27, 2016 | | Anritsu | Power Senor | MA2411B | 917070 | Jan. 23, 2015 | Jan. 22, 2016 | | Anritsu | Power Meter | ML2495A | 1005002 | Jan. 23, 2015 | Jan. 22, 2016 | | R&S | CBT BLUETOOTH TESTER | CBT | 100963 | Jan. 28, 2015 | Jan. 27, 2016 | | R&S | Spectrum Analyzer | FSP7 | 101634 | Aug. 07, 2015 | Aug. 06, 2016 | | ARRA | Power Divider | A3200-2 | N/A | No | te1 | | Agilent | Dual Directional Coupler | 778D | 50422 | No | te1 | | MCL | Attenuation1 | BW-S10W5 | N/A | Note1 | | | Weinschel | Attenuation2 | 3M-20 | N/A | No | te1 | | Zhongjilianhe | Attenuation3 | MVE2214-03 | N/A | No | te1 | | AR | Amplifier | 5S1G4 | 333096 | No | te1 | Report No.: FA5D2302 #### **General Note:** Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. #### SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 Page 18 of 47 Form version. : 151208 FCC ID: V5PS920FDD-LTE ### 10. System Verification ## 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA5D2302 | | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity (σ) | Permittivity
(εr) | |---|--------------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|----------------------| | | | | | | For Body | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1 | 800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta
(σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | |--------------------|----------------|------------------------|---------------------|--------------------------------|----------------------------|--|---------------------|-----------------------------------|--------------|------------| | 750 | Body | 22.5 | 0.966 | 53.934 | 0.96 | 55.50 | 0.63 | -2.82 | ±5 | 2015/12/25 | | 835 | Body | 22.5 | 1.000 | 54.086 | 0.97 | 55.20 | 3.09 | -2.02 | ±5 | 2015/12/25 | | 1750 | Body | 22.6 | 1.514 | 53.575 | 1.49 | 53.40 | 1.61 | 0.33 | ±5 | 2015/12/24 | | 1900 | Body | 22.7 | 1.525 | 54.504 | 1.52 | 53.30 | 0.33 | 2.26 | ±5 | 2015/12/24 | | 2450 | Body | 22.8 | 1.949 | 51.667 | 1.95 | 52.70 | -0.05 | -1.96 | ±5 | 2016/1/4 | #### 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | 2015/12/25 | 750 | Body | 250 | 1087 | SN3819 | SN1303 | 2.27 | 8.57 | 9.08 | 5.95 | | 2015/12/25 | 835 | Body | 250 | 4d200 | SN3819 | SN1303 | 2.39 | 9.55 | 9.56 | 0.10 | | 2015/12/24 | 1750 | Body | 250 | 1137 | SN3819 | SN1303 | 9.17 | 36.90 | 36.68 | -0.60 | | 2015/12/24 | 1900 | Body | 250 | 5d210 | SN3819 | SN1303 | 9.97 | 40.00 | 39.88 | -0.30 | | 2016/1/4 | 2450 | Body | 250 | 926 | SN3819 | SN1303 | 13.70 | 51.70 | 54.8 | 6.00 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 FCC ID: V5PS920FDD-LTE Form version.: 151208 Page 20 of 47 ### 11. RF Exposure Positions ### 11.1 Body Position (a) To position the device parallel to the phantom surface with either keypad up or down. Report No.: FA5D2302 - (b) To adjust the device parallel to the flat phantom. - (c) To adjust the distance between the device surface and the flat phantom to 0 cm. #### <EUT Setup Photos> Please refer to Appendix D for the test setup photos. ### 12. Conducted RF Output Power (Unit: dBm) #### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No.: FA5D2302 A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. b. - A call was established between EUT and Base Station with following setting: - Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - iii. Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -86 dBm - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - Select HSDPA Uplink Parameters vi. - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - Set CQI Repetition Factor to 2 х. - Power Ctrl Mode = All Up bits xi. - The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βε | βd | βd
(SF) | βс/βа | βнs
(Note1,
Note 2) | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|----------|----------|------------|----------|---------------------------
---------------------|----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/15 | 1.0 | 0.0 | | | (Note 4) | (Note 4) | | (Note 4) | | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . - For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with $\beta_{hs} = 24/15 * \beta_c$. SPORTON INTERNATIONAL (SHENZHEN) INC. - CM = 1 for β_o/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. - For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is Note 4: achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d **Setup Configuration** FCC ID: V5PS920FDD-LTE Page 22 of 47 #### **HSUPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting *: - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - ii. Set the $Gain Factors (\beta_c and \beta_d)$ and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 Report No.: FA5D2302 - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - v. Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - d. The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βс | βa | β _d
(SF) | βc/βd | βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4
4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . - Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. - Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. - Note 4: For subtest 5 the β_0/β_0 ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by - setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. **Setup Configuration** #### < WCDMA Conducted Power> #### **General Note:** 1. Per KDB 941225 D01v03r01, SAR for Body exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". Report No.: FA5D2302 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ 1/4 dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA. | | Band | | WCDMA V | / | | | WCDMA II | | | |-------------|-----------------|-------|---------|-------|----------------|--------|----------|--------|----------------| | TX | Channel | 4132 | 4182 | 4233 | Tune-up | 9262 | 9400 | 9538 | Tune-up | | Rx | Channel | 4357 | 4407 | 4458 | Limit
(dBm) | 9662 | 9800 | 9938 | Limit
(dBm) | | Frequ | iency (MHz) | 826.4 | 836.4 | 846.6 | | 1852.4 | 1880 | 1907.6 | | | 3GPP Rel 99 | RMC 12.2Kbps | 23.10 | 22.98 | 22.87 | 23.50 | 22.34 | 22.52 | 22.64 | 23.00 | | 3GPP Rel 6 | HSDPA Subtest-1 | 22.29 | 22.08 | 22.09 | 23.00 | 21.54 | 21.38 | 21.42 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-2 | 22.37 | 22.20 | 22.18 | 23.00 | 21.50 | 21.20 | 21.52 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-3 | 22.21 | 22.05 | 22.19 | 23.00 | 20.79 | 20.68 | 20.76 | 21.00 | | 3GPP Rel 6 | HSDPA Subtest-4 | 22.27 | 22.03 | 22.17 | 23.00 | 20.79 | 20.70 | 20.76 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-1 | 21.91 | 21.60 | 22.03 | 22.50 | 20.84 | 21.05 | 21.41 | 22.00 | | 3GPP Rel 6 | HSUPA Subtest-2 | 20.78 | 20.51 | 20.71 | 21.00 | 19.57 | 19.62 | 19.69 | 20.00 | | 3GPP Rel 6 | HSUPA Subtest-3 | 20.92 | 20.79 | 20.69 | 21.00 | 19.03 | 19.08 | 19.60 | 20.00 | | 3GPP Rel 6 | HSUPA Subtest-4 | 20.94 | 20.97 | 21.09 | 21.50 | 19.55 | 19.64 | 19.71 | 20.00 | | 3GPP Rel 6 | HSUPA Subtest-5 | 22.20 | 22.00 | 22.10 | 23.00 | 21.30 | 21.10 | 21.50 | 22.00 | | | Band | | WCDMA IV | | | |-------------|---------------------------|--------|--------------|--------|------------------| | | TX Channel | 1312 | 1413 | 1513 | Tune-up
Limit | | | Rx Channel | 1537 | 1638 | 1738 | (dBm) | | Fre | equency (MHz) | 1712.4 | 1732.6 | 1752.6 | , | | 3GPP Rel 99 | RMC 12.2Kbps | 22.43 | 22.53 | 22.32 | 23.00 | | 3GPP Rel 6 | HSDPA Subtest-1 | 21.07 | 21.20 | 21.10 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-2 | 21.05 | 21.26 | 21.21 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-3 | 20.50 | 20.73 | 20.55 | 21.00 | | 3GPP Rel 6 | HSDPA Subtest-4 | 20.04 | 20.63 | 20.56 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-1 | 20.83 | 20.76 | 20.70 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-2 | 19.46 | 19.53 | 19.57 | 20.00 | | 3GPP Rel 6 | HSUPA Subtest-3 | 18.74 | 18.93 | 18.79 | 19.00 | | 3GPP Rel 6 | GPP Rel 6 HSUPA Subtest-4 | | 20.38 | 20.31 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-5 | 21.10 | 21.10 | 21.20 | 22.00 | #### <LTE Conducted Power> #### **General Note:** 1. Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA5D2302 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE B5 / B4/ B17 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. FCC ID: V5PS920FDD-LTE Page 25 of 47 Form version.: 151208 #### <LTE Band 2> |
BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up
limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------|------| | | Cha | nnel | | 18700 | 18900 | 19100 | (dBm) | (dB) | | | Frequen | cy (MHz) | | 1860 | 1880 | 1900 | | | | 20 | QPSK | 1 | 0 | 22.01 | 22.08 | 22.01 | | | | 20 | QPSK | 1 | 49 | 22.27 | 22.26 | 22.29 | 23 | 0 | | 20 | QPSK | 1 | 99 | 22.25 | 22.24 | 22.04 | | | | 20 | QPSK | 50 | 0 | 21.12 | 21.24 | 21.10 | | | | 20 | QPSK | 50 | 24 | 21.27 | 21.17 | 21.32 | 00 | 1 | | 20 | QPSK | 50 | 50 | 21.34 | 21.25 | 21.39 | 22 | | | 20 | QPSK | 100 | 0 | 21.27 | 21.18 | 21.28 | | | | 20 | 16QAM | 1 | 0 | 21.29 | 21.42 | 21.06 | | | | 20 | 16QAM | 1 | 49 | 21.56 | 21.38 | 21.18 | 22 | 1 | | 20 | 16QAM | 1 | 99 | 21.54 | 21.46 | 21.05 | | | | 20 | 16QAM | 50 | 0 | 20.15 | 20.17 | 20.20 | | 2 | | 20 | 16QAM | 50 | 24 | 20.18 | 20.14 | 20.31 | 21 | | | 20 | 16QAM | 50 | 50 | 20.25 | 20.11 | 20.34 | 21 | | | 20 | 16QAM | 100 | 0 | 20.43 | 20.13 | 20.40 | | | | | Cha | nnel | | 18675 | 18900 | 19125 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 1857.5 | 1880 | 1902.5 | (dBm) | (dB) | | 15 | QPSK | 1 | 0 | 21.59 | 21.99 | 22.19 | | | | 15 | QPSK | 1 | 37 | 21.86 | 22.00 | 22.25 | 23 | 0 | | 15 | QPSK | 1 | 74 | 21.99 | 22.01 | 22.11 | | | | 15 | QPSK | 36 | 0 | 20.87 | 21.08 | 21.13 | | | | 15 | QPSK | 36 | 20 | 20.84 | 21.06 | 21.22 | 22 | 1 | | 15 | QPSK | 36 | 39 | 20.91 | 20.91 | 21.22 | 22 | ' | | 15 | QPSK | 75 | 0 | 20.95 | 20.93 | 21.24 | | | | 15 | 16QAM | 1 | 0 | 20.52 | 20.73 | 20.89 | | | | 15 | 16QAM | 1 | 37 | 20.64 | 20.69 | 21.03 | 22 | 1 | | 15 | 16QAM | 1 | 74 | 20.67 | 20.70 | 20.71 | | | | 15 | 16QAM | 36 | 0 | 20.10 | 20.16 | 20.26 | | | | 15 | 16QAM | 36 | 20 | 20.04 | 20.08 | 20.34 | 21 | 2 | | 15 | 16QAM | 36 | 39 | 20.07 | 19.94 | 20.33 | ۷ ا | 2 | | 15 | 16QAM | 75 | 0 | 20.09 | 20.04 | 20.34 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 26 of 47 ## SPORTON LAB. FCC SAR Test Report | | Cha | nnel | | 18650 | 18900 | 19150 | Tune-up | MPR | |----|---------|----------|----|--------|-------|--------|------------------|------| | | Frequen | cy (MHz) | | 1855 | 1880 | 1905 | limit
(dBm) | (dB) | | 10 | QPSK | 1 | 0 | 21.50 | 21.75 | 22.26 | | | | 10 | QPSK | 1 | 25 | 21.65 | 21.84 | 22.28 | 23 | 0 | | 10 | QPSK | 1 | 49 | 21.72 | 21.82 | 21.99 | | | | 10 | QPSK | 25 | 0 | 20.67 | 20.77 | 21.26 | | | | 10 | QPSK | 25 | 12 | 20.69 | 20.85 | 21.23 | 22 | 1 | | 10 | QPSK | 25 | 25 | 20.66 | 20.78 | 21.23 | 22 | | | 10 | QPSK | 50 | 0 | 20.73 | 20.89 | 21.20 | | | | 10 | 16QAM | 1 | 0 | 20.83 | 21.13 | 21.51 | | | | 10 | 16QAM | 1 | 25 | 20.82 | 21.06 | 21.52 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 21.09 | 20.98 | 21.29 | | | | 10 | 16QAM | 25 | 0 | 20.12 | 20.07 | 20.33 | | | | 10 | 16QAM | 25 | 12 | 20.08 | 20.05 | 20.33 | 21 | 2 | | 10 | 16QAM | 25 | 25 | 20.03 | 20.10 | 20.34 | 21 | | | 10 | 16QAM | 50 | 0 | 20.02 | 20.05 | 20.34 | | | | | Cha | nnel | | 18625 | 18900 | 19175 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 1852.5 | 1880 | 1907.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 21.37 | 21.67 | 22.32 | | | | 5 | QPSK | 1 | 12 | 21.57 | 21.86 | 22.30 | 23 | 0 | | 5 | QPSK | 1 | 24 | 21.37 | 21.98 | 22.04 | | | | 5 | QPSK | 12 | 0 | 20.48 | 20.84 | 21.43 | | | | 5 | QPSK | 12 | 7 | 20.56 | 20.91 | 21.27 | 22 | 1 | | 5 | QPSK | 12 | 13 | 20.53 | 20.98 | 21.22 | 22 | ' | | 5 | QPSK | 25 | 0 | 20.60 | 20.98 | 21.39 | | | | 5 | 16QAM | 1 | 0 | 20.70 | 21.17 | 21.59 | | | | 5 | 16QAM | 1 | 12 | 20.76 | 21.20 | 21.49 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 20.65 | 21.17 | 21.29 | | | | 5 | 16QAM | 12 | 0 | 20.01 | 20.00 | 20.45 | | | | 5 | 16QAM | 12 | 7 | 20.05 | 20.07 | 20.30 | 21 | 2 | | 5 | 16QAM | 12 | 13 | 20.02 | 20.01 | 20.24 | ۷۱ | ۷ | | 5 | 16QAM | 25 | 0 | 20.05 | 20.07 | 20.26 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 27 of 47 ## SPORTON LAB. FCC SAR Test Report | | Cha | nnel | | 18615 | 18900 | 19185 | Tune-up | MPR | |-----|---------|----------|----|--------|-------|--------|------------------|------| | | Frequen | cy (MHz) | | 1851.5 | 1880 | 1908.5 | limit
(dBm) | (dB) | | 3 | QPSK | 1 | 0 | 21.20 | 21.57 | 22.16 | | | | 3 | QPSK | 1 | 8 | 21.33 | 21.76 | 22.15 | 23 | 0 | | 3 | QPSK | 1 | 14 | 21.40 | 21.84 | 21.96 | | | | 3 | QPSK | 8 | 0 | 20.45 | 20.91 | 21.30 | | | | 3 | QPSK | 8 | 4 | 20.58 | 20.92 | 21.29 | | _ | | 3 | QPSK | 8 | 7 | 20.57 | 20.89 | 21.18 | - 22 | 1 | | 3 | QPSK | 15 | 0 | 20.60 | 20.93 | 21.17 | | | | 3 | 16QAM | 1 | 0 | 20.48 | 20.86 | 21.24 | | | | 3 | 16QAM | 1 | 8 | 20.53 | 20.80 | 21.25 | 22 | 1 | | 3 | 16QAM | 1 | 14 | 20.59 | 20.82 | 20.97 | | | | 3 | 16QAM | 8 | 0 | 20.01 | 20.12 | 20.31 | | | | 3 | 16QAM | 8 | 4 | 20.02 | 20.10 | 20.28 | 0.4 | 0 | | 3 | 16QAM | 8 | 7 | 20.06 | 20.04 | 20.16 | 21 | 2 | | 3 | 16QAM | 15 | 0 | 20.12 | 20.04 | 20.21 | | | | | Channel | | | 18607 | 18900 | 19193 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 1850.7 | 1880 | 1909.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 21.26 | 21.81 | 22.09 | | | | 1.4 | QPSK | 1 | 3 | 21.52 | 21.94 | 22.05 | | | | 1.4 | QPSK | 1 | 5 | 21.55 | 21.91 | 21.97 | 23 | 0 | | 1.4 | QPSK | 3 | 0 | 21.49 | 21.91 | 22.14 | 23 | U | | 1.4 | QPSK | 3 | 1 | 21.33 | 21.79 | 22.03 | | | | 1.4 | QPSK | 3 | 3 | 21.33 | 21.73 | 21.84 | | | | 1.4 | QPSK | 6 | 0 | 20.49 | 20.86 | 20.96 | 22 | 1 | | 1.4 | 16QAM | 1 | 0 | 20.51 | 20.92 | 21.09 | | | | 1.4 | 16QAM | 1 | 3 | 20.36 | 20.81 | 20.98 | | | | 1.4 | 16QAM | 1 | 5 | 20.63 | 20.89 | 20.83 | 22 | 1 | | 1.4 | 16QAM | 3 | 0 | 20.63 | 21.02 | 21.28 | | | | 1.4 | 16QAM | 3 | 1 | 20.60 | 20.94 | 21.14 | | | | 1.4 | 16QAM | 3 | 3 | 20.56 | 20.88 | 21.22 | | | | 1.4 | 16QAM | 6 | 0 | 20.09 | 20.03 | 20.36 | 21 | 2 | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 28 of 47 #### <LTE Band 4> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up
limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------|------| | | Cha | nnel | | 20050 | 20175 | 20300 | (dBm) | (dB) | | | Frequen | cy (MHz) | | 1720 | 1732.5 | 1745 | | | | 20 | QPSK | 1 | 0 | 21.91 | 21.91 | 22.01 | | | | 20 | QPSK | 1 | 49 | 22.04 | 22.04 | 22.10 | 22.5 | 0 | | 20 | QPSK | 1 | 99 | 22.02 | 22.02 | 21.89 | | | | 20 | QPSK | 50 | 0 | 20.95 | 20.95 | 21.08 | | | | 20 | QPSK | 50 | 24 | 20.94 | 20.94 | 20.85 | 01.5 | 1 | | 20 | QPSK | 50 | 50 | 20.88 | 20.88 | 20.72 | 21.5 | | | 20 | QPSK | 100 | 0 | 20.97 | 20.97 | 20.95 | | | | 20 | 16QAM | 1 | 0 | 21.23 | 21.23 | 21.10 | | | | 20 | 16QAM | 1 | 49 | 20.77 | 20.77 | 20.93 | 21.5 | 1 | | 20 | 16QAM | 1 | 99 | 20.88 | 20.88 | 20.84 | | | | 20 | 16QAM | 50 | 0 | 20.12 | 20.14 | 20.18 | | 2 | | 20 | 16QAM | 50 | 24 | 20.01 | 20.03 | 20.02 | 00.5 | | | 20 | 16QAM | 50 | 50 | 20.06 | 20.05 | 20.00 | 20.5 | | | 20 | 16QAM | 100 | 0 | 20.04 | 20.01 | 20.00 | | | | | Cha | nnel | | 20025 | 20175 | 20325 | Tune-up | MPR | | | Frequen | cy (MHz) | | 1717.5 | 1732.5 | 1747.5 | limit
(dBm) | (dB) | | 15 | QPSK | 1 | 0 | 22.05 | 21.91 | 22.12 | | | | 15 | QPSK | 1 | 37 | 22.06 | 22.17 | 21.80 | 22.5 | 0 | | 15 | QPSK | 1 | 74 | 22.10 | 21.93 | 21.81 | | | | 15 | QPSK | 36 | 0 | 21.08 | 21.13 | 20.90 | | | | 15 | QPSK | 36 | 20 | 20.92 | 21.02 | 20.71 | 21.5 | 1 | | 15 | QPSK | 36 | 39 | 20.92 | 21.00 | 20.78 | 21.5 | | | 15 | QPSK | 75 | 0 | 21.00 | 21.00 | 20.77 | | | | 15 | 16QAM | 1 | 0 | 20.74 | 20.74 | 20.90 | | | | 15 | 16QAM | 1 | 37 | 20.71 | 20.82 | 20.55 | 21.5 | 1 | | 15 | 16QAM | 1 | 74 | 20.75 | 20.74 | 20.63 | | | | 15 | 16QAM | 36 | 0 | 20.13 | 20.11 | 20.01 | | | | 15 | 16QAM | 36 | 20 | 20.04 | 20.10 | 20.07 | 20.5 | 0 | | 15 | 16QAM | 36 | 39 | 20.03 | 20.13 | 20.03 | 20.5 | 2 | | 15 | 16QAM | 75 | 0 | 20.09 | 20.07 | 20.02 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 29 of 47 ## SPORTON LAB. FCC SAR Test Report | | Cha | ınnel | | 20000 | 20175 | 20350 | Tune-up | MPR | |----|---------|----------|----|--------|--------|--------|------------------|------| | | Frequen | cy (MHz) | | 1715 | 1732.5 | 1750 | limit
(dBm) | (dB) | | 10 | QPSK | 1 | 0 | 21.91 | 22.09 | 21.84 | | | | 10 | QPSK | 1 | 25 | 22.27 | 22.21 | 21.93 | 22.5 | 0 | | 10 | QPSK | 1 | 49 | 22.01 | 22.23 | 21.95 | | | | 10 | QPSK | 25 | 0 | 21.02 | 21.17 | 20.76 | | | | 10 | QPSK | 25 | 12 | 21.08 | 21.06 | 20.84 | 01.5 | 4 | | 10 | QPSK | 25 | 25 | 20.96 | 21.02 | 20.82 | 21.5 | 1 | | 10 | QPSK | 50 | 0 | 20.88 | 20.94 | 20.74 | | | | 10 | 16QAM | 1 | 0 | 21.20 | 21.18 | 21.19 | | | | 10 | 16QAM | 1 | 25 | 21.42 | 21.36 | 21.13 | 21.5 | 1 | | 10 | 16QAM | 1 | 49 | 21.19 | 21.32 | 21.19 | | | | 10 | 16QAM | 25 | 0 | 20.12 | 20.08 | 20.07 | | | | 10 | 16QAM | 25 | 12 | 20.10 | 20.03 | 20.02 | 20.5 | 2 | | 10 | 16QAM | 25 | 25 | 20.10 | 20.08 | 20.03 | 20.5 | | | 10 | 16QAM | 50 | 0 | 20.06 | 20.01 | 20.01 | | | | | Channel | | | 19975 | 20175 | 20375 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 1712.5 | 1732.5 | 1752.5 | (dBm) | (dB) | | 5 | QPSK | 1 | 0 | 21.91 | 22.04 | 21.76 | | 0 | | 5 | QPSK | 1 | 12 | 22.15 | 22.24 | 21.82 | 22.5 | | | 5 | QPSK | 1 | 24 | 22.28 | 22.06 | 21.95 | | | | 5 | QPSK | 12 | 0 | 21.10 | 21.18 | 20.91 | | | | 5 | QPSK | 12 | 7 | 21.14 | 21.14 | 20.80 | 21.5 | 1 | | 5 | QPSK
 12 | 13 | 21.23 | 21.19 | 20.86 | 21.5 | ı | | 5 | QPSK | 25 | 0 | 21.03 | 21.06 | 20.77 | | | | 5 | 16QAM | 1 | 0 | 20.71 | 20.94 | 21.14 | | | | 5 | 16QAM | 1 | 12 | 20.99 | 21.03 | 21.15 | 21.5 | 1 | | 5 | 16QAM | 1 | 24 | 20.97 | 20.91 | 21.24 | | | | 5 | 16QAM | 12 | 0 | 20.22 | 20.37 | 20.06 | | | | 5 | 16QAM | 12 | 7 | 20.24 | 20.25 | 20.03 | 20.5 | 2 | | 5 | 16QAM | 12 | 13 | 20.38 | 20.28 | 20.06 | 20.5 | 2 | | 5 | 16QAM | 25 | 0 | 20.18 | 20.23 | 20.04 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 30 of 47 ## SPORTON LAB. FCC SAR Test Report | | Cha | nnel | | 19965 | 20175 | 20385 | Tune-up | MPR | |-----|---------|----------|----|--------|--------|--------|------------------|------| | | Frequen | cy (MHz) | | 1711.5 | 1732.5 | 1753.5 | limit
(dBm) | (dB) | | 3 | QPSK | 1 | 0 | 21.97 | 22.05 | 21.71 | | | | 3 | QPSK | 1 | 8 | 22.06 | 22.12 | 21.81 | 22.5 | 0 | | 3 | QPSK | 1 | 14 | 22.24 | 22.06 | 21.91 | | | | 3 | QPSK | 8 | 0 | 20.96 | 21.22 | 20.85 | | | | 3 | QPSK | 8 | 4 | 21.09 | 21.30 | 20.98 | 21.5 | 1 | | 3 | QPSK | 8 | 7 | 21.06 | 21.30 | 21.03 | 21.5 | 1 | | 3 | QPSK | 15 | 0 | 21.02 | 21.20 | 20.90 | | | | 3 | 16QAM | 1 | 0 | 20.65 | 20.92 | 20.63 | | | | 3 | 16QAM | 1 | 8 | 20.75 | 20.92 | 20.61 | 21.5 | 1 | | 3 | 16QAM | 1 | 14 | 20.85 | 20.86 | 20.62 | | | | 3 | 16QAM | 8 | 0 | 20.06 | 20.08 | 20.02 | | | | 3 | 16QAM | 8 | 4 | 20.07 | 20.11 | 20.06 | 20.5 | 2 | | 3 | 16QAM | 8 | 7 | 20.01 | 20.08 | 20.02 | 20.5 | ۷ | | 3 | 16QAM | 15 | 0 | 20.04 | 20.04 | 20.05 | | | | | Channel | | | 19957 | 20175 | 20393 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 1710.7 | 1732.5 | 1754.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 21.91 | 22.09 | 21.79 | | | | 1.4 | QPSK | 1 | 3 | 22.05 | 22.13 | 21.96 | | | | 1.4 | QPSK | 1 | 5 | 21.95 | 22.14 | 21.89 | 22.5 | 0 | | 1.4 | QPSK | 3 | 0 | 21.98 | 22.22 | 22.00 | 22.5 | O | | 1.4 | QPSK | 3 | 1 | 22.00 | 22.16 | 21.90 | | | | 1.4 | QPSK | 3 | 3 | 22.00 | 22.13 | 21.82 | | | | 1.4 | QPSK | 6 | 0 | 20.86 | 21.14 | 20.85 | 21.5 | 1 | | 1.4 | 16QAM | 1 | 0 | 20.64 | 21.03 | 20.74 | | | | 1.4 | 16QAM | 1 | 3 | 20.77 | 21.01 | 20.79 | | | | 1.4 | 16QAM | 1 | 5 | 20.60 | 21.11 | 20.83 | 21.5 | 1 | | 1.4 | 16QAM | 3 | 0 | 21.12 | 21.27 | 21.11 | | ' | | 1.4 | 16QAM | 3 | 1 | 21.01 | 21.29 | 21.02 | | | | 1.4 | 16QAM | 3 | 3 | 21.00 | 21.35 | 21.15 | | | | 1.4 | 16QAM | 6 | 0 | 20.15 | 20.27 | 20.17 | 20.5 | 2 | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 31 of 47 #### <LTE Band 5> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up
limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------|------| | | Cha | nnel | | 20450 | 20525 | 20600 | (dBm) | (dB) | | | Frequen | cy (MHz) | | 829 | 836.5 | 844 | | | | 10 | QPSK | 1 | 0 | 22.10 | 22.12 | 22.33 | | | | 10 | QPSK | 1 | 25 | 22.19 | 22.45 | 22.35 | 23 | 0 | | 10 | QPSK | 1 | 49 | 22.18 | 22.28 | 21.82 | | | | 10 | QPSK | 25 | 0 | 21.15 | 21.15 | 21.11 | | | | 10 | QPSK | 25 | 12 | 21.05 | 21.38 | 21.00 | 22 | 1 | | 10 | QPSK | 25 | 25 | 21.16 | 21.40 | 21.18 | 22 | ı | | 10 | QPSK | 50 | 0 | 21.00 | 21.27 | 21.08 | | | | 10 | 16QAM | 1 | 0 | 21.38 | 21.44 | 21.36 | | | | 10 | 16QAM | 1 | 25 | 21.31 | 21.73 | 21.05 | 22 | 1 | | 10 | 16QAM | 1 | 49 | 21.37 | 21.47 | 21.07 | | | | 10 | 16QAM | 25 | 0 | 20.15 | 20.22 | 20.19 | | 2 | | 10 | 16QAM | 25 | 12 | 20.14 | 20.34 | 20.09 | 21 | | | 10 | 16QAM | 25 | 25 | 20.13 | 20.32 | 19.98 | 21 | | | 10 | 16QAM | 50 | 0 | 20.02 | 20.33 | 20.21 | | | | | Cha | nnel | | 20425 | 20525 | 20625 | Tune-up | MPR | | | Frequen | cy (MHz) | | 826.5 | 836.5 | 846.5 | limit
(dBm) | (dB) | | 5 | QPSK | 1 | 0 | 22.07 | 22.13 | 21.99 | | | | 5 | QPSK | 1 | 12 | 22.07 | 22.31 | 22.00 | 23 | 0 | | 5 | QPSK | 1 | 24 | 22.08 | 22.24 | 21.75 | | | | 5 | QPSK | 12 | 0 | 21.23 | 21.37 | 21.10 | | | | 5 | QPSK | 12 | 7 | 21.11 | 21.58 | 21.09 | 22 | 1 | | 5 | QPSK | 12 | 13 | 21.10 | 21.49 | 21.13 | 22 | ı | | 5 | QPSK | 25 | 0 | 21.14 | 21.31 | 21.02 | | | | 5 | 16QAM | 1 | 0 | 21.15 | 21.16 | 20.91 | | | | 5 | 16QAM | 1 | 12 | 21.15 | 21.38 | 21.09 | 22 | 1 | | 5 | 16QAM | 1 | 24 | 21.06 | 21.33 | 21.04 | | | | 5 | 16QAM | 12 | 0 | 20.39 | 20.53 | 20.25 | | | | 5 | 16QAM | 12 | 7 | 20.11 | 20.70 | 20.30 | 21 | 2 | | 5 | 16QAM | 12 | 13 | 20.34 | 20.63 | 20.26 | ۷۱ | 2 | | 5 | 16QAM | 25 | 0 | 20.30 | 20.43 | 20.15 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 32 of 47 ## SPORTON LAB. FCC SAR Test Report | | Cha | nnel | | 20415 | 20525 | 20635 | Tune-up | MPR | |-----|---------|----------|----|-------|-------|-------|------------------|------| | | Frequen | cy (MHz) | | 825.5 | 836.5 | 847.5 | limit
(dBm) | (dB) | | 3 | QPSK | 1 | 0 | 22.16 | 22.29 | 22.14 | | | | 3 | QPSK | 1 | 8 | 22.11 | 22.44 | 22.08 | 23 | 0 | | 3 | QPSK | 1 | 14 | 22.21 | 22.32 | 21.84 | | | | 3 | QPSK | 8 | 0 | 21.26 | 21.47 | 21.12 | | | | 3 | QPSK | 8 | 4 | 21.23 | 21.48 | 21.16 | 00 | 1 | | 3 | QPSK | 8 | 7 | 21.12 | 21.52 | 21.11 | 22 | ' | | 3 | QPSK | 15 | 0 | 21.15 | 21.36 | 21.08 | | | | 3 | 16QAM | 1 | 0 | 21.52 | 21.73 | 21.44 | | | | 3 | 16QAM | 1 | 8 | 21.46 | 21.69 | 21.34 | 22 | 1 | | 3 | 16QAM | 1 | 14 | 21.42 | 21.69 | 21.01 | | | | 3 | 16QAM | 8 | 0 | 20.29 | 20.53 | 20.16 | | | | 3 | 16QAM | 8 | 4 | 20.24 | 20.40 | 20.12 | 21 | 2 | | 3 | 16QAM | 8 | 7 | 20.26 | 20.45 | 20.04 | 21 | 2 | | 3 | 16QAM | 15 | 0 | 20.32 | 20.55 | 20.22 | | | | | Channel | | | 20407 | 20525 | 20643 | Tune-up
limit | MPR | | | Frequen | cy (MHz) | | 824.7 | 836.5 | 848.3 | (dBm) | (dB) | | 1.4 | QPSK | 1 | 0 | 22.21 | 22.40 | 22.13 | | | | 1.4 | QPSK | 1 | 3 | 22.15 | 22.25 | 22.02 | | | | 1.4 | QPSK | 1 | 5 | 22.09 | 22.24 | 21.98 | 23 | 0 | | 1.4 | QPSK | 3 | 0 | 22.21 | 22.27 | 22.12 | 25 | U | | 1.4 | QPSK | 3 | 1 | 22.09 | 22.23 | 22.04 | | | | 1.4 | QPSK | 3 | 3 | 22.13 | 22.20 | 22.03 | | | | 1.4 | QPSK | 6 | 0 | 21.14 | 21.20 | 21.04 | 22 | 1 | | 1.4 | 16QAM | 1 | 0 | 21.46 | 21.54 | 21.29 | | | | 1.4 | 16QAM | 1 | 3 | 21.53 | 21.63 | 21.29 | | | | 1.4 | 16QAM | 1 | 5 | 21.38 | 21.62 | 21.22 | 22 | 1 | | 1.4 | 16QAM | 3 | 0 | 21.24 | 21.40 | 21.19 | | | | 1.4 | 16QAM | 3 | 1 | 21.08 | 21.48 | 21.12 | | | | 1.4 | 16QAM | 3 | 3 | 21.07 | 21.41 | 21.08 | | | | 1.4 | 16QAM | 6 | 0 | 20.31 | 20.48 | 20.26 | 21 | 2 | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 33 of 47 #### <LTE Band 17> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up
limit | MPR | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|------------------|------| | | Cha | nnel | | 23780 | 23790 | 23800 | (dBm) | (dB) | | | Frequen | cy (MHz) | | 709 | 710 | 711 | | | | 10 | QPSK | 1 | 0 | 22.95 | 23.00 | 23.05 | | | | 10 | QPSK | 1 | 25 | 23.02 | 23.09 | 23.07 | 23.5 | 0 | | 10 | QPSK | 1 | 49 | 22.88 | 22.86 | 22.64 | | | | 10 | QPSK | 25 | 0 | 22.00 | 22.01 | 22.00 | | | | 10 | QPSK | 25 | 12 | 21.97 | 21.90 | 21.94 | 22.5 | 1 | | 10 | QPSK | 25 | 25 | 21.88 | 21.90 | 21.81 | 22.5 | | | 10 | QPSK | 50 | 0 | 21.87 | 21.92 | 21.91 | | | | 10 | 16QAM | 1 | 0 | 22.25 | 22.13 | 22.26 | | | | 10 | 16QAM | 1 | 25 | 22.29 | 22.20 | 22.16 | 22.5 | 1 | | 10 | 16QAM | 1 | 49 | 22.15 | 22.09 | 21.69 | | | | 10 | 16QAM | 25 | 0 | 21.00 | 20.99 | 20.98 | | 2 | | 10 | 16QAM | 25 | 12 | 20.97 | 20.95 | 20.94 | 04.5 | | | 10 | 16QAM | 25 | 25 | 21.00 | 20.90 | 20.92 | 21.5 | | | 10 | 16QAM | 50 | 0 | 20.98 | 20.92 | 20.92 | | | | | Cha | nnel | | 23755 | 23790 | 23825 | Tune-up | MPR | | | Frequen | cy (MHz) | | 706.5 | 710 | 713.5 | limit
(dBm) | (dB) | | 5 | QPSK | 1 | 0 | 23.07 | 22.89 | 22.97 | | | | 5 | QPSK | 1 | 12 | 23.08 | 23.06 | 22.98 | 23.5 | 0 | | 5 | QPSK | 1 | 24 | 23.02 | 22.96 | 22.44 | | | | 5 | QPSK | 12 | 0 | 22.09 | 22.07 | 21.99 | | | | 5 | QPSK | 12 | 7 | 22.09 | 22.02 | 21.98 | 22.5 | 1 | | 5 | QPSK | 12 | 13 | 22.16 | 22.08 | 21.73 | 22.5 | l | | 5 | QPSK | 25 | 0 | 22.14 | 21.99 | 21.78 | | | | 5 | 16QAM | 1 | 0 | 22.29 | 22.07 | 22.13 | | | | 5 | 16QAM | 1 | 12 | 22.44 | 22.26 | 22.22 | 22.5 | 1 | | 5 | 16QAM | 1 | 24 | 22.40 | 22.22 | 21.70 | | | | 5 | 16QAM | 12 | 0 | 21.21 | 21.12 | 21.14 | | | | 5 | 16QAM | 12 | 7 | 21.14 | 21.07 | 21.03 | 01.5 | 0 | | 5 | 16QAM | 12 | 13 | 21.19 | 21.15 | 20.79 | 21.5 | 2 | | 5 | 16QAM | 25 | 0 | 21.13 | 20.99 | 20.89 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 34 of 47 #### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to
determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA5D2302 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. #### <2.4GHz WLAN> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | | |--------------|--------------|---------|--------------------|-----------|---------------------|------------------|--------------|--| | | | CH 1 | 2412 | | 16.27 | 17.00 | | | | | 802.11b | CH 6 | 2437 | 1Mbps | 16.17 | 17.00 | 97.61 | | | 2.4GHz WLAN | | CH 11 | 2462 | | 15.98 | 16.50 | | | | 2.4GHZ WLAIN | | CH 1 | 2412 | | 15.59 | 16.00 | 87.46 | | | | 802.11g | CH 6 | 2437 | 6Mbps | 15.44 | 16.00 | | | | | | CH 11 | 2462 | | 15.20 | 16.00 | | | | | 802.11n-HT20 | CH 1 | 2412 | | 14.80 | 15.00 | | | | | | CH 6 | 2437 | MCS0 | 14.67 | 15.00 | 85.94 | | | | | CH 11 | 2462 | | 14.37 | 15.00 | | | Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 36 of 47 # <2.4GHz Bluetooth> #### **General Note:** - 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. - 2. The duty factor is selected theoretical 83.3% perform Bluetooth SAR testing. | Mode | Channal | Frequency | · · | Tune-Up | | | |---------------|---------|-----------|-------------------|---------|-------|-------| | Mode | Channel | (MHz) | 1Mbps | 2Mbps | 3Mbps | Limit | | | CH 00 | 2402 | <mark>9.16</mark> | 5.72 | 5.73 | 10.0 | | V3.0 with EDR | CH 39 | 2441 | 8.62 | 5.65 | 5.66 | 9.0 | | | CH 78 | 2480 | 7.77 | 4.96 | 4.96 | 8.0 | Report No.: FA5D2302 | Mode | Channel | Frequency
(MHz) | Average power (dBm)
GFSK | Tune-Up
Limit | |--------------|---------|--------------------|-----------------------------|------------------| | | CH 00 | 2402 | <mark>7.76</mark> | | | v4.0 with LE | CH 19 | 2440 | 7.26 | 8.0 | | | CH 39 | 2480 | 6.43 | | # 13. Antenna Location Report No.: FA5D2302 TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 38 of 47 # 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA5D2302 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. #### **UMTS Note:** - 1. Per KDB 941225 D01v03r01, SAR for Body exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". - Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA #### LTE Note: - 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B5 / B4 /B17 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 FCC ID: V5PS920FDD-LTE Page 39 of 47 Form version.: 151208 ### SPORTON LAB. FCC SAR Test Report #### **WLAN Note:** 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Report No.: FA5D2302 - 2. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 3. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 4. During SAR testing the WLAN transmission was verified using a spectrum analyzer. # 14.1 Body SAR # <WCDMA SAR> | Plot
No. | Band | Mode |
Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|--------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 1 | WCDMA Band V | RMC 12.2Kbps | Front | 0mm | 4132 | 826.4 | 23.10 | 23.50 | 1.096 | -0.05 | 0.674 | 0.739 | | | WCDMA Band V | RMC 12.2Kbps | Back | 0mm | 4132 | 826.4 | 23.10 | 23.50 | 1.096 | -0.07 | 0.37 | 0.406 | | 2 | WCDMA Band IV | RMC 12.2Kbps | Front | 0mm | 1413 | 1732.6 | 22.53 | 23.00 | 1.114 | -0.07 | 0.576 | 0.642 | | | WCDMA Band IV | RMC 12.2Kbps | Back | 0mm | 1413 | 1732.6 | 22.53 | 23.00 | 1.114 | 0.12 | 0.228 | 0.254 | | 3 | WCDMA Band II | RMC 12.2Kbps | Front | 0mm | 9538 | 1907.6 | 22.64 | 23.00 | 1.086 | -0.06 | 0.463 | 0.503 | | | WCDMA Band II | RMC 12.2Kbps | Back | 0mm | 9538 | 1907.6 | 22.64 | 23.00 | 1.086 | 0.04 | 0.286 | 0.311 | Report No.: FA5D2302 ### <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 4 | LTE Band 17 | 10M | QPSK | 1 | 25 | Front | 0mm | 23790 | 710 | 23.09 | 23.50 | 1.099 | 0.16 | 0.537 | 0.590 | | | LTE Band 17 | 10M | QPSK | 1 | 25 | Back | 0mm | 23790 | 710 | 23.09 | 23.50 | 1.099 | -0.15 | 0.236 | 0.259 | | | LTE Band 17 | 10M | QPSK | 25 | 0 | Front | 0mm | 23790 | 710 | 22.01 | 22.50 | 1.119 | -0.08 | 0.453 | 0.507 | | | LTE Band 17 | 10M | QPSK | 25 | 0 | Back | 0mm | 23790 | 710 | 22.01 | 22.50 | 1.119 | -0.14 | 0.199 | 0.223 | | 5 | LTE Band 5 | 10M | QPSK | 1 | 25 | Front | 0mm | 20525 | 836.5 | 22.45 | 23.00 | 1.135 | -0.04 | 0.613 | 0.696 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Back | 0mm | 20525 | 836.5 | 22.45 | 23.00 | 1.135 | 0.05 | 0.211 | 0.239 | | | LTE Band 5 | 10M | QPSK | 25 | 25 | Front | 0mm | 20525 | 836.5 | 21.40 | 22.00 | 1.148 | -0.09 | 0.553 | 0.635 | | | LTE Band 5 | 10M | QPSK | 25 | 25 | Back | 0mm | 20525 | 836.5 | 21.40 | 22.00 | 1.148 | -0.09 | 0.199 | 0.228 | | 6 | LTE Band 4 | 20M | QPSK | 1 | 49 | Front | 0mm | 20175 | 1732.5 | 22.04 | 22.50 | 1.112 | -0.15 | 0.539 | 0.599 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Back | 0mm | 20175 | 1732.5 | 22.04 | 22.50 | 1.112 | 0.02 | 0.222 | 0.247 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 0mm | 20175 | 1732.5 | 20.95 | 21.50 | 1.135 | 0.06 | 0.449 | 0.510 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 0mm | 20175 | 1732.5 | 20.95 | 21.50 | 1.135 | -0.06 | 0.181 | 0.205 | | 7 | LTE Band 2 | 20M | QPSK | 1 | 49 | Front | 0mm | 19100 | 1900 | 22.29 | 23.00 | 1.178 | 0.11 | 0.408 | 0.480 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Back | 0mm | 19100 | 1900 | 22.29 | 23.00 | 1.178 | -0.08 | 0.331 | 0.390 | | | LTE Band 2 | 20M | QPSK | 50 | 50 | Front | 0mm | 19100 | 1900 | 21.39 | 22.00 | 1.151 | 0.18 | 0.348 | 0.400 | | | LTE Band 2 | 20M | QPSK | 50 | 50 | Back | 0mm | 19100 | 1900 | 21.39 | 22.00 | 1.151 | -0.07 | 0.257 | 0.296 | ### <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b
1Mbps | Front | 0mm | 1 | 2412 | 16.27 | 17.00 | 1.184 | 97.61 | 1.025 | -0.01 | 0.034 | 0.041 | | 8 | WLAN2.4GHz | 802.11b
1Mbps | Back | 0mm | 1 | 2412 | 16.27 | 17.00 | 1.184 | 97.61 | 1.025 | -0.08 | 0.378 | 0.459 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 41 of 47 # <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Posit
ion | Gap
(mm
) | Ch | Freq.
(MHz
) | Average
Power
(dBm) | Tune-U
p
Limit
(dBm) | Tune-up
Scaling
Factor | Powe
r
Drift
(dB) | Measure
d 1g SAR
(W/kg) | Reporte
d
1g SAR
(W/kg) | |-------------|-----------|-------|----------------------|-----------------|----|--------------------|---------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|----------------------------------| | | Bluetooth | 1Mbps | Front | 0mm | 0 | 2402 | 9.16 | 10.00 | 1.212 | -0.18 | 0.00569 | 0.007 | | 9 | Bluetooth | 1Mbps | Back | 0mm | 0 | 2402 | 9.16 | 10.00 | 1.212 | 0.06 | 0.06 | 0.073 | TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 FCC ID: V5PS920FDD-LTE Page 42 of 47 Issued Date : Jan. 21, 2016 Form version. : 151208 Report No.: FA5D2302 # 15. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | Body | |-----|--|------| | 1. | WCDMA + WLAN2.4GHz | Yes | | 2. | LTE + WLAN2.4GHz | Yes | | 3. | WCDMA+ Bluetooth | Yes | | 4. | LTE + Bluetooth | Yes | Report No.: FA5D2302 #### **General Note:** - EUT will choose each WCDMA and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment. - 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously. - The Reported SAR summation is calculated based on the same configuration and test position. 3. - Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date: Jan. 21, 2016 FCC ID: V5PS920FDD-LTE Form version.: 151208 Page 43 of 47 # 15.1 Body Exposure Conditions | | | | 1 | 2 | 3 | | | |----------|------------------|----------|------------------|------------------|-------------------------------|-------------------|-------------------| | W' | WAN Band | Exposure | WWAN | 2.4GHz
WLAN | Bluetooth | 1+2
Summed | 1+3
Summed | | | | Position | 1g SAR
(W/kg) | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | WCDMA Band V | Front | 0.739 | 0.041 | 0.007 | 0.78 | <mark>0.75</mark> | | | WODINA Band V | Back | 0.406 | 0.459 | 0.073 | <mark>0.87</mark> | 0.48 | | WCDMA | WCDMA Band IV | Front | 0.642 | 0.041 | 0.007 | 0.68 | 0.65 | | VVCDIVIA | WODIVIA BAIIG IV | Back | 0.254 | 0.459 | 0.073 | 0.71 | 0.33 | | | | Front | 0.503 | 0.041 | 0.007 | 0.54 | 0.51 | | | WCDMA Band II | Back | 0.311 | 0.459 | 0.073 | 0.77 | 0.38 | | | LTE Band 17 | Front | 0.590 | 0.041 | 0.007 | 0.63 | 0.60 | | | LIE Ballu 17 | Back | 0.259 | 0.459 | 0.073 | 0.72 | 0.33 | | | LTE Band 5 | Front | 0.696 | 0.041 | 0.007 | 0.74 | 0.70 | | LTE | LIE Ballo 5 | Back | 0.239 | 0.459 | 0.073 | 0.70 | 0.31 | | LIE | LTE Band 4 | Front | 0.599 | 0.041 | 0.007 | 0.64 | 0.61 | | | LIE Band 4 | Back | 0.247 | 0.459 | 0.073 | 0.71 | 0.32 | | | LTE Band 2 | Front | 0.480 | 0.041 | 0.007 | 0.52 | 0.49 | | | LIE Band 2 | Back | 0.390 | 0.459 | 0.073 | 0.85 | 0.46 | Report No.: FA5D2302 Test Engineer: Luke Lu TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 44 of 47 # 16. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA5D2302 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments,
manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 16.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | rt | |----| | | | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Ν | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 2.9 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Max. SAR Eval. | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Test Sample Related | | | | | | | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.6 | N | 1 | 1 | 1 | 3.6 | 3.6 | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.1 | R | 1.732 | 1 | 1 | 3.5 | 3.5 | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.2 | Ν | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | Liquid Permittivity Repeatability | 0.15 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Cor | nbined Std. Un | certainty | | | | 11.4% | 11.4% | | Co | K=2 | K=2 | | | | | | | Exp | anded STD Un | certainty | | | | 22.9% | 22.7% | Report No.: FA5D2302 Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: 86-755-8637-9589 / FAX: 86-755-8637-9595 Issued Date : Jan. 21, 2016 Form version. : 151208 FCC ID: V5PS920FDD-LTE Page 46 of 47 # 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA5D2302 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [9] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [10] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. # Appendix A. Plots of System Performance Check Report No.: FA5D2302 The plots are shown as follows. SPORTON INTERNATIONAL (SHENZHEN) INC. # System Check_Body_750MHz_151225 # **DUT: Dipole 750 MHz** Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL_750_151225 Medium parameters used: f = 750 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 53.934$; $\rho =$ Date: 2015.12.25 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.69, 9.69, 9.69); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.81 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.84 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.28 W/kg SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.52 W/kg Maximum value of SAR (measured) = 2.83 W/kg # System Check_Body_835MHz_151225 ### **DUT: Dipole 835 MHz** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL_835_151225 Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\epsilon_r = 54.086$; $\rho = 1$ Date: 2015.12.25 1000 kg/m^3 Ambient Temperature: 23.6 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.47, 9.47, 9.47); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.61 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.47 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.57 W/kg # System Check_Body_1750MHz_151224 # **DUT: Dipole 1750 MHz** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL_1800_151224 Medium parameters used: f = 1750 MHz; $\sigma = 1.514$ S/m; $\epsilon_r = 53.575$; ρ Date: 2015.12.24 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.9 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 94.70 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.9 W/kgMaximum value of SAR (measured) = 12.8 W/kg # System Check_Body_1900MHz_151224 #### **DUT: D1900V2** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_151224 Medium parameters used: f = 1900 MHz; $\sigma = 1.525$ S/m; $\epsilon_r = 54.504$; ρ Date: 2015.12.24 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.2 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.32 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.14 W/kg
Maximum value of SAR (measured) = 14.3 W/kg # System Check_Body_2450MHz_160104 # **DUT: Dipole 2450 MHz** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_160104 Medium parameters used: f = 2450 MHz; $\sigma = 1.949$ S/m; $\epsilon_r = 51.667$; ρ Date: 2016.01.04 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.08, 7.08, 7.08); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 21.7 W/kg Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.30 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 22.1 W/kg # Appendix B. Plots of High SAR Measurement Report No.: FA5D2302 The plots are shown as follows. SPORTON INTERNATIONAL (SHENZHEN) INC. # 1_WCDMA V_RMC 12.2Kbps_Front_0mm_Ch4132 Communication System: UID 0, UMTS (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: MSL_835_151225 Medium parameters used: f = 826.4 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.181$; $\rho =$ Date: 2015.12.25 1000 kg/m^3 Ambient Temperature: 23.6 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.47, 9.47, 9.47); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4132/Area Scan (81x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.895 W/kg Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.030 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.674 W/kg; SAR(10 g) = 0.416 W/kg Maximum value of SAR (measured) = 0.892 W/kg # 2_WCDMA IV_RMC 12.2Kbps_Front_0mm_Ch1413 Communication System: UID 0, UMTS (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL_1800_151224 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.496$ S/m; $\epsilon_r = 53.644$; $\rho = 1000$ kg/m3 Date: 2015.12.24 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1413/Area Scan (81x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.655 W/kg Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.367 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.314 W/kg Maximum value of SAR (measured) = 0.735 W/kg # 3_WCDMA II_RMC 12.2Kbps_Front_0mm_Ch9538 Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_151224 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.532$ S/m; $\epsilon_r = 54.489$; $\rho = 1000$ kg/m3 Date: 2015.12.24 Ambient Temperature : 23.5 °C; Liquid Temperature : 22.7 °C # DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9538/Area Scan (81x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.575 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.130 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.696 W/kg SAR(1 g) = 0.463 W/kg; SAR(10 g) = 0.275 W/kg Maximum value of SAR (measured) = 0.577 W/kg # 4_LTE Band 17_10M_QPSK_1RB_25Offset_Front_0mm_Ch23790 Communication System: UID 0, LTE (0); Frequency: 710 MHz; Duty Cycle: 1:1 Medium: MSL_750_151225 Medium parameters used: f = 710 MHz; $\sigma = 0.934$ S/m; $\varepsilon_r = 54.822$; $\rho =$ Date: 2015.12.25 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.69, 9.69, 9.69); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch23790/Area Scan (81x131x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.680 W/kg Ch23790/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.610 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.810 W/kg SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.358 W/kg Maximum value of SAR (measured) = 0.668 W/kg # 5_LTE Band 5_10M_QPSK_1RB_25Offset_Front_0mm_Ch20525 Communication System: UID 0, LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL 835 151225 Medium parameters used: f = 836.5 MHz; $\sigma = 1.002$ S/m; $\varepsilon_r = 54.071$; ρ Date: 2015.12.25 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(9.47, 9.47, 9.47); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch20525/Area Scan (81x131x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.813 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.941 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.996 W/kg SAR(1 g) = 0.613 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 0.810 W/kg # 6_LTE Band 4_20M_QPSK_1RB_49Offset_Front_0mm_Ch20175 Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: MSL 1800 151224 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.496$ S/m; $\varepsilon_r = 53.649$; Date: 2015.12.24 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.71, 7.71, 7.71); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch20175/Area Scan (81x131x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.623 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.227 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.951 W/kg SAR(1 g) = 0.539 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 0.712 W/kg # 7_LTE Band 2_20M_QPSK_1RB_49Offset_Front_0mm_Ch19100 Communication System: UID 0, LTE (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_151224 Medium parameters used: f = 1900 MHz; $\sigma = 1.525$ S/m; $\varepsilon_r = 54.504$; ρ Date: 2015.12.24 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.39, 7.39, 7.39); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch19100/Area Scan (81x131x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.546 W/kg Ch19100/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.129 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.614 W/kg SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.250 W/kg Maximum value of SAR (measured) = 0.514 W/kg # 8_WLAN2.4GHz_802.11b 1Mbps_Back_0mm_Ch1 Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.025 Medium: MSL_2450_160104 Medium parameters used: f = 2412 MHz; $\sigma = 1.899$ S/m; $\varepsilon_r = 51.803$; ρ Date: 2016.01.04 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.08, 7.08, 7.08); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1/Area Scan (101x161x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.533 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.041 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.707 W/kg SAR(1 g) = 0.378 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 0.542 W/kg # 9_Bluetooth_DH5_Back_0mm_Ch0 Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz; Duty Cycle: 1:1.2 Medium: MSL_2450_160104 Medium parameters used: f = 2402 MHz; $\sigma = 1.885$ S/m; $\varepsilon_r = 51.834$; ρ Date: 2016.01.04 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3819; ConvF(7.08, 7.08, 7.08); Calibrated: 2015.11.27; - Sensor-Surface: 2mm
(Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2015.11.24 - Phantom: SAM3; Type: QDOVA002AA; Serial: TP:1149 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch0/Area Scan (101x161x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.0883 W/kg Ch0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.5490 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.113 W/kg SAR(1 g) = 0.060 W/kg; SAR(10 g) = 0.031 W/kg Maximum value of SAR (measured) = 0.0862 W/kg