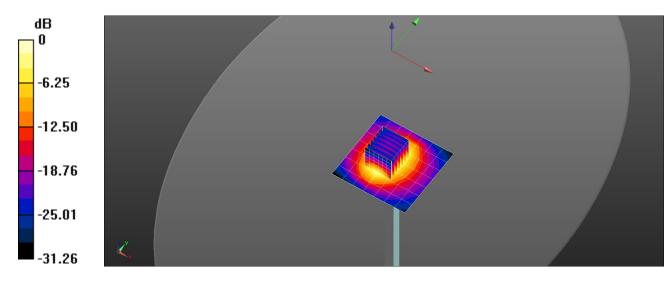
System Performance Check-D2450V2

Frequency: 2450 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 2450 MHz; σ = 1.814 S/m; ϵ_r = 38.557; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(5.13, 5.13, 5.13) @ 5200 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Head/Pin=250mW/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 21.0 W/kg

Head/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.9 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.61 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 48.4%

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 21.0 W/kg = 13.21 dBW/kg

System Check_H5G

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 5200 MHz; σ = 4.666 S/m; ϵ_r = 37.368; ρ = 1000 kg/m³ DASY5 Configuration:

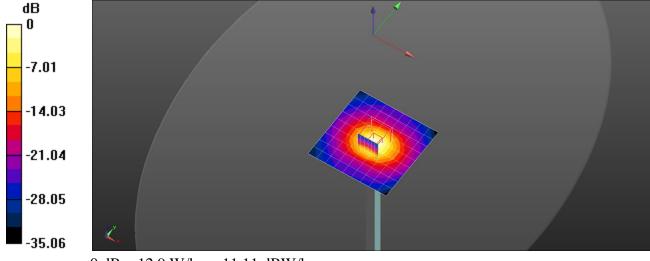
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(5.13, 5.13, 5.13) @ 5200 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.9 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm


Reference Value = 60.45 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.23 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 55.4%

Maximum value of SAR (measured) = 19.3 W/kg

0 dB = 12.9 W/kg = 11.11 dBW/kg

System Check_H5G

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 5300 MHz; σ = 4.804 S/m; ϵ_r = 37.06; ρ = 1000 kg/m³ DASY5 Configuration:

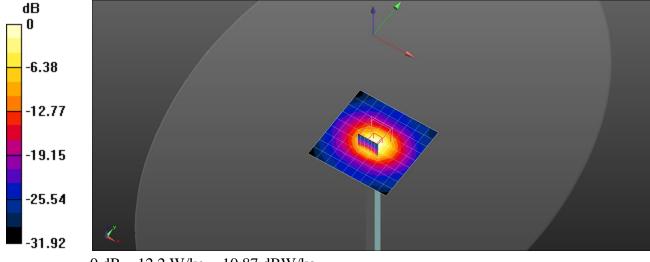
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.96, 4.96, 4.96) @ 5300 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.2 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm


Reference Value = 58.83 V/m; Power Drift = 0.27 dB Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 12.2 W/kg = 10.87 dBW/kg

System Check_H5G

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 5600 MHz; σ = 5.179 S/m; ϵ_r = 36.212; ρ = 1000 kg/m³ DASY5 Configuration:

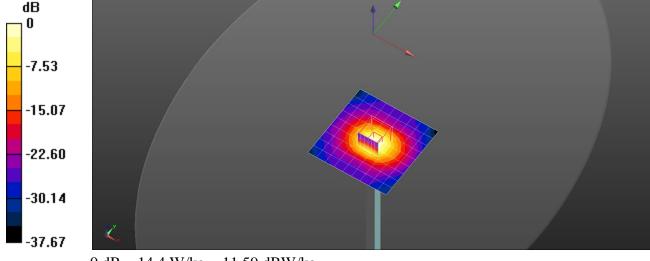
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4
- Probe: EX3DV4 SN7369; ConvF(4.7, 4.7, 4.7) @ 5600 MHz; Calibrated: 2020/5/29
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14.4 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm


Reference Value = 61.65 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 37.7 W/kg

SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.4 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 50.4%

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 14.4 W/kg = 11.59 dBW/kg

System Check_H5G_band 4

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid Temperature: 22.0°C Medium parameters used: f = 5800 MHz; σ = 5.432 S/m; ϵ_r = 35.626; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Electronics: DAE4 Sn1486; Calibrated: 2020/6/4

- Probe: EX3DV4 - SN7369; ConvF(4.68, 4.68, 4.68) @ 5800 MHz; Calibrated: 2020/5/29

- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)

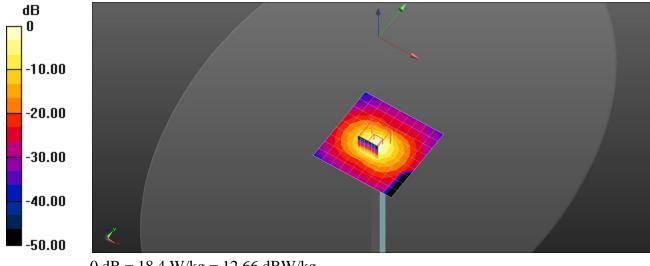
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 18.4 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm


Reference Value = 51.85 V/m; Power Drift = 0.89 dB Peak SAR (extrapolated) = 37.4 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.2%

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 18.4 W/kg = 12.66 dBW/kg