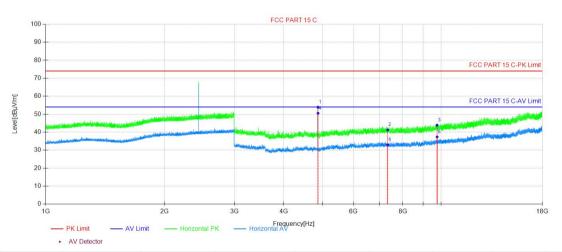

Report No.: DNT240222R0359-0793

Date: February 29, 2024

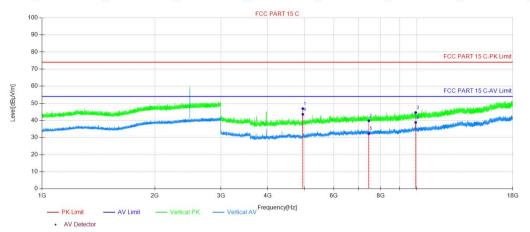
Page: 26 / 65


DH5 2441MHz

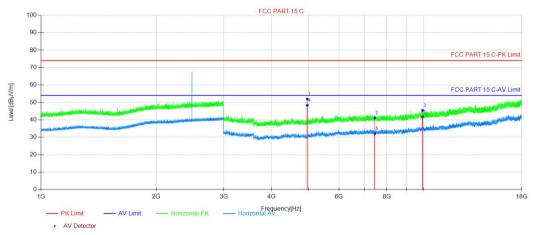
Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4882.59	48.60	-1.72	46.88	74.00	27.12	150	282	Peak
2	7323.21	38.00	2.47	40.47	74.00	33.53	150	0	Peak
3	9764.58	36.49	6.42	42.91	74.00	31.09	150	0	Peak
4	4882.59	45.73	-1.72	44.01	54.00	9.99	150	282	AV
5	7323.21	30.76	2.47	33.23	54.00	20.77	150	40	AV
6	9764.58	29.26	6.42	35.68	54.00	18.32	150	307	AV

Horizontal:


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	55.62	-1.73	53.89	74.00	20.11	150	229	Peak
2	7323.21	38.81	2.47	41.28	74.00	32.72	140	0	Peak
3	9764.58	37.42	6.42	43.84	74.00	30.16	150	270	Peak
4	4882.59	52.26	-1.72	50.54	54.00	3.46	150	251	AV
5	7323.21	30.50	2.47	32.97	54.00	21.03	150	24	AV
6	9764.58	30.95	6.42	37.37	54.00	16.63	150	166	AV

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 27 / 65


DH5 2480MHz

Vertical:

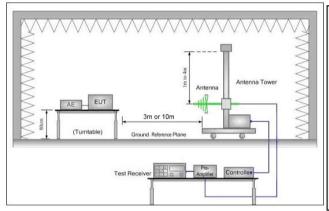
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	48.65	-1.76	46.89	74.00	27.11	150	303	Peak
2	7440.22	37.01	2.73	39.74	74.00	34.26	150	1	Peak
3	9920.59	38.39	6.19	44.58	74.00	29.42	150	313	Peak
4	4960.59	45.31	-1.75	43.56	54.00	10.44	150	303	AV
5	7440.22	29.51	2.73	32.24	54.00	21.76	150	89	AV
6	9920.59	32.58	6.19	38.77	54.00	15.23	150	160	AV

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	53.73	-1.76	51.97	74.00	22.03	150	151	Peak
2	7440.22	38.44	2.73	41.17	74.00	32.83	150	99	Peak
3	9919.84	39.24	6.20	45.44	74.00	28.56	150	162	Peak
4	4960.59	50.15	-1.75	48.40	54.00	5.60	150	162	AV
5	7440.22	29.37	2.73	32.10	54.00	21.90	150	342	AV
6	9920.59	35.43	6.19	41.62	54.00	12.38	150	173	AV

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 28 / 65

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, only the worst case was reported.

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 29 / 65

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,							
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak							
	88MHz-216MHz	43.5	Quasi-peak							
	216MHz-960MHz	46.0	Quasi-peak							
	960MHz-1GHz	54.0	Quasi-peak							
	Above 4011=	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Test Setup:										

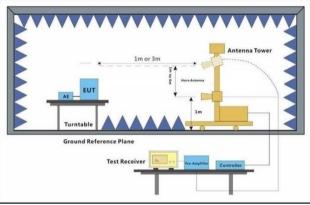


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

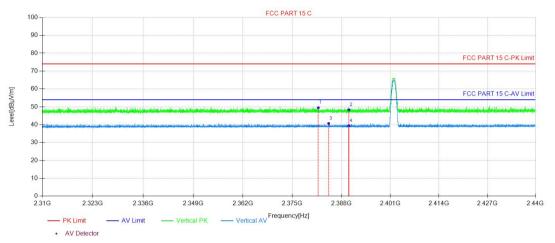
Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.

1			
\		Report No.: D	NT240222R0359-0793 Date: February 29, 2024 Page: 30 / 65
			 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold
			Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz
			 Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz
			 RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum
			transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
	Explorator	ry Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
	Final Test	Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the 3DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
	Instrumen	ts Used:	Refer to section 2.9 for details

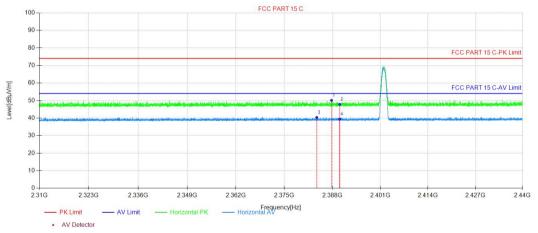
Test Results:

Pass



Test Date
DH5 2402MHz

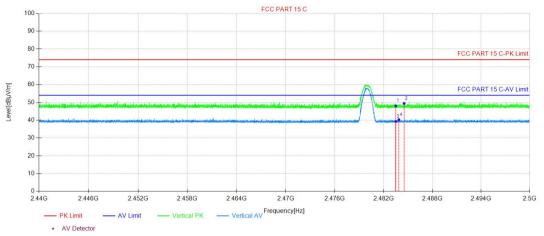
Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 31 / 65


DITIS Z-TOZIVII

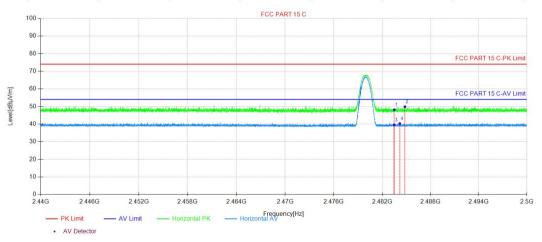
Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2381.89	48.14	1.36	49.50	74.00	24.50	150	360	Peak
2	2390.01	46.95	1.37	48.32	74.00	25.68	150	1	Peak
3	2384.64	39.30	1.37	40.67	54.00	13.33	150	360	AV
4	2390.01	38.06	1.37	39.43	54.00	14.57	150	309	AV

Horizontal:


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2387.77	48.76	1.37	50.13	74.00	23.87	150	284	Peak
2	2390.01	46.47	1.37	47.84	74.00	26.16	150	93	Peak
3	2383.76	39.02	1.36	40.38	54.00	13.62	150	93	AV
4	2390.01	38.09	1.37	39.46	54.00	14.54	150	93	AV

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 32 / 65


DH5 2480MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	46.17	1.86	48.03	74.00	25.97	150	359	Peak
2	2484.52	47.58	1.86	49.44	74.00	24.56	150	360	Peak
3	2483.50	37.43	1.86	39.29	54.00	14.71	150	262	AV
4	2483.87	38.49	1.86	40.35	54.00	13.65	150	359	AV

Horizontal:

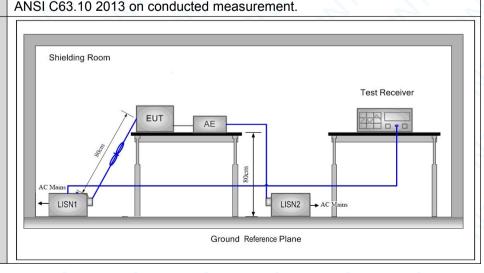
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	46.31	1.86	48.17	74.00	25.83	150	66	Peak
2	2484.82	48.01	1.86	49.87	74.00	24.13	150	1	Peak
3	2483.50	37.71	1.86	39.57	54.00	14.43	150	44	AV
4	2484.18	38.43	1.86	40.29	54.00	13.71	150	66	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor)

2. All channels had been pre-test, only the worst case was reported.



Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 33 / 65

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	15.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:	F	Limit	(dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the loga	rithm of the frequency.	
	Impedance Stabilization N impedance. The power cate a second LISN 2, which we plane in the same way as multiple socket outlet strip single LISN provided the sum of the single LISN provided the single LISN unit under test and bonde mounted on top of the grow between the closest point the EUT and associated single line in the single LISN provided	the LISN 1 for the unit be was used to connect multiplication of the LISN was not placed upon a non-metall and for floor-standing arranground reference plane, and with a vertical ground reference plane was bonded to the left of the LISN 1 and the Eleguipment was at least 0.8 um emission, the relative interface cables must be classed.	50Ω/50μH + 5Ω linear the EUT were connected to reference and measured. A stiple power cables to a exceeded. The rear eference plane. The rear eference plane. The morizontal ground at the boundary of the ane for LISNs distance was JT. All other units of m from the LISN 2. positions of

Test Setup:

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 34 / 65

Exploratory Test Mode: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	N/A

Note: The wireless function does not work while the prototype is charging.

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 35 / 65

4 Appendix

Appendix A: 20dB Emission Bandwidth

163t Nesuit							
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant1	2402	0.942	2401.541	2402.483		
		2441	0.951	2440.535	2441.486		
		2480	0.882	2479.541	2480.423		
	Ant1	2402	1.281	2401.367	2402.648		
2DH5		2441	1.257	2440.382	2441.639		
		2480	1.266	2479.370	2480.636		
3DH5	Ant1	2402	1.299	2401.355	2402.654		
		2441	1.278	2440.370	2441.648		
		2480	1.260	2479.361	2480.621		

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 36 / 65

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 37 / 65

| Application |

2DH5_Ant1_2441

2DH5 Ant1 2480

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 38 / 65

3DH5_Ant1_2441

3DH5 Ant1 2480

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 39 / 65

Appendix B: Maximum conducted output power

i Cot i Couit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	0.06	≤20.97	PASS
DH5	Ant1	2441	-0.82	≤20.97	PASS
		2480	-1.83	≤20.97	PASS
		2402	0.46	≤20.97	PASS
2DH5	Ant1	2441	-0.4	≤20.97	PASS
		2480	-1.01	≤20.97	PASS
		2402	1.04	≤20.97	PASS
3DH5	Ant1	2441	0.34	≤20.97	PASS
		2480	-0.86	≤20.97	PASS

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 40 / 65

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 41 / 65

Center Freq 2.402000000 GHz | Ref Offset 1231 dB | Ref 30.00 dBm | Ref 30

2DH5_Ant1_2441

2DH5 Ant1 2480

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 42 / 65

| Application |

3DH5_Ant1_2441

3DH5_Ant1_2480

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 43 / 65

Appendix C: Carrier frequency separation

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.178	≥0.951	PASS
2DH5	Ant1	Нор	1.18	≥0.854	PASS
3DH5	Ant1	Нор	0.976	≥0.866	PASS

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 44 / 65

Report No.: DNT240222R0359-0793 Date: February 29, 2024 Page: 45 / 65

Appendix D: Dwell Time

1 oot 1 toout							
Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Hop	0.407	320	0.13	≤0.4	PASS
DH3	Ant1	Нор	1.663	160	0.266	≤0.4	PASS
DH5	Ant1	Нор	2.912	106.67	0.311	≤0.4	PASS
2DH1	Ant1	Нор	0.418	320	0.134	≤0.4	PASS
2DH3	Ant1	Нор	1.669	160	0.267	≤0.4	PASS
2DH5	Ant1	Hop	2.917	106.67	0.311	≤0.4	PASS
3DH1	Ant1	Нор	0.419	320	0.134	≤0.4	PASS
3DH3	Ant1	Нор	1.669	160	0.267	≤0.4	PASS
3DH5	Ant1	Нор	2.920	106.67	0.311	≤0.4	PASS