

FCC Part 15C Test Report FCC ID:2BMQO-DT61C

Applicant:	Shenzhen Zheyin Intelligent Technology Co., Ltd				
Address:	Room 105, Floor 1, No. 111-3, Huangjinshan, Bantian Community, Bantian Street, Longgang District, Shenzhen				
Manufacturer:	Shenzhen Zheyin Intelligent Technology Co., Ltd				
Address:	Room 105, Floor 1, No. 111-3, Huangjinshan, Bantian Community, Bantian Street, Longgang District, Shenzhen				
EUT:	Dog Training Collar				
Trade Mark:	JUGBOW				
Model Number:	DT-61C DT-612C				
Date of Receipt:	Dec. 05, 2024				
Test Date:	Dec. 05, 2024 - Dec. 24, 2024				
Date of Report:	Dec. 24, 2024				
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.				
Address:	101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China				
Applicable Standards:	FCC PART 15 C 15.231 ANSI C63.10:2013				
Test Result:	Pass				
Report Number:	DL-241205020ER				
Prepared (Test Eng	ineer): Alisa Song				
Reviewer (Supervis					
Approved (Manager	+ T - J · L ·				

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	4
1.1 MEASUREMENT UNCERTAINTY	4
2. GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 DESCRIPTION OF TEST MODES	5
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	6
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	6
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	6
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	7
3. EMC EMISSION TEST	8
3.1 CONDUCTED EMISSION MEASUREMENT	8
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	8
3.1.2 TEST PROCEDURE	8
3.1.3 DEVIATION FROM TEST STANDARD	8
3.1.4 TEST SETUP	9
3.1.5 EUT OPERATING CONDITIONS	9
3.1.6 TEST RESULTS	9
3.2 RADIATED EMISSION MEASUREMENT	12
3.2.1 RADIATED EMISSION LIMITS	12
3.2.2 TEST PROCEDURE	13
3.2.3 DEVIATION FROM TEST STANDARD	13
3.2.4 TEST SETUP	14
3.2.5 EUT OPERATING CONDITIONS	15
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	16
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	17
3.2.8 TEST RESULTS (1GHZ~25GHZ)	20
4 . BANDWIDTH TEST	21
4.1 APPLIED PROCEDURES / LIMIT	21
4.1.1 TEST PROCEDURE	21
4.1.2 DEVIATION FROM STANDARD	21
4.1.3 TEST SETUP	21
4.1.4 EUT OPERATION CONDITIONS	21
4.1.5 TEST RESULTS	22
5 . CALCULATION OF AVERAGE FACTOR	23
5.1 APPLIED PROCEDURES / LIMIT	23
5.1.1 TEST PROCEDURE	23
5.1.2 TEST SETUP	23
5.1.3 EUT OPERATION CONDITIONS	23

5.1.3 EUT OPERATION CONDITIONS

Table of Contents	Page
5.1.4 TEST RESULTS	24
6 . TRANSMISSION CEASE TIME	25
6.1 APPLIED PROCEDURES / LIMIT	25
6.1.1 TEST PROCEDURE	25
6.1.2 DEVIATION FROM STANDARD	25
6.1.3 TEST SETUP	25
6.1.4 EUT OPERATION CONDITIONS	25
6.1.5 TEST RESULTS	26
7 . ANTENNA REQUIREMENT	27
7.1 STANDARD REQUIREMENT	27
7.2 EUT ANTENNA	27
8 . TEST SEUUP PHOTO	27
9.EUT PHOTO	27

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.209,15.231b	Fundamental &Radiated Spurious Emission Measurement	PASS			
15.231a	Transmission cease time	PASS			
15.215	20dB Bandwidth	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

 (1)" N/A" denotes test is not applicable in this Test Report
Test lab: Shenzhen DL Testing Technology Co., Ltd. 101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1
Address: Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China
FCC Test Firm Registration Number: 854456
Designation Number: CN1307
IC Registered No.: 27485
CAB ID.: CN0118

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3	Spurious emissions, conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%
8	20dB Bandwidth	±0.2MHz

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	Dog Training Collar
Trademark	JUGBOW
Model No.:	DT-61C DT-612C
Model Difference	All models are same as the samples except model name and appearance color, they have the same structure and circuit.
Operation Frequency:	433.92MHz
Channel numbers:	1 Channels
Modulation technology:	ASK
Antenna Type:	Internal Antenna
Antenna gain:	0.52dBi
Power supply:	DC 5V from adapter DC 3.7V from battery

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.

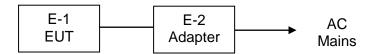
2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode Description				
Mode 1	TX Mode			
For Conducted & Radiated Emission				
Final Test Mode Description				
Mode 1	TX Mode			

Note:

(1) New battery is used during the test



2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Power line conducted emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Dog Training Collar	DT-61C	N/A	EUT
E-2	Adapter	HW-0502000E	N/A	Manufacturer: Shenzhen HAIWEI Technology Co., LTD

Item	Shielded Type	Ferrite Core	Length	Note

Note:

(1) For detachable type I/O cable should be specified the length in cm in $\[Length]$ column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

None.

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 20db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 01, 2024	Oct. 31, 2025
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 01, 2024	Oct. 31, 2025
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 01, 2024	Oct. 31, 2025
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 01, 2024	Oct. 31, 2025
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 01, 2024	Oct. 31, 2025
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 01, 2024	Oct. 31, 2025
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 01, 2024	Oct. 31, 2025
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 01, 2024	Oct. 31, 2025
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 01, 2024	Oct. 31, 2025
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 01, 2024	Oct. 31, 2025
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 01, 2024	Oct. 31, 2025
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 01, 2024	Oct. 31, 2025
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 01, 2024	Oct. 31, 2025
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 01, 2024	Oct. 31, 2025
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 01, 2024	Oct. 31, 2025
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 01, 2024	Oct. 31, 2025

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	YIHENG	843 Room	843	Nov. 05, 2023	Nov. 04, 2026
2	EMI Receiver	R&S	ESR	101421	Nov. 01, 2024	Oct. 31, 2025
3	LISN	R&S	ENV216	102417	Nov. 01, 2024	Oct. 31, 2025
4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 01, 2024	Oct. 31, 2025

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Limit (dB	Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

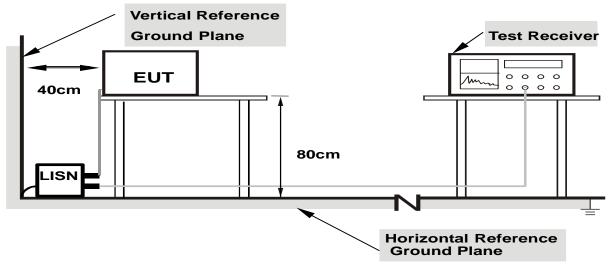
Note:

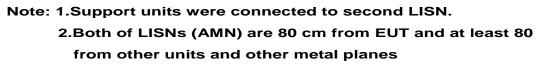
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.3 DEVIATION FROM TEST STANDARD

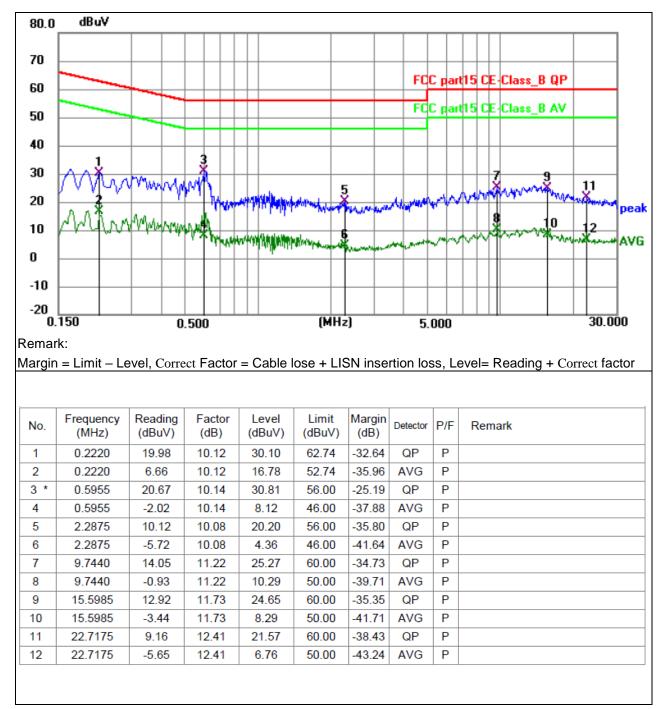
No deviation

3.1.4 TEST SETUP

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

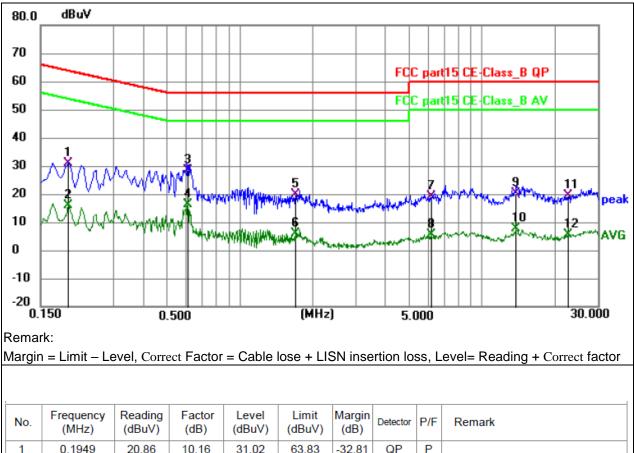
We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.


3.1.6 TEST RESULTS

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-241205020ER

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1



Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-241205020ER

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1

NO.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Delector	"	Remark
1	0.1949	20.86	10.16	31.02	63.83	-32.81	QP	Р	
2	0.1949	5.58	10.16	15.74	53.83	-38.09	AVG	Р	
3 *	0.6090	18.22	10.16	28.38	56.00	-27.62	QP	Р	
4	0.6090	6.05	10.16	16.21	46.00	-29.79	AVG	Р	
5	1.6980	9.76	10.07	19.83	56.00	-36.17	QP	Р	
6	1.6980	-4.30	10.07	5.77	46.00	-40.23	AVG	Р	
7	6.1574	8.43	10.55	18.98	60.00	-41.02	QP	Р	
8	6.1574	-5.04	10.55	5.51	50.00	-44.49	AVG	Р	
9	13.8030	8.76	11.49	20.25	60.00	-39.75	QP	Р	
10	13.8030	-3.88	11.49	7.61	50.00	-42.39	AVG	Р	
11	22.6500	7.39	12.24	19.63	60.00	-40.37	QP	Р	
12	22.6500	-6.70	12.24	5.54	50.00	-44.46	AVG	Р	

3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	(millivolts/meter) (microvolts/meter)	
40.66-40.70 MHz	2250	225
70-130 MHz	1250	125
130-174 MHz	1250-3750**	1250-375**
174-260 MHz	3750	375
260-470 MHz	3750-12500**	3750-1250**
Above 470 MHz	12500	1250

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCT (MILZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Receiver	setup:
110001001	ootup.

Frequency	Detector	RBW	VBW	Value
9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average

3.2.2 TEST PROCEDURE

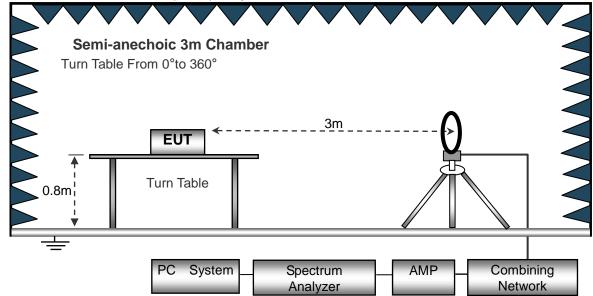
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

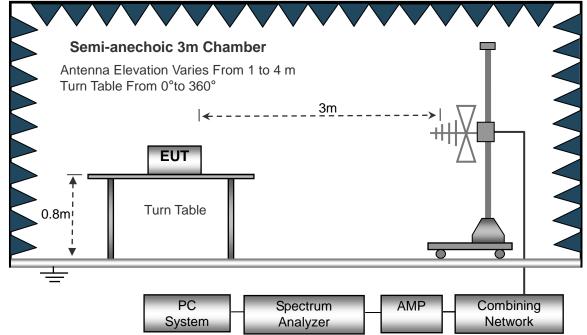
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre.
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

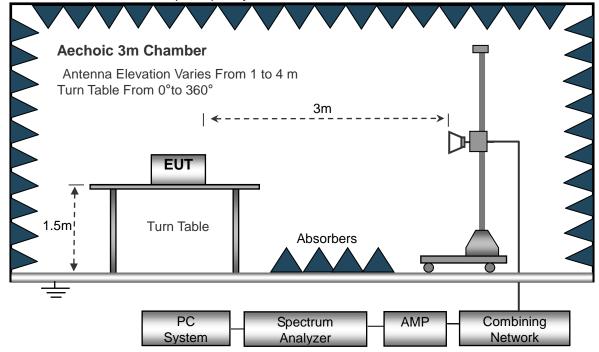

3.2.3 DEVIATION FROM TEST STANDARD

No deviation



3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

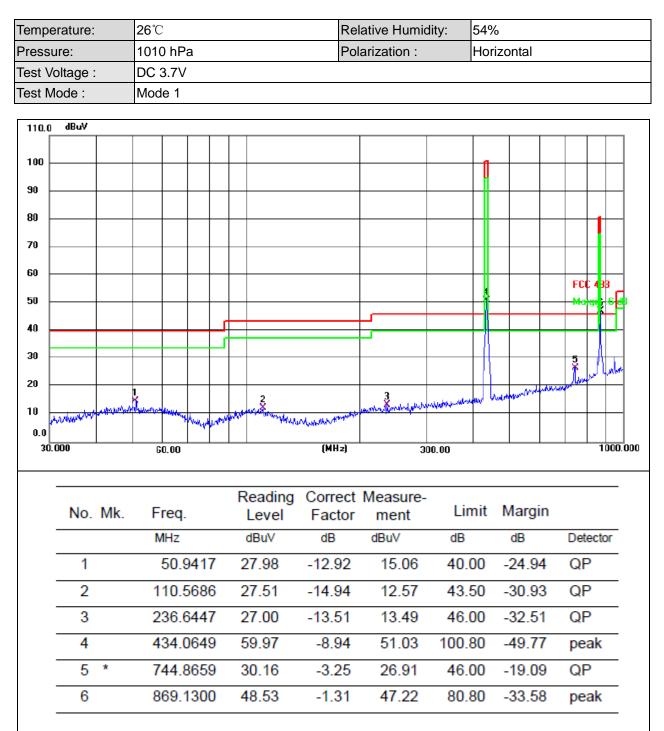
3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	20 °C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1	Polarization :	

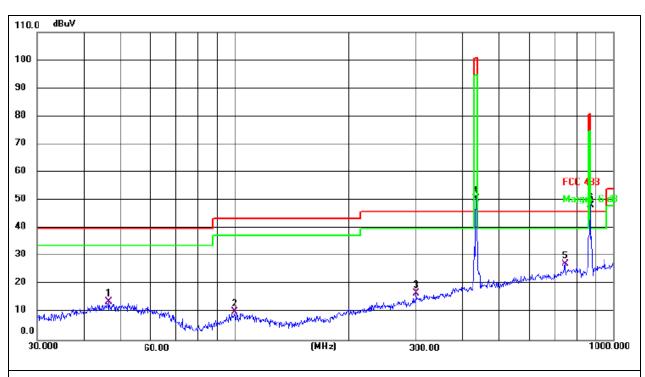
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS


NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)


Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 3.7V		
Test Mode :	Mode 1		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dB	dB	Detector
1	46.5030	26.56	-12.61	13.95	40.00	-26.05	QP
2	99.8777	25.13	-14.93	10.20	43.50	-33.30	QP
3	301.4223	28.48	-11.65	16.83	46.00	-29.17	QP
4	434.0649	59.55	-8.94	50.61	100.80	-50.19	peak
5 *	744.8659	30.58	-3.25	27.33	46.00	-18.67	QP
6	869.1300	49.53	-1.31	48.22	80.80	-32.58	peak

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
434.0649	51.03	-10.5	40.53	Horizontal	80.8	-40.27
869.1300	47.22	-10.5	36.72	Horizontal	60.8	-24.08

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
434.0649	50.61	-10.5	40.11	Vertical	80.8	-40.69
869.1300	48.22	-10.5	37.72	Vertical	60.8	-23.08

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

3.2.8 TEST RESULTS (1GHZ TO 10TH HARMONICS)

Polar (H/V)	Frequency	Peak Reading Level	Correct Factor	Peak Level	Duty cycle factor	Average Level	Limits PK	Limits AV	Margin PK	Margin AV
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dB)	(dB)		
	1	1	ор	eration	frequenc	y:433.92			r	
V	1301.76	55.38	-21.97	33.41	-10.5	22.91	74	54	-40.59	-31.09
V	1735.68	64.41	-21.97	42.44	-10.5	31.94	80.8	60.8	-38.36	-28.86
V	2169.6	63.63	-17.41	46.22	-10.5	35.72	80.8	60.8	-34.58	-25.08
V	2603.52	62.58	-17.41	45.17	-10.5	34.67	80.8	60.8	-35.63	-26.13
V	3037.44	50.21	-2.63	47.58	-10.5	37.08	80.8	60.8	-33.22	-23.72
V	3471.36	49.63	-2.63	47	-10.5	36.5	80.8	60.8	-33.80	-24.30
Н	1301.76	56.24	-21.97	34.27	-10.5	23.77	74	54	-39.73	-30.23
Н	1735.68	63.69	-21.97	41.72	-10.5	31.22	80.8	60.8	-39.08	-29.58
Н	2169.6	61.55	-17.41	44.14	-10.5	33.64	80.8	60.8	-36.66	-27.16
Н	2603.52	61.21	-17.41	43.8	-10.5	33.3	80.8	60.8	-37.00	-27.50
Н	3037.44	48.36	-2.63	45.73	-10.5	35.23	80.8	60.8	-35.07	-25.57
Н	3471.36	47.85	-2.63	45.22	-10.5	34.72	80.8	60.8	-35.58	-26.08

Remark:

1. PK Emission Level = Peak Reading Level + Correct Factor

2. Correct Factor= Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Notes: 1. Average emission Level = Peak Level + Duty cycle factor

2.Duty cycle level please see clause 5.

3. Pulse Desensitization Correction Factor

Pulse Width (PW) = 46.42ms 2/PW = 2/46.42ms = 0.04kHz RBW (100 kHz) > 2/PW (0.04kHz) Therefore PDCF is not needed

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.231), Subpart C						
Section	Description					
	The bandwidth of the emission shall be no wider than 0.25% of the center					
	frequency for devices operating between 70 MHz to 900 MHz. Those devices					
15.231C	operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the					
15.2310	center frequency. Bandwidth is determined at the points 20 dB down from the					
	modulated carrier.					
	B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.92MHz = 1.0848MHz					

4.1.1 TEST PROCEDURE

- 1. Set RBW = 30kHz.
- 2. Set VBW = 100 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

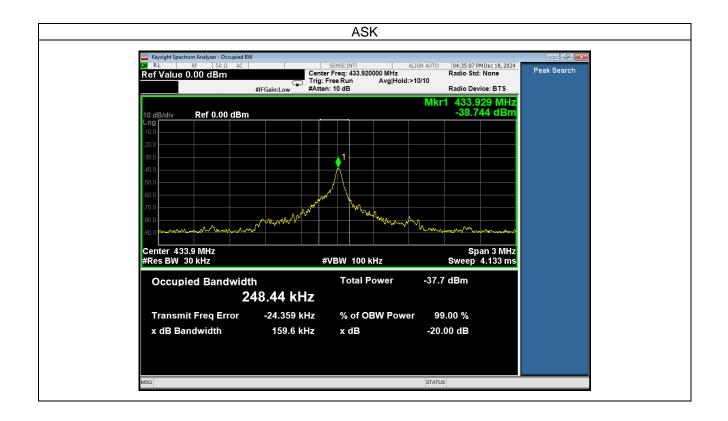
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER


4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

Frequency (MHz)	20dB Bandwidth (MHz)	Result
433.92	0.1596	Pass

5. CALCULATION OF AVERAGE FACTOR

5.1 APPLIED PROCEDURES / LIMIT

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 100kHz resolution bandwidth.

5.1.1 TEST PROCEDURE

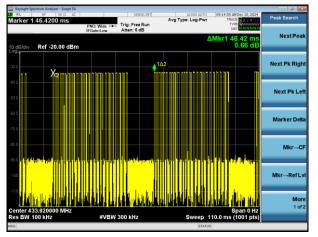
- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Detector = Peak.
- 4. Sweep = auto couple.
- 5. Allow the trace to stabilize.

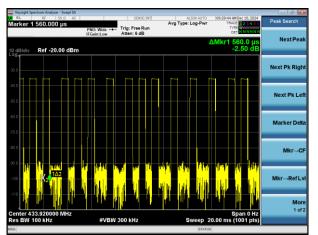
5.1.2 TEST SETUP

5.1.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.4 TEST RESULTS


Duty Cycle= Effective time one cycle/ Total time one cycle


Averaging factor in dB =20log (duty cycle)


Duty Cycle = $(0.56ms^{25})/46.42$

Therefore, the averaging factor is found by 20log0.3=-10.5dB

Test plot as follows:

6. TRANSMISSION CEASE TIME

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15(15.231(a))					
Section Description					
15.231a	A manually operated transmitter shall employ a switch that will automatically				
15.2318	deactivate the transmitter within not more than 5 seconds of being released.				

6.1.1 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Allow the trace to stabilize.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 TEST RESULTS

	Transmission cease time (second)	Limit (second)	Result	
Normal	0.25	<5s	Pass	

	ctrum Analyzer - Swept SA					
(X/ RL Marker 1	RF 50 Ω AC 250.000 ms			ALIGN AUTO	09:42:15 AM Dec 10, 2024 TRACE 1 2 3 4 5 6	Peak Search
		PNO: Wide Trig: Free IFGain:Low Atten: 30		Hold: 2/100	DET P NNNN	
				Δ	Mkr1 250.0 ms	Next Peak
10 dB/div Log	Ref 20.00 dBm				0.099 dB	
10.0						Next Pk Right
0.00						Next Dist of
-10.0						Next Pk Left
-20.0						Marker Delta
-30.0						Marker Deita
-30.0						
-40.0						Mkr→CF
-50.0						
-60.0	1Δ2					Mkr→RefLvl
Higherhauss	liphan 2 ^{arta} landar di dararaha	hund only sully all visits an orbit	perspectationspect	physics of the set of	healphiaphianarchides/surables-Arch	
-70.0						
						More 1 of 2
	3.920000 MHz	#/BW/000		0	Span 0 Hz	1 012
Res BW 1	UU KHZ	#VBW 300 kHz		Sweep	10.00 s (1001 pts)	
MaG				STATUS		

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.2 EUT ANTENNA

The EUT antenna is internal antenna, It comply with the standard requirement.

8. TEST SEUUP PHOTO

Reference to the appendix I for details.

9. EUT PHOTO

Reference to the appendix II for details.

******** END OF REPORT *******