EX3DV4-SN:3898 June 27, 2017 | 10402-
AAC | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle) | Х | 5.45 | 67.43 | 16.42 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|--------|--------|----------------|------|----------------|---------| | | | Y | 5.48 | 67.49 | 16.50 | | 150.0 | | | | | Z | 5.45 | 67.42 | 16.44 | | 150.0 | - | | 10403-
AAB | CDMA2000 (1xEV-DO, Rev. 0) | X | 0.97 | 65.51 | 10.99 | 0.00 | 115.0 | ± 9.6 % | | | | Y | 1.07 | 66.68 | 11.73 | | 115.0 | | | | | Z | 0.93 | 65.15 | 10.70 | | 115.0 | | | 10404-
AAB | CDMA2000 (1xEV-DO, Rev. A) | X | 0.97 | 65.51 | 10.99 | 0.00 | 115.0 | ± 9.6 % | | | | Y | 1.07 | 66.68 | 11.73 | | 115.0 | | | | | Z | 0.93 | 65.15 | 10.70 | | 115.0 | | | 10406-
AAB | CDMA2000, RC3, SO32, SCH0, Full
Rate | X | 100.00 | 114.78 | 26.32 | 0.00 | 100.0 | ± 9.6 % | | | | Y | 100.00 | 116.57 | 27.06 | | 100.0 | | | | | Z | 100.00 | 115.47 | 26.53 | | 100.0 | | | 10410-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 4.10 | 80.03 | 17.90 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 6.73 | 87.51 | 20.67 | | 80.0 | | | | | Z | 3.49 | 79.61 | 18.20 | | 80.0 | | | 10415-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 99pc duty cycle) | Х | 1.03 | 63.15 | 14.59 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 1.05 | 63.48 | 14.92 | | 150.0 | | | 711-11-1 | | Z | 1.03 | 63.15 | 14.60 | | 150.0 | | | 10416-
AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-
OFDM, 6 Mbps, 99pc duty cycle) | X | 4.33 | 66.85 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.36 | 66.92 | 16.27 | | 150.0 | | | | | Z | 4.32 | 66.85 | 16.19 | | 150.0 | | | 10417-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 99pc duty cycle) | Х | 4.33 | 66.85 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.36 | 66.92 | 16.27 | | 150.0 | | | | | Z | 4.32 | 66.85 | 16.19 | | 150.0 | | | 10418-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Long
preambule) | Х | 4.33 | 67.06 | 16.24 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.35 | 67.14 | 16.34 | | 150.0 | * | | | | Z | 4.32 | 67.07 | 16.26 | | 150.0 | | | 10419-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 99pc duty cycle, Short
preambule) | X | 4.34 | 66.99 | 16.22 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.37 | 67.06 | 16.32 | | 150.0 | | | | | Z | 4.33 | 67.00 | 16.24 | | 150.0 | | | 10422-
AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | Х | 4.44 | 66.96 | 16.23 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.47 | 67.03 | 16.33 | | 150.0 | | | | | Z | 4.44 | 66.97 | 16.25 | | 150.0 | | | 10423-
AAA | IEEE 802.11n (HT Greenfield, 43.3
Mbps, 16-QAM) | X | 4.56 | 67.20 | 16.31 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.59 | 67.28 | 16.41 | | 150.0 | | | | | Z | 4.55 | 67.20 | 16.33 | | 150.0 | | | 10424-
AAA | IEEE 802.11n (HT Greenfield, 72.2
Mbps, 64-QAM) | X | 4.49 | 67.15 | 16.29 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.52 | 67.23 | 16.39 | | 150.0 | | | | | Z | 4.48 | 67.15 | 16.30 | | 150.0 | | | 10425-
AAA | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | Х | 5.12 | 67.29 | 16.47 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.15 | 67.38 | 16.57 | | 150.0 | | | | | Z | 5.11 | 67.27 | 16.48 | | 150.0 | | | | | | | | | | | | | 10426-
AAA | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | X | 5.14 | 67.37 | 16.51 | 0.00 | 150.0 | ± 9.6 % | | | | | | | 16.51
16.59 | 0.00 | 150.0
150.0 | ± 9.6 % | EX3DV4- SN:3898 June 27, 2017 | 10427-
AAA | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | X | 5.10 | 67.17 | 16.41 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|-------|---------| | | | Y | 5.13 | 67.24 | 16.49 | | 150.0 | | | | | Z | 5.10 | 67.18 | 16.43 | | 150.0 | | | 10430-
AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | X | 4.45 | 73.55 | 18.83 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.36 | 73.07 | 18.66 | | 150.0 | | | | | Z | 4.51 | 73.93 | 18.97 | | 150.0 | | | 10431-
AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | X | 3.93 | 67.43 | 16.02 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.96 | 67.55 | 16.14 | | 150.0 | | | | | Z | 3.91 | 67.44 | 16.01 | | 150.0 | | | 10432-
AAA | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | X | 4.25 | 67.26 | 16.21 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.29 | 67.35 | 16.32 | | 150.0 | | | | | Z | 4.24 | 67.26 | 16.22 | | 150.0 | | | 10433-
AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | X | 4.51 | 67.19 | 16.32 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.54 | 67.26 | 16.41 | | 150.0 | | | 1015 | | Z | 4.50 | 67.19 | 16.33 | | 150.0 | | | 10434-
AAA | W-CDMA (BS Test Model 1, 64 DPCH) | X | 4.61 | 74.53 | 18.61 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.51 | 74.05 | 18.47 | | 150.0 | | | | | Z | 4.68 | 74.88 | 18.71 | | 150.0 | | | 10435-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 3.91 | 79.35 | 17.61 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 6.25 | 86.43 | 20.28 | | 80.0 | | | 10117 | | Z | 3.34 | 78.94 | 17.91 | | 80.0 | | | 10447-
AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1,
Clipping 44%) | X | 3.14 | 67.14 | 14.75 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.20 | 67.36 | 14.95 | | 150.0 | | | | | Z | 3.12 | 67.09 | 14.67 | | 150.0 | | | 10448-
AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,
Clippin 44%) | X | 3.80 | 67.24 | 15.90 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.84 | 67.36 | 16.03 | | 150.0 | | | 10110 | | Z | 3.79 | 67.24 | 15.90 | | 150.0 | | | 10449-
AAA | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,
Cliping 44%) | X | 4.10 | 67.10 | 16.12 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.13 | 67.19 | 16.22 | | 150.0 | | | | | Z | 4.09 | 67.10 | 16.13 | | 150.0 | | | 10450-
AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1,
Clipping 44%) | X | 4.32 | 66.97 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.35 | 67.05 | 16.27 | | 150.0 | No. | | 10.101 | | Z | 4.31 | 66.97 | 16.19 | | 150.0 | | | 10451-
AAA | W-CDMA (BS Test Model 1, 64 DPCH,
Clipping 44%) | X | 2.91 | 66.74 | 13.90 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.97 | 67.02 | 14.13 | | 150.0 | | | 40450 | 1555 000 11 1115 (10011) | Z | 2.87 | 66.63 | 13.77 | | 150.0 | | | 10456-
AAA | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) | X | 6.05 | 67.79 | 16.62 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 6.07 | 67.84 | 16.68 | | 150.0 | | | 10157 | LINES EDD (DO LIGHT) | Z | 6.06 | 67.83 | 16.67 | | 150.0 | | | 10457-
AAA | UMTS-FDD (DC-HSDPA) | Х | 3.72 | 65.65 | 15.92 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.74 | 65.71 | 16.01 | | 150.0 | | | 40450 | ODMANOOO (4 51/50 5 5 5 5 | Z | 3.72 | 65.68 | 15.93 | | 150.0 | | | 10458-
AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | X | 2.56 | 65.08 | 12.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.62 | 65.37 | 12.69 | | 150.0 | | | 10150 | 001110000 // 51/50 5 | Z | 2.50 | 64.84 | 12.20 | | 150.0 | | | 10459-
AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | X | 3.65 | 64.11 | 14.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.72 | 64.38 | 14.32 | | 150.0 | | | | | Z | 3.61 | 64.01 | 13.94 | | 150.0 | | Certificate No: EX3-3898_Jun17 CC SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10460-
AAA | UMTS-FDD (WCDMA, AMR) | Х | 0.87 | 67.88 | 15.88 | 0.00 | 150.0 | ± 9.6 % | |-----------------|--|------|--------|-------|-------|------|-------|----------| | | | Y | 0.94 | 69.24 | 16.74 | | 150.0 | | | | | Z | 0.87 | 67.84 | 15.86 | | 150.0 | | | 10461-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 1.73 | 71.22 | 15.78 | 3.29 | 80.0 | ± 9.6 % | | | | Y | 2.48 | 76.95 | 18.34 | | 80.0 | | | | | Z | 1.60 | 71.21 | 16.16 | | 80.0 | | | 10462-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 0.76 | 60.00 | 7.08 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.72 | 60.00 | 7.19 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.22 | | 80.0 | | | 10463-
AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 0.78 | 60.00 | 6.47 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.74 | 60.00 | 6.54 | | 80.0 | | | | | Z | 0.73 | 60.00 | 6.57 | | 80.0 | | | 10464-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 1.37 | 68.23 | 13.96 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.86 | 72.93 | 16.20 | | 80.0 | | | | | Z | 1.28 | 68.36 | 14.37 | | 80.0 | | | 10465- | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- | X | 0.76 | 60.00 | 7.02 | 3.23 | 80.0 | ± 9.6 % | | AAA | QAM, UL Subframe=2,3,4,7,8,9) | 1815 | # 10 m | | | | 55.0 | - 3.0 // | | | | Y | 0.72 | 60.00 | 7.12 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.16 | | 80.0 | | | 10466-
AAA | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.78 | 60.00 | 6.44 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.74 | 60.00 | 6.50 | | 80.0 | | | | | Z | 0.73 | 60.00 | 6.53 | | 80.0 | | | 10467-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 1.41 | 68.72 | 14.20 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.97 | 73.73 | 16.55 | | 80.0 | | | tine positive a | | Z | 1.32 | 68.86 | 14.63 | | 80.0 | | | 10468-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.76 | 60.00 | 7.04 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.72 | 60.00 | 7.14 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.18 | | 80.0 | | | 10469-
AAB | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.78 | 60.00 | 6.44 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.74 | 60.00 | 6.50 | | 80.0 | | | | | Z | 0.73 | 60.00 | 6.54 | | 80.0 | | | 10470-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 1.41 | 68.72 | 14.19 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.97 | 73.75 | 16.55 | | 80.0 | | | | | Z | 1.32 | 68.86 | 14.63 | | 80.0 | | | 10471-
AAB | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 0.76 | 60.00 | 7.02 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 0.72 | 60.00 | 7.13 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.17 | | 80.0 | | | 10472-
AAB |
LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 0.78 | 60.00 | 6.42 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 0.74 | 60.00 | 6.48 | | 80.0 | | | | | Z | 0.73 | 60.00 | 6.52 | | 80.0 | | | 10473-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 1.41 | 68.68 | 14.18 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 1.96 | 73.71 | 16.53 | | 80.0 | | | | | Z | 1.31 | 68.82 | 14.61 | | 80.0 | | | 10474-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | Х | 0.76 | 60.00 | 7.02 | 3.23 | 80.0 | ± 9.6 % | | | | Υ | 0.72 | 60.00 | 7.13 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.17 | | 80.0 | | | 10475-
AAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.78 | 60.00 | 6.42 | 3.23 | 80.0 | ± 9.6 % | | AAD | | | | | | | | | | AAD | | Y | 0.74 | 60.00 | 6.48 | | 80.0 | | CC SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10477-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.76 | 60.00 | 7.00 | 3.23 | 80.0 | ± 9.6 % | |---------------|--|----|------|-------|-------|---------|------|---------| | | | Y | 0.72 | 60.00 | 7.10 | | 80.0 | | | | | Z | 0.71 | 60.00 | 7.14 | | 80.0 | | | 10478-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-
QAM, UL Subframe=2,3,4,7,8,9) | X | 0.78 | 60.00 | 6.41 | 3.23 | 80.0 | ±9.6 % | | | | Y | 0.74 | 60.00 | 6.47 | | 80.0 | | | | | Z | 0.73 | 60.00 | 6.51 | | 80.0 | | | 10479-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 3.51 | 75.91 | 18.12 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 4.65 | 80.42 | 20.02 | 1 | 80.0 | | | | | Z. | 3.35 | 76.12 | 18.41 | | 80.0 | | | 10480-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 2.06 | 66.11 | 12.01 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 2.44 | 68.39 | 13.17 | | 80.0 | | | 7.1 7.7 | | Z | 2.00 | 66.36 | 12.23 | | 80.0 | | | 10481-
AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 1.64 | 63.45 | 10.41 | 3.23 | 80.0 | ± 9.6 % | | | | Y | 1.83 | 64.88 | 11.25 | | 80,0 | | | 7.6.78 | | Z | 1,57 | 63.52 | 10.52 | | 80.0 | 777.7 | | 10482-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | × | 1.34 | 62.39 | 10.63 | 2,23 | 80.0 | ± 9.6 % | | | | Y | 1.43 | 63.31 | 11.29 | | 80.0 | | | TENEL. | | Z | 1.27 | 62.21 | 10.58 | | 80.0 | | | 10483-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 1.46 | 60.79 | 8.98 | 2.23 | 80.0 | ±9.6 % | | | | Y | 1.54 | 61.54 | 9.56 | | 80.0 | | | | | Z | 1.36 | 60.41 | 8.74 | | 80.0 | | | 10484-
AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | × | 1.45 | 60.53 | 8.83 | 2.23 | 80.0 | ±9.6 % | | | | Y | 1.53 | 61.21 | 9.38 | | 80.0 | | | | | Z | 1.36 | 60.16 | 8.59 | 10-77-1 | 80.0 | 1 | | 10485-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz,
QPSK, UL Subframe=2,3,4,7.8,9) | X | 1.93 | 66.25 | 13.91 | 2,23 | 80.0 | ± 9.6 % | | | | Y | 2.08 | 67.57 | 14.73 | | 80.0 | | | 76020 | The second secon | Z | 1.84 | 66.09 | 13.95 | | 80.0 | | | 10486-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 1.94 | 63.48 | 11,80 | 2,23 | 80.0 | ± 9.6 % | | | | Y | 2.04 | 64.22 | 12.34 | | 80.0 | | | | | Z | 1.86 | 63.28 | 11.73 | Tar. | 80.0 | | | 10487-
AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 1.96 | 63.26 | 11.66 | 2,23 | 80.0 | ± 9.6 % | | | | Y | 2.04 | 63.94 | 12.17 | | 80.0 | | | | | Z | 1.87 | 63.04 | 11.57 | 1.5 | 80.0 | | | 10488-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | × | 2.53 | 67.95 | 16.02 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.66 | 68.95 | 16.66 | | 80.0 | | | | | Z | 2.42 | 67.64 | 16.03 | | 80.0 | | | 10489-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3.4,7,8,9) | X | 2.77 | 66.35 | 15.13 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2,84 | 66.94 | 15.57 | | 80.0 | | | 04.02 | | 2 | 2.67 | 66.13 | 15.12 | | 80.0 | | | 10490-
AAB | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 2.85 | 66.30 | 15.10 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.92 | 66.85 | 15.53 | | 80.0 | | | | | Z | 2.75 | 66.08 | 15.09 | | 80.0 | | | 10491-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz,
QPSK, UL Subframe=2,3,4,7,8,9) | X | 2,93 | 67.67 | 16.24 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 3.03 | 68.38 | 16.73 | | 80.0 | | | 2272 | Parameter and the second secon | Z | 2.81 | 67.35 | 16.23 | | 80.0 | | | 10492-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | × | 3.21 | 66.36 | 15.71 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 3.26 | 66.76 | 16.05 | | 80.0 | | | | | Z | 3,11 | 66.10 | 15.68 | | | | C SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10493-
AAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 3.27 | 66.30 | 15.68 | 2.23 | 80.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------------|------|---------| | | | Υ | 3.32 | 66.68 | 16.01 | | 80.0 | | | | | Z | 3.17 | 66.04 | 15.65 | | 80.0 | | | 10494-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 3.07 | 68.52 | 16.54 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.18 | 69.34 | 17.07 | | 80.0 | | | | | Z | 2.94 | 68.19 | 16.54 | | 80.0 | | | 10495-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 3.24 | 66.58 | 15.93 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.29 | 66.98 | 16.26 | | 80.0 | | | | | Z | 3.13 | 66.30 | 15.90 | | 80.0 | | | 10496-
AAB | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 3.33 | 66.50 | 15.93 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.38 | 66.87 | 16.25 | | 80.0 | | | 10.107 | | Z | 3.23 | 66.23 | 15.91 | | 80.0 | | | 10497-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | X | 1.02 | 60.00 | 7.99 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 1.01 | 60.00 | 8.17 | | 80.0 | | | 40400 | LITE TOD (OO FOUR | Z | 0.98 | 60.00 | 7.95 | | 80.0 | | | 10498-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 1.18 | 60.00 | 6.81 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 1.17 | 60.00 | 6.95 | | 80.0 | | | | | Z | 1.14 | 60.00 | 6.72 | | 80.0 | | | 10499-
AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | Х | 1.20 | 60.00 | 6.66 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 1.19 | 60.00 | 6.79 | | 80.0 | | | | | Z | 1.16 | 60.00 | 6.55 | | 80.0 | | | 10500-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 2.18 | 67.02 | 14.79 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.32 | 68.22 | 15.55 | | 80.0 | | | | | Z | 2.08 | 66.80 | 14.82 | | 80.0 | | | 10501-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | Х | 2.31 | 64.90 | 13.20 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.41 | 65.65 | 13.74 | | 80.0 | | | | | Z | 2.22 | 64.72 | 13.17 | | 80.0 | | | 10502-
AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | X | 2.34 | 64.77 | 13.06 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.43 | 65.49 | 13.58 | | 80.0 | | | | | Z | 2.25 | 64.59 | 13.02 | | 80.0 | | | 10503-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 2.51 | 67.79 | 15.92 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.63 | 68.78 | 16.57 | | 80.0 | | | 10501 | | Z | 2.39 | 67.48 | 15.93 | | 80.0 | | | 10504-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | X | 2.75 | 66.25 | 15.06 | 2.23 | 80.0 | ± 9.6 % | | | | Υ | 2.83 | 66.84 | 15.51 | | 80.0 | | | 10505 | 175 700 (00 00) | Z | 2.66 | 66.03 | 15.05 | | 80.0 | | | 10505-
AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | Х | 2.83 | 66.21 | 15.04 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 2.91 | 66.76 | 15.47 | | 80.0 | | | | | Z | 2.73 | 65.99 | 15.02 | | 80.0 | | | 10506-
AAB |
LTE-TDD (SC-FDMA, 100% RB, 10
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 3.05 | 68.40 | 16.47 | 2.23 | 80.0 | ± 9,6 % | | | | Y | 3.16 | 69.22 | 17.00 | | 80.0 | | | 10505 | | Z | 2.92 | 68.07 | 16.47 | - Car Line | 80.0 | | | 10507-
AAB | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.22 | 66.51 | 15.89 | 2.23 | 80.0 | ± 9.6 % | | | | | | | | | | | | | 2001amo 210,4,7,0,0) | Y | 3.27 | 66.92 | 16.22 | | 80.0 | | Certificate No: EX3-3898_Jun17 C SAR Test Report Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10508-
AAB | LTE-TDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.32 | 66.43 | 15.89 | 2.23 | 80.0 | ±96% | |---------------|--|---|------|----------------|-------|------|-------|---------| | | | Y | 3.37 | 66.80 | 16.20 | - | 80.0 | | | | | Z | 3.21 | 66.16 | 15.86 | | 80.0 | | | 10509-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | × | 3.55 | 68.19 | 16.49 | 2.23 | 80.0 | ±9.6 % | | | | Y | 3.64 | 68.78 | 16.90 | | 80.0 | | | - | | Z | 3.42 | 67.89 | 16.49 | | 80.0 | | | 10510-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.74 | 66.59 | 16.18 | 2.23 | 80.0 | ±9.6 % | | | | Y | 3.77 | 66.88 | 16.45 | | 80.0 | | | 18841 | 10000 | Z | 3.63 | 66.30 | 16.15 | | 80.0 | 10000 | | 10511-
AAB | LTE-TDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.82 | 66.51 | 16.18 | 2.23 | 80.0 | ±9.6 % | | | | Y | 3.85 | 66.78 | 16,44 | | 80.0 | | | | | Z | 3.71 | 66.23 | 16.15 | | 80.0 | | | 10512-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х | 3.53 | 68.87 | 16.64 | 2.23 | 80.0 | ± 9.6 % | | | | Y | 3.65 | 69.60 | 17.11 | | 80.0 | | | 10512 | LTC TDD (00 FB) | Z | 3.39 | 68.55 | 16.65 | | 80.0 | | | 10513-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.62 | 66.62 | 16.20 | 2.23 | 80.0 | ±9.6 % | | | | Y | 3.66 | 66.94 | 16.48 | | 80.0 | | | 40514 | 1 | Z | 3.51 | 66.32 | 16.17 | | 80.0 | | | 10514-
AAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM, UL
Subframe=2,3,4,7,8,9) | X | 3.68 | 66.43 | 16.16 | 2.23 | 80.0 | ±9.6 % | | | | Y | 3.72 | 66.71 | 16.42 | | 80.0 | | | | | Z | 3.58 | 66.13 | 16.13 | | 80.0 | | | 10515-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 99pc duty cycle) | X | 0.99 | 63.31 | 14.64 | 0.00 | 150.0 | ±9.6 % | | _ | | Y | 1.01 | 63.68 | 14.99 | | 150.0 | | | 10516- | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 | Z | 0.99 | 63.31 | 14.65 | | 150.0 | | | AAA | Mbps, 99pc duty cycle) | X | 0.57 | 68,71 | 16.68 | 0.00 | 150.0 | ± 9.6 % | | | | Z | 0.65 | 71.13 | 18.13 | | 150.0 | | | 10517- | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 | X | 0.82 | 68.55
64.86 | 16.63 | 0.00 | 150.0 | +000 | | AAA | Mbps, 99pc duty cycle) | Y | 0.85 | 65.57 | 15.16 | 0.00 | 150.0 | ± 9.6 % | | | | Z | 0.83 | 64.83 | 15.16 | | 150.0 | _ | | 10518-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 99pc duty cycle) | X | 4.32 | 66.96 | 16.17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.35 | 67.04 | 16.27 | | 150.0 | | | | | Z | 4.31 | 66.97 | 16.19 | | 150.0 | | | 10519-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12
Mbps, 99pc duly cycle) | × | 4.46 | 67.11 | 16.26 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.49 | 67.19 | 16.35 | | 150.0 | | | 10500 | The second second | Z | 4.45 | 67.12 | 16.27 | | 150.0 | | | 10520-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 99pc duty cycle) | × | 4.32 | 67.04 | 16,17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.35 | 67.12 | 16.27 | | 150.0 | | | | IEEE 202 HAVE WIE F OUR JOHN ST | Z | 4.31 | 67.04 | 16.19 | | 150.0 | | | 10524 | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 | X | 4.25 | 66.99 | 16.15 | 0.00 | 150.0 | ±9.6% | | | Mbps, 99pc duty cycle) | 1 | 1.00 | | | | | | | 10521-
AAA | Mbps, 99pc duty cycle) | Y | 4.28 | 67.08 | 16.25 | | 150.0 | | | AAA | | Z | 4.24 | 66.99 | 16.16 | 0.00 | 150.0 | . 0.00 | | | Mbps, 99pc duty cycle) IEEE 802 11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | | | | | 0.00 | | ± 9.6 % | FCC SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10523-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | X | 4.24 | 67.16 | 16.19 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|-------------|-------|---------| | | | Y | 4.27 | 67.25 | 16.30 | | 150.0 | | | | | Z | 4.23 | 67.18 | 16.21 | | 150.0 | | | 10524-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) | Х | 4.25 | 67.08 | 16.24 | 0.00 | 150.0 | ± 9.6 % | | | 7,5,5 | Y | 4.28 | 67.17 | 16.34 | | 150.0 | | | | | Z | 4.24 | 67.08 | 16.25 | | 150.0 | | | 10525-
AAA | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle) | X | 4.30 | 66.23 | 15.88 | 0.00 | 150.0 | ± 9.6 % | | | cope daty cycle) | Y | 4.32 | 66.32 | 15.98 | | 150.0 | | | | | Z | 4.29 | 66.24 | 15.90 | | 150.0 | | | 10526-
AAA | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle) | X | 4.40 | 66.47 | 15.98 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.43 | 66.56 | 16.08 | | 150.0 | | | | | Z | 4.39 | 66.47 | 15.99 | | 150.0 | | | 10527-
AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle) | X | 4.34 | 66.45 | 15.93 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.37 | 66.54 | 16.03 | | 150.0 | | | | | Z | 4.33 | 66.45 | 15.94 | | 150.0 | | | | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle) | X | 4.35 | 66.46 | 15.96 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.38 | 66.56 | 16.06 | - | 150.0 | | | | | Z | 4.34 | 66.46 | 15.97 | | 150.0 | | | 10529-
AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) | Х | 4.35 | 66.46 | 15.96 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.38 | 66.56 | 16.06 | | 150.0 | | | | | Z | 4.34 | 66.46 | 15.97 | | 150.0 | | | 10531-
AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle) | Х | 4.31 | 66.46 | 15.92 | 0.00 | 150.0 | ± 9.6 % | | | - 02.11-11125.00 first file | Y | 4.34 | 66.56 | 16.03 | | 150.0 | | | - | | Z | 4.30 | 66.45 | 15.93 | | 150.0 | | | 10532-
AAA | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle) | X | 4.20 | 66.33 | 15.86 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.23 | 66.43 | 15.96 | | 150.0 | | | | | Z | 4.19 | 66.33 | 15.87 | | 150.0 | | | 10533-
AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle) | Х | 4.35 | 66.55 | 15.96 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.39 | 66.64 | 16.06 | | 150.0 | | | | | Z | 4.34 | 66.55 | 15.98 | | 150.0 | | | 10534-
AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle) | Х | 4.92 | 66.42 | 16.02 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.95 | 66.49 | 16.11 | | 150.0 | | | | | Z | 4.91 | 66.42 | 16.04 | | 150.0 | | | 10535-
AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle) | Х | 4.95 | 66.52 | 16.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.98 | 66.59 | 16.16 | | 150.0 | | | | | Z | 4.94 | 66.51 | 16.09 | | 150.0 | | | 10536-
AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle) | Х | 4.85 | 66.53 | 16.05 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.87 | 66.61 | 16.14 | | 150.0 | | | | | Z | 4.84 | 66.52 | 16.07 | | 150.0 | | | 10537-
AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle) | X | 4.92 | 66.56 | 16.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 4.95 | 66.63 | 16.16 | | 150.0 | | | | | Z | 4.92 | 66.56 | 16.10 | - 11 - 11 - | 150.0 | | | 10538-
AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle) | X | 4.97 | 66.48 | 16.07 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.00 | 66.56 | 16.15 | | 150.0 | | | | | Z | 4.96 | 66.47 | 16.09 | | 150.0 | | | 0540-
AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle) | X | 4.90 | 66.44 | 16.07 | 0.00 | 150.0 | ± 9.6 % | | | | | | | | | | | | HAA | | Y | 4.93 | 66.52 | 16.16 | | 150.0 | | Certificate No: EX3-3898_Jun17 Page 31 of 38 EX3DV4- SN:3898 June 27, 2017 | 10541-
AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle) | X | 4.90 | 66.40 | 16.03 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | | | Y | 4.92 | 66.46 | 16.11 | | 150.0 | | | | | Z | 4.89 | 66.39 | 16.04 | | 150.0 | | | 10542-
AAA | IEEE 802,11ac WiFi (40MHz, MCS8, 99pc duty cycle) | X | 5.05 | 66.48 | 16.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.07 | 66.55 | 16.17 | | 150.0 | | | | | Z | 5.04 | 66.48 | 16.10 | | 150.0 | | | 10543-
AAA | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle) | Х | 5.12 | 66.59 | 16.17 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.15 | 66.65 | 16.25 | | 150.0 | | | | | Z | 5.12 | 66.59 | 16.19 | | 150.0 | | | 10544-
AAA | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle) | × | 5.27 | 66.48 | 16.01 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.30 | 66.55 | 16.09 | | 150.0 | | | 10010 | | Z | 5.27 | 66.47 | 16.03 | | 150.0 | | | 10545-
AAA | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle) | X | 5.43 | 66.89 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.46 | 66.97 | 16.26 | | 150.0 | | | 10515 | | Z | 5.43 | 66.89 | 16.20 | | 150.0 | | | 10546-
AAA | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle) | X | 5.30 | 66.59 | 16.04 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.33 | 66.66 | 16.12 | | 150.0 | | | 1051= | | Z | 5.30 | 66.57 | 16.05 | | 150.0 | | | 10547-
AAA | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle) | X | 5.39 | 66.74 | 16.11 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.41 | 66.81 | 16.19 | | 150.0 | | | | | Z | 5.39 | 66.75 | 16.14 | | 150.0 | | | 10548-
AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle) | X | 5.49 | 67.22 | 16.33 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.52 | 67.32 | 16.42 | | 150.0 | | | | | Z | 5.48 | 67.21 | 16.34 | | 150.0 | | | 10550-
AAA | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle) | × | 5.37 | 66.82 | 16.16 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.39 | 66.89 | 16.25 | | 150.0 | | | | | Z | 5.37 | 66.84 | 16.20 | | 150.0 | | | 10551-
AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)
| × | 5.29 | 66.55 | 15.99 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.31 | 66.62 | 16.07 | | 150.0 | | | | | Z | 5.28 | 66.52 | 16.01 | | 150.0 | | | 10552-
AAA | IEEE 802,11ac WiFi (80MHz, MCS8, 99pc duty cycle) | X | 5.28 | 66.62 | 16.03 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.31 | 66.69 | 16.11 | | 150.0 | | | | | Z | 5.28 | 66.61 | 16.05 | | 150.0 | | | 10553-
AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle) | X | 5.33 | 66,55 | 16.02 | 0:00 | 150.0 | ± 9.6 % | | | | Y | 5.35 | 66.61 | 16.10 | | 150.0 | | | | | Z | 5.32 | 66.53 | 16.04 | | 150.0 | | | 10554-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | X | 5.70 | 66.81 | 16.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.73 | 66.87 | 16.16 | | 150.0 | | | | | Z | 5.70 | 66.79 | 16.10 | | 150.0 | | | 10555-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | X | 5.78 | 66.99 | 16.17 | 0.00 | 150.0 | ± 9.6 % | | _ | | Y | 5.80 | 67.06 | 16.24 | | 150.0 | | | 1000 | 1999 1999 14 | Z | 5.78 | 66.97 | 16.18 | | 150.0 | | | 10556-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | X | 5.82 | 67,12 | 16.22 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.85 | 67.19 | 16.30 | | 150.0 | | | 1000 | | Z | 5.83 | 67.12 | 16.24 | | 150.0 | | | 10557-
AAA | IEEE 1602 11ac WiFi (160MHz, MCS3, 99pc duty cycle) | × | 5.78 | 67.00 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | 124 40 61 157 | Y | 5.80 | 67.06 | 16.25 | | 150.0 | | | | | Z | 5.78 | 66.98 | 16.19 | | 150.0 | | CC SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10558-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle) | Х | 5.77 | 67.00 | 16.19 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | | | Y | 5.80 | 67.07 | 16.27 | | 150.0 | | | | | Z | 5.76 | 66.96 | 16.20 | | 150.0 | | | 10560-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle) | X | 5.80 | 66.97 | 16.21 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.83 | 67.03 | 16.29 | | 150.0 | | | | | Z | 5.80 | 66.94 | 16.23 | | 150.0 | | | 10561-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle) | X | 5.73 | 66.94 | 16.23 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.76 | 67.01 | 16.31 | | 150.0 | | | | | Z | 5.73 | 66.92 | 16.25 | | 150.0 | | | 10562-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle) | X | 5.77 | 67.07 | 16.30 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.80 | 67.15 | 16.38 | | 150.0 | | | | | Z | 5.77 | 67.04 | 16.31 | | 150.0 | | | 10563-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS9, 99pc duty cycle) | Х | 5.88 | 67.08 | 16.27 | 0.00 | 150.0 | ± 9.6 % | | | 2 | Y | 5.91 | 67.16 | 16.35 | | 150.0 | | | | | Z | 5.88 | 67.06 | 16.28 | | 150.0 | | | 10564-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 9 Mbps, 99pc duty cycle) | Х | 4.62 | 66.91 | 16.26 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.65 | 67.00 | 16.37 | | 150.0 | | | | | Z | 4.62 | 66.92 | 16.27 | | 150.0 | | | 10565-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 99pc duty cycle) | Х | 4.82 | 67.35 | 16.60 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.84 | 67.41 | 16.69 | | 150.0 | | | | | Z | 4.81 | 67.36 | 16.62 | | 150.0 | | | 10566-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 99pc duty cycle) | X | 4.65 | 67.13 | 16.38 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.68 | 67.22 | 16.48 | | 150.0 | | | | | Z | 4.64 | 67.13 | 16.40 | | 150.0 | | | 10567-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 99pc duty cycle) | Х | 4.70 | 67.59 | 16.80 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.72 | 67.63 | 16.88 | | 150.0 | | | | | Z | 4.69 | 67.60 | 16.83 | | 150.0 | | | 10568-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 99pc duty cycle) | X | 4.52 | 66.74 | 16.04 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.56 | 66.86 | 16.17 | | 150.0 | | | | | Z | 4.51 | 66.72 | 16.04 | | 150.0 | | | 10569-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 48 Mbps, 99pc duty cycle) | X | 4.69 | 67.86 | 16.96 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.72 | 67.90 | 17.03 | | 150.0 | | | | | Z | 4.69 | 67.89 | 17.00 | | 150.0 | | | 10570-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 99pc duty cycle) | Х | 4.68 | 67.60 | 16.83 | 0.46 | 150.0 | ± 9.6 % | | | | Y | 4.71 | 67.65 | 16.91 | | 150.0 | | | | | Z | 4.67 | 67.61 | 16.85 | | 150.0 | | | 10571-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1
Mbps, 90pc duty cycle) | X | 1.14 | 63.82 | 14.89 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.15 | 64.13 | 15.24 | | 130.0 | | | | | Z | 1.12 | 63.61 | 14.84 | | 130.0 | | | 10572-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps, 90pc duty cycle) | Х | 1.14 | 64.32 | 15.21 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.16 | 64.65 | 15.58 | | 130.0 | | | | | Z | 1.13 | 64.09 | 15.17 | | 130.0 | | | 10573-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | Х | 1.07 | 74.72 | 18.97 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.28 | 78.28 | 20.78 | | 130.0 | | | | | Z | 0.96 | 73.37 | 18.65 | | 130.0 | | | 10574-
AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) | Х | 1.18 | 68.96 | 17.73 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 1.21 | 69.63 | 18.27 | | 130.0 | | | | | | | | | | | | CC SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10575-
AAA | IEEE 802,11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps, 90pc duty cycle) | × | 4.39 | 66.58 | 16.17 | 0.46 | 130.0 | ± 9.6 % | |---------------|--|----|--------------|----------------|----------------|----------|-------|---------| | | | Y | 4.42 | 66,67 | 16.29 | | 130.0 | | | 3335 | | Z | 4.38 | 66.59 | 16.19 | | 130.0 | | | 10576-
AAA | OFDM, 9 Mbps, 90pc duty cycle) | X | 4.42 | 66.82 | 16.28 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.45 | 66.90 | 16.39 | | 130.0 | | | | | Z | 4.41 | 66.83 | 16.31 | | 130.0 | | | 10577-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 12 Mbps, 90pc duty cycle) | X | 4.57 | 67.04 | 16.43 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.60 | 67.12 | 16.53 | | 130.0 | | | | | Z | 4.56 | 67.05 | 16.45 | r-market | 130.0 | | | 10578-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 18 Mbps, 90pc duty cycle) | X | 4.49 | 67.21 | 16,56 | 0.46 | 130.0 | ± 9.6 % | | | process and the same of sa | Y | 4.51 | 67.28 | 16.65 | | 130.0 | | | 10570 | (PPE and a second secon | ·Z | 4.48 | 67.22 | 16.59 | | 130.0 | | | 10579-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 24 Mbps, 90pc duty cycle) | X | 4.22 | 66.25 | 15.71 | 0.46 | 130.0 | ± 9.6 % | | _ | | Y | 4.25 | 66.38 | 15.85 | | 130.0 | | | 10500 | IFFF DOD 44 140FL | Z | 4.21 | 66.24 | 15.71 | | 130.0 | | | 10580-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 36 Mbps, 90pc duty cycle) | X | 4.24 | 66.27 | 15.70 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.28 | 66,41 | 15.85 | - | 130.0 | | | 40504 | 1555 000 // ///55 000 000 000 | Z | 4.23 | 66.24 | 15.70 | | 130.0 | | | 10581-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 48 Mbps, 90pc duty cycle) | X | 4.40 | 67.30 | 16.54 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.43 | 67.38 | 16.64 | | 130.0 | | | 30500 | Tere con a la la legal | Z | 4.39 | 67.32 | 16.57 | | 130.0 | | | 10582-
AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 54 Mbps, 90pc duty cycle) | X | 4.14 | 65.99 | 15.46 | 0.46 | 130.0 | ± 9.6 % | | | Later the American Company | Y | 4.18 | 66.13 | 15.62 | | 130.0 | | | 10500 | | Z | 4.12 | 65.96 | 15.46 | | 130.0 | | | 10583-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6
Mbps, 90pc duty cycle) | X | 4.39 | 66.58 | 16.17 | 0.46 | 130.0 | ± 9.6 % | | _ | | Y | 4.42 | 66.67 | 16.29 | | 130.0 | | | 10584- | IFFE DOD 14- A- MEET & DUL 10FD11 S | Z | 4.38 | 66.59 | 16.19 | - 1- | 130.0 | | | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9
Mbps, 90pc duty cycle) | X | 4.42 | 66.82 | 16.28 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.45 | 66.90 | 16.39 | | 130.0 | | | 10585- | IEEE OOD ALL HAVE E OUT OFFICE AS | Z | 4.41 | 66.83 | 16.31 | | 130.0 | | | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM,
12
Mbps, 90pc duty cycle) | X | 4.57 | 67.04 | 16.43 | 0.46 | 130.0 | ± 9.6 % | | _ | | Y | 4.60 | 67.12 | 16,53 | | 130.0 | | | 10586-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18
Mbps, 90pc duty cycle) | X | 4.56
4.49 | 67.05
67.21 | 16.45
16.56 | 0.46 | 130.0 | ±9.6 % | | 201 | mekat aske and older | Y | 4.51 | 67.28 | 16.65 | - | 130.0 | | | | | Z | 4.48 | 67.22 | 16.59 | | 130.0 | | | 10587-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24
Mbps, 90pc duty cycle) | X | 4.22 | 66.25 | 15.71 | 0.46 | 130.0 | ± 9.6 % | | | 1.00 | Y | 4.25 | 66.38 | 15.85 | | 130.0 | | | | | Z | 4.21 | 66.24 | 15.71 | | 130.0 | | | 10588-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36
Mbps, 90pc duty cycle) | X | 4.24 | 66.27 | 15.70 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.28 | 66.41 | 15.85 | | 130.0 | | | | | Z | 4.23 | 66.24 | 15.70 | | 130.0 | | | 10589-
AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) | Х | 4.40 | 67.30 | 16.54 | 0.46 | 130.0 | ±9.6 % | | | | Y | 4.43 | 67.38 | 16.64 | | 130.0 | | | | | Z | 4.39 | 67.32 | 16.57 | | 130.0 | | | 10590-
AAA | IEEE 802 11a/h WiFi 5 GHz (OFDM, 54
Mbps, 90pc duty cycle) | Х | 4.14 | 65,99 | 15.46 | 0.46 | 130.0 | ±96% | | | | Y | 4.18 | 66.13 | 15.62 | | 130.0 | | | | | Z | 4.12 | 65.96 | 15,46 | | 130.0 | | EX3DV4-SN:3898 June 27, 2017 | 10591-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle) | X | 4.55 | 66.71 | 16.33 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|------|-------|---------| | | | Y | 4.58 | 66.79 | 16.43 | | 130.0 | | | | | Z | 4.54 | 66.72 | 16.35 | | 130.0 | | | 10592-
AAA | IEEE 802.11n (HT Mixed, 20MHz,
MCS1, 90pc duty cycle) | X | 4.66 | 66.97 | 16.44 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.68 | 67.05 | 16.55 | | 130.0 | | | | | Z | 4.65 | 66.98 | 16.47 | | 130.0 | | | 10593-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | X | 4.57 | 66.83 | 16.29 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.60 | 66.92 | 16.40 | | 130.0 | | | | A Commence of the | Z | 4.56 | 66.84 | 16.31 | | 130.0 | | | 10594-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | X | 4.63 | 67.03 | 16.47 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.66 | 67.11 | 16.57 | | 130.0 | | | | | Z | 4.62 | 67.04 | 16.49 | | 130.0 | | | 10595-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle) | X | 4.59 | 67.00 | 16.37 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.62 | 67.08 | 16.48 | | 130.0 | | | 10500 | | Z | 4.58 | 67.00 | 16.39 | | 130.0 | | | 10596-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | X | 4.52 | 66.92 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.55 | 67.02 | 16.46 | | 130.0 | | | 10507 | 1555 000 44 (0.5 | Z | 4.51 | 66.92 | 16.36 | | 130.0 | | | 10597-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X | 4.47 | 66.79 | 16.19 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.50 | 66.89 | 16.31 | | 130.0 | | | 10598- | IEEE 000 44- UITAK - 1 00MU | Z | 4.46 | 66.78 | 16.20 | | 130.0 | | | 10598-
AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | X | 4.48 | 67.08 | 16.50 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.51 | 67.15 | 16.60 | | 130.0 | | | 10500 | 1555 000 11 1150 1150 1150 | Z | 4.47 | 67.09 | 16.52 | | 130.0 | | | 10599-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | X | 5.24 | 67.14 | 16.59 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.26 | 67.22 | 16.69 | | 130.0 | | | 10600- | IEEE 000 44- (UT Mind 40M) | Z | 5.24 | 67.17 | 16.63 | | 130.0 | | | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | X | 5.31 | 67.40 | 16.69 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.34 | 67.51 | 16.81 | | 130.0 | | | 10001 | IEEE 000 44- (UTAE - 1 4010) | Z | 5.31 | 67.43 | 16.73 | | 130.0 | | | 10601-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle) | X | 5.24 | 67.31 | 16.67 | 0.46 | 130.0 | ± 9.6 % | | _ | | Y | 5.27 | 67.39 | 16.76 | | 130.0 | | | 10602- | IEEE 000 44- /UT Mind 40MI | Z | 5.25 | 67.36 | 16.72 | | 130.0 | | | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X | 5.30 | 67.20 | 16.52 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.33 | 67.30 | 16.63 | | 130.0 | | | 10602 | IEEE 900 14m (LITAL) | Z | 5.29 | 67.21 | 16.55 | | 130.0 | | | 10603-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X | 5.36 | 67.49 | 16.82 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.39 | 67.59 | 16.92 | | 130.0 | | | 10604- | IEEE 902 14p (HT 14: 4 4014) | Z | 5.35 | 67.49 | 16.85 | | 130.0 | | | 10604-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | X | 5.23 | 67.04 | 16.56 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.26 | 67.13 | 16.66 | | 130.0 | | | 10005 | IEEE 000 14- (UTA) | Z | 5.22 | 67.02 | 16.58 | | 130.0 | | | 10605-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | X | 5.29 | 67.25 | 16.66 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.32 | 67.35 | 16.78 | | 130.0 | | | 10000 | IEEE 000 44- (UTA) | Z | 5.29 | 67.26 | 16.69 | | 130.0 | | | 10606-
AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | X | 5.11 | 66.78 | 16.27 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.14 | 66.88 | 16.39 | | 130.0 | | | | | Z | 5.11 | 66.80 | 16.31 | | 130.0 | | | | | | | | | | | | EX3DV4-SN:3898 | 10607-
AAA | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle) | X | 4.40 | 66.05 | 15.97 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|---|------|-------|-------|---------|-------|---------| | | | Y | 4.43 | 66.14 | 16.08 | | 130.0 | | | | | Z | 4.39 | 66.06 | 16.00 | | 130.0 | | | 10608-
AAA | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | X | 4.52 | 66.33 | 16.10 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.55 | 66.43 | 16.21 | | 130.0 | | | | | Z | 4.51 | 66.34 | 16.13 | | 130.0 | | | 10609-
AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | X | 4.41 | 66.15 | 15.91 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.45 | 66.26 | 16.03 | | 130.0 | | | | | Z | 4.40 | 66.16 | 15.93 | | 130.0 | | | 10610-
AAA | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | X | 4.47 | 66.34 | 16.10 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.50 | 66.44 | 16.21 | | 130.0 | | | | | Z | 4.46 | 66.36 | 16.12 | | 130.0 | | | 10611-
AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | X | 4.38 | 66.11 | 15.92 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.41 | 66.22 | 16.04 | | 130.0 | | | | | Z | 4.37 | 66.12 | 15.94 | | 130.0 | | | 10612-
AAA | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X | 4.35 | 66.19 | 15.93 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.39 | 66.31 | 16.06 | | 130.0 | | | | | Z | 4.34 | 66.18 | 15.94 | | 130.0 | | | 10613-
AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle) | X | 4.35 | 66.00 | 15.77 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.39 | 66.13 | 15.90 | | 130.0 | | | | | Z | 4.34 | 66.00 | 15.79 | | 130.0 | | | 10614-
AAA | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | X | 4.34 | 66.30 | 16.07 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.37 | 66.40 | 16.18 | | 130.0 | | | | | Z | 4.33 | 66.31 | 16.10 | | 130.0 | | | 10615-
AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | X | 4.36 | 65.90 | 15.65 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 4.40 | 66.04 | 15.79 | | 130.0 | | | | | Z | 4.35 | 65.90 | 15.67 | | 130.0 | | | 10616-
AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | X | 5.03 | 66.30 | 16.16 | 0.46 | 130.0 | ± 9.6 % | | | 30-5000 00 | Y | 5.06 | 66.38 | 16.26 | | 130.0 | | | | | Z | 5.03 | 66.31 | 16.19 | | 130.0 | | | 10617-
AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | × | 5.05 | 66.37 | 16.17 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.09 | 66.47 | 16.28 | | 130.0 | | | | | Z | 5.05 | 66.38 | 16.20 | 1072-12 | 130.0 | | | 10618-
AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | × | 4.97 | 66.45 | 16.23 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.00 | 66.54 | 16.33 | | 130.0 | | | | | Z | 4.97 | 66.45 | 16.26 | | 130.0 | | | 10619-
AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc
duty cycle) | X | 5.00 | 66.32 | 16.09 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.04 | 66.42 | 16.20 | , | 130.0 | | | | | Z | 5.01 | 66.34 | 16.13 | | 130.0 | | | 10620-
AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X | 5.06 | 66.27 | 16.11 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.09 | 66.36 | 16.22 | | 130.0 | | | | | Z | 5.05 | 66.27 | 16.14 | | 130.0 | | | 10621-
AAA | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | X | 5.08 | 66.45 | 16.34 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.11 | 66.51 | 16.42 | | 130.0 | | | | | Z | 5.08 | 66.46 | 16.37 | | 130.0 | | | 10622-
AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | X | 5.07 | 66.51 | 16.37 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.09 | 66.59 | 16.45 | | 130.0 | | | | | | | | | | | | Certificate No: EX3-3898_Jun17 Page 36 of 38 Report No: R1809A0420-S1 June 27, 2017 C SAR Test Report No: R1809A0420-S1 EX3DV4- SN:3898 June 27, 2017 | 10623-
AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle) | X | 4.96 | 66.07 | 15.99 | 0.46 | 130.0 | ± 9.6 % | |---------------|---|-------|--------------|---|----------------|------|----------------|---------| | | | Y | 4.99 | 66.16 | 16.09 | | 130.0 | | | | | Z | 4.96 | 66.07 | 16.02 | | 130.0 | | | 10624-
AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle) | X | 5.15 | 66.33 | 16.19 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.18 | 66.41 | 16.29 | | 130.0 | | | | | Z | 5.15 | 66.34 | 16.22 | | 130.0 | | | 10625-
AAA | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) | X | 5.25 | 66.51 | 16.35 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.27 | 66.57 | 16.43 | | 130.0 | | | | | Z | 5.25 | 66.56 | 16.40 | | 130.0 | | | 10626-
AAA | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) | X | 5.37 | 66.32 | 16.12 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.40 | 66.40 | 16.21 | | 130.0 | | | | | Z | 5.37 | 66.32 | 16.15 | | 130.0 | | | 10627-
AAA | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle) | X | 5.58 | 66.89 | 16.38 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.61 | 66.98 | 16.48 | | 130.0 | | | | | Z | 5.58 | 66.90 | 16.42 | | 130.0 | | | 10628-
AAA | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle) | X | 5.35 | 66.26 | 15.99 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.38 | 66.35 | 16.09 | | 130.0 | | | | | Z | 5.35 | 66.25 | 16.01 | | 130.0 | | | 10629-
AAA | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle) | X | 5.47 | 66.50 | 16.11 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.50 | 66.59 | 16.21 | | 130.0 | | | | | Z | 5.48 | 66.54 | 16.15 | | 130.0 | | | 10630-
AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle) | X | 5.62 | 67.17 | 16.45 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.67 | 67.30 | 16.57 | | 130.0 | | | | | Z | 5.62 | 67.15 | 16.47 | | 130.0 | | | 10631-
AAA | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle) | X | 5.65 | 67.38 | 16.76 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.68 | 67.44 | 16.84 | | 130.0 | | | 10000 | | Z | 5.65 | 67.38 | 16.79 | | 130.0 | | | 10632-
AAA | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle) | X | 5.61 | 67.17 | 16.67 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.63 | 67.23 | 16.75 | | 130.0 | | | 10000 | | Z | 5.62 | 67.22 | 16.73 | | 130.0 | | | 10633-
AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle) | X | 5.38 | 66.36 | 16.08 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.41 | 66.43 | 16.17 | | 130.0 | | | 40004 | 1555 000 44 MIST (001 H) 14000 | Z | 5.37 | 66.34 | 16.10 | | 130.0 | | | 10634-
AAA | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle) | X | 5.42 | 66.59 | 16.25 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.45 | 66.66 | 16.34 | | 130.0 | | | 10635- | IEEE 000 44 1455 1001 11 1105 | Z | 5.42 | 66.59 | 16.28 | | 130.0 | | | AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle) | X | 5.25 | 65.74 | 15.52 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.29 | 65.85 | 15.64 | | 130.0 | | | 10636- | IEEE 4000 44m WIE: (4004) - 14000 | Z | 5.25 | 65.72 | 15.54 | 0.10 | 130.0 | | | 10636-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | X | 5.81 | 66.67 | 16.21 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.84 | 66.74 | 16.30 | | 130.0 | | | 10637- | IEEE 4000 44 MIE: (4001) | Z | 5.82 | 66.67 | 16.24 | | 130.0 | | | 10637-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle) | X | 5.91 | 66.92 | 16.32 | 0.46 | 130.0 | ± 9.6 % | | | - | Y | 5.94 | 67.00 | 16.42 | | 130.0 | | | 10000 | IEEE 4000 44 - MEE: (400 ML - 1100 C | Z | 5.91 | 66.92 | 16.35 | | 130.0 | | | 10638-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle) | X | 5.95 | 67.05 | 16.36 | 0.46 | 130.0 | ± 9.6 % | | 7001 | | 19000 | | 120000000000000000000000000000000000000 | - | | | | | 7001 | | Y | 5.98
5.96 | 67.13
67.06 | 16.46
16.40 | | 130.0
130.0 | | Certificate No: EX3-3898_Jun17 C SAR Test Report No: R1809A0420-S1 EX3DV4-SN:3898 June 27, 2017 | 10639-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle) | X | 5.90 | 66.89 | 16.33 | 0.46 | 130.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|-------|---------| | | | Y | 5.93 | 66.97 | 16.42 | | 130.0 | | | | | Z | 5.90 | 66.89 | 16.36 | | 130.0 | | | 10640-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle) | X | 5.83 | 66.70 | 16.17 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.86 | 66.79 | 16.27 | | 130.0 | | | | | Z | 5.83 | 66.67 | 16.19 | | 130.0 | | | 10641-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle) | X | 5.95 | 66.83 | 16.26 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.98 | 66.93 | 16.36 | | 130.0 | | | | | Z | 5.95 | 66.84 | 16.29 | | 130.0 | | | 10642-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle) | X | 5.98 | 67.06 | 16.55 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.00 | 67.13 | 16.63 | | 130.0 | | | | | Z | 5.98 | 67.06 | 16.58 | | 130.0 | | | 10643-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle) | X | 5.81 | 66.70 | 16.25 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.84 | 66.79 | 16.35 | | 130.0 | | | | | Z | 5.81 | 66.69 | 16.27 | | 130.0 | | | 10644-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle) | X | 5.86 | 66.86 | 16.35 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 5.89 | 66.95 | 16.45 | | 130.0 | | | | | Z | 5.86 | 66.84 | 16.37 | | 130.0 | _ | | 10645-
AAA | IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle) | X | 5.99 | 66.94 | 16.36 | 0.46 | 130.0 | ± 9.6 % | | | | Y | 6.02 | 67.02 | 16.45 | | 130.0 | | | | | Z | 6.00 | 66.95 | 16.39 | | 130.0 | | | 10646-
AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) | X | 6.69 | 86.81 | 28.67 | 9.30 | 60.0 | ± 9.6 % | | | | Y | 7.72 | 91.33 | 30.89 | | 60.0 | | | | | Z | 5.52 | 83.14 | 27.53 | | 60.0 | | | 10647-
AAB | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | X | 5.99 | 84.97 | 28.10 | 9.30 | 60.0 | ± 9.6 % | | | | Y | 6.77 | 88.96 | 30.17 | | 60.0 | | | | | Z | 4.99 | 81.44 | 26.98 | | 60.0 | | | 10648-
AAA | CDMA2000 (1x Advanced) | X | 0.51 | 61.86 | 8.44 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 0.54 | 62.46 | 8.97 | | 150.0 | | | | | Z | 0.50 | 61.70 | 8.25 | | 150.0 | | ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-3898_Jun17 Report No: R1809A0420-S1 ANNEX E: Probe Calibration Certificate (SN:3677) Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client TA(shanghai) Certificate No: Z18-60093 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3677 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 29, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | | Name | Function | Signature | |-------------------------|--------------|--|-----------------------| | Network Analyzer E5071C | MY46110673 | 14-Jan-18 (CTTL, No.J18X00561) | Jan -19 | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | DAE4 | SN 777 | 15-Dec-17(SPEAG, No.DAE4-777_Dec17) | Dec -18 | | Reference Probe EX3DV4 | (34.3/42/22) | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | Reference20dBAttenuator | 18N50W-20dB | | Feb-20 | | Reference10dBAttenuator | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Power sensor NRP-Z91 | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibratio | Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 31, 201 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60093 Page 1 of 11 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization 8 8 rotation around an axis that is in the plane normal to probe axis (at measurement center). 6=0 is normal to probe axis Connector Angle information used in DASY system to align
probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z18-60093 Page 2 of 11 # Probe EX3DV4 SN: 3677 Calibrated: May 29, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z18-60093 Page 3 of 11 C SAR Test Report No: R1809A0420-S1 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)2)A | 0.41 | 0.46 | 0.41 | ±10.0% | | DCP(mV) ⁸ | 99.9 | 102.7 | 102.1 | 100 | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | C | D
dB | VR
mV | Unc E
(k=2) | | |-------|------------------------------|----|---------|-----------|-----|---------|----------|----------------|-------| | 0 CW | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 152.4 | ±2.4% | | | | Y | 0.0 | 0.0 | 1.0 | | 161.7 | | | | 1 1 1 | | Z | 0.0 | 0.0 | 1.0 | | 152.2 | | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60093 Page 4 of 11 ⁴ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ⁸ Numerical linearization parameter, uncertainty not required. E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Hup://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.40 | 9.40 | 9.40 | 0.40 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 9.10 | 9.10 | 9.10 | 0.15 | 1.41 | ±12.1% | | 1750 | 40.1 | 1.37 | 8,19 | 8.19 | 8.19 | 0.21 | 1.15 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.96 | 7.96 | 7.96 | 0.25 | 1.01 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.91 | 7.91 | 7.91 | 0.40 | 0.78 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.53 | 0.76 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.28 | 7.28 | 7.28 | 0.64 | 0.70 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.60 | 5.60 | 5.60 | 0.40 | 1.15 | ±13.3% | | 5600 | 35,5 | 5.07 | 4.87 | 4.87 | 4.87 | 0.45 | 1.05 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.99 | 4.99 | 4.99 | 0.45 | 1.35 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60093 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.79 | 9.79 | 9.79 | 0.40 | 0.80 | ±12.1% | | 835 | 55.2 | 0.97 | 9.32 | 9.32 | 9.32 | 0.15 | 1.51 | ±12.1% | | 1750 | 53.4 | 1.49 | 7.91 | 7.91 | 7.91 | 0.23 | 1.09 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.70 | 7.70 | 7.70 | 0.20 | 1.18 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.65 | 7.65 | 7.65 | 0.53 | 0.82 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.53 | 7.53 | 7.53 | 0.37 | 1.10 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.16 | 7.16 | 7.16 | 0.55 | 0.80 | ±12.1% | | 5250 | 48.9 | 5.36 | 5.04 | 5.04 | 5.04 | 0.50 | 1.55 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.27 | 4.27 | 4.27 | 0.51 | 1.66 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.43 | 4.43 | 4.43 | 0.50 | 1.81 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60093 Page 6 of 11 ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z18-60093 Page 7 of
11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Certificate No: Z18-60093 Page 8 of II Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No: Z18-60093 Page 9 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## **Conversion Factor Assessment** #### f=750 MHz, WGLS R9(H_convF) #### f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Certificate No: Z18-60093 Page 10 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 118.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z18-60093 Page 11 of 11 CC SAR Test Report No: R1809A0420-S1 ## **ANNEX F: D835V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.ehinattl.cn TA(Shanghai) Certificate No: Z17-97114 # CALIBRATION CERTIFICATE Object D835V2 - SN: 4d020 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | Power sensor NRV-Z5 | 100595 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE4 | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 31, This calibration certificate shall not be reproduced except in full without written approval of the laborato Certificate No: Z17-97114 Page 1 of 8 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97114 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | - | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.34 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.45 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.51 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.09 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.46 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.75 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.63 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.47 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97114 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.3Ω- 2.54jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.8Ω- 4.57jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.8dB | | #### General Antenna Parameters and Design | Electrical Dalay (and disput) | | | |----------------------------------|----------|--| | Electrical Delay (one direction) | 1.495 ns | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |--|-------|--| | Selection of the Control Cont | | | Certificate No: Z17-97114 Page 4 of 8 Date: 08.28.2017 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.887$ S/m; $\varepsilon_r = 41.22$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.74V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 3.16 W/kg 0 dB = 3.16 W/kg = 5.00 dBW/kg Certificate No: Z17-97114 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z17-97114 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 08.27.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r = 55.62$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.64,9.64, 9.64); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.55 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg Maximum value of SAR (measured) = 3.29 W/kg 0 dB = 3.29 W/kg = 5.17 dBW/kg Certificate No: Z17-97114 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z17-97114 Page 8 of 8 ## **ANNEX G: D1900V2 Dipole Calibration Certificate** http://www.chinattl.cn TA(Shanghai) Certificate No: Z17-97115 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 26, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)¹⁰ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|--| | 102083 | | Sep-17 | | 100595 | | Sep-17 | | SN 3617 | | Jan-18 | | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102083
100595
SN 3617
SN 1331
ID#
MY49071430 | 102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286) | Calibrated by: Name Function Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 30, 20 This calibration certificate shall not be reproduced except in full without written approval of the laborator Certificate No: Z17-97115 Page 1 of 8