Tel: +82-31-500-0133 Fax: +82-31-500-0149 ## **Appendix C. CALIBRATION DATA SHEETS** E-Field Probe 3972 Dipole Antenna (D835V2-481/ D1900V2-5d038/ D2450V2-746) #### Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 3004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KTL (Dymstec) Certificate No: EX3-3972_Jan14 Accreditation No.: SCS 108 C #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3972 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: January 28, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01/33) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-680_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8548C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Issued: January 28, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sonsitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A.B.C,D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isctropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3972_Jan14 EX3DV4 - SN:3972 January 28, 2014 # Probe EX3DV4 SN:3972 Manufactured: Calibrated: November 5, 2013 January 28, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) January 28, 2014 EX3DV4- SN:3972 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3972 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-----------------------|----------|----------|----------|-----------| | Norm (µV/(V/m)2)A | 0.49 | 0.49 | 0.48 | ± 10.1 % | | DCP (mV) ⁵ | 100.1 | 98.2 | 103.1 | 3 | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|------|------------|---------------------------| | 0 | CW | X | 0.0 | D.0 | 1.0 | 0.00 | 163.0 ±2.7 | ±2.7 % | | | | Y | 0.0 | 0.0 | 1.0 | | 161.8 | | | | | Z | 0.0 | 0.0 | 1.0 | | 157.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Lincertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. January 28, 2014 EX3DV4- SN:3972 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3972 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10,13 | 10.13 | 10.13 | 0.59 | 0.71 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.75 | 9.75 | 9.75 | 0.29 | 1.08 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.05 | 8.05 | 8,05 | 0.51 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.81 | 7.81 | 7,81 | 0.66 | 0.67 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.09 | 7.09 | 7.09 | 0.33 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.97 | 6.97 | 6.97 | 0.37 | 0.95 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorvF uncertainty at calibration frequency and the uncertainty for the indicated frequency benc. F At frequencies below 3 GHz, the velidity of tissue parameters (ε and α) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and α) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated terget tissue parameters. Alpha/Depth are determined curing calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always loss than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. January 28, 2014 EX3DV4-SN:3972 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3972 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ³ | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------
----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.64 | 9.64 | 9.64 | 0.29 | 1.11 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.85 | 7.85 | 7.85 | 0.76 | 0.60 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.58 | 7.58 | 7.58 | 0.51 | 0.74 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.24 | 7.24 | 7.24 | 0.76 | 0.57 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.96 | 6.96 | 6.96 | 0.80 | 0.50 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CorvF uncertainty for indicated target tissue parameters. ^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3972 January 28, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) 600 MHz 0 Roll [°] 18 00 MHz 2500 MHz -0.5 100 MHz EX3DV4- SN:3972 January 28, 2014 ### Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (0, 9), f = 900 MHz January 28, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3972 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 30.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KTL (Dymstec) Accreditation No.: SCS 108 S C S Certificate No: D835V2-481_Apr13 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 481 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 25, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (31). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 909 | 11-Sep-12 (No. DAE4-909_Sep12) | Sep-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer FP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-481_Apr13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.6 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | (1999) | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.49 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.18 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.0 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 09557 | | #### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured |
250 mW input power | 2.50 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.65 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.34 W/kg ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω - 5.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.7 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $46.5 \Omega - 6.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.4 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 23, 2003 | #### **DASY5 Validation Report for Head TSL** Date: 25.04.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 481 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronies: DAE4 Sn909; Calibrated: 11.09.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.921 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.89 W/kg 0 dB = 2.89 W/kg = 4.61 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 24.04.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 481 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 54$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronies: DAE4 Sn909; Calibrated: 11.09.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.650 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.63 W/kg Maximum value of SAR (measured) = 2.93 W/kg 12.00 -3.00 -6.00 0 dB = 2.93 W/kg = 4.67 dBW/kg ### Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service auisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client KTL (Dymstec) Accreditation No.: SCS 108 C Certificate No: D1900V2-5d038_May13 #### **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d038 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: May 29, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 cB Attenuator | SN: 5058 (204) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N m smatch combination | SN: 5047.3 / 00327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Heterence Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 25-Apr-13 (No. DAE4-601_Apr13) | Apr-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 13-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 01-Aug-99 (in house check Oct-11) | In house check Oet 13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: May 29, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.6 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| |
Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.3 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (4444) | (====) | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 41.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | Here | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 41.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.1 W/kg ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.1 \Omega + 6.7 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.3 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.9 Ω + 7.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.197 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|---------------|--| | Manufactured on | July 04, 2003 | | #### **DASY5 Validation Report for Head TSL** Date: 29.05.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d038 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.35 \text{ S/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.243 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.29 W/kgMaximum value of SAR (measured) = 12.3 W/kg 0 dB = 12.3 W/kg = 10.90 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 29.05.2013 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d038 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04,2013 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.243 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 12.9 W/kg 0 dB = 12.9 W/kg = 11.11 dBW/kg ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 C S Client KTL (Dymstec) Certificate No: D2450V2-746_Jan14 | Object | D2450V2 - SN: 7 | 46 | | |--|--|--|--| | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | January 21, 2014 | 1 | | | | | onal standards, which realize the physical ur
robability are given on the following pages ar | | | | | | | | All calibrations have been cond | ucted in the closed laborato | ry facility: environment temperature (22 \pm 3) $^{\circ}$ | C and humidity < 70%. | | All calibrations have been condi- | | by facility: environment temperature $(22\pm3)^{\circ}$ | C and humidity < 70%. | | Calibration Equipment used (M& | | | | | Calibration Equipment used (M&
Primary Standards | TE critical for calibration) | ry facility: environment temperature (22 ± 3)*/ Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) | C and humidity < 70%. Scheduled Calibration Oct. 14 | | Calibration =quipment used (M&
Primary Standards
Power meter EPM-442A | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | ID # GB37480704 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) | Scheduled Calibration Oct-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A | ID # GB37480704 US37292783 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) | Scheduled Calibration Oct-14 Oct-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481 A
Power sensor HP 8481 A
Reference 20 dB Attenuator | ID # GB37480704 US37292783 MY41092317 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) | Scheduled Calibration Oct-14 Oct-14 Oct-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 | | Calibration
Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481 A
Power sensor HP 8481 A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) | Scheduled Calibration Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481 A
Power sensor HP 8481 A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec15) 25-Apr-13 (No. DAE4-601_Apr13) | Scheduled Calibration Cct-14 Cct-14 Cct-14 Apr-14 Apr-14 Dac-14 Apr-14 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481 A
Power sensor HP 8481 A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV3
DAE4
Secondary Standards
RF generator R&S SMT-06 | ID # GB37480704 US37292763 MY41092317 SN: 5054 (20k) SN: 5054 (3 / 06327 SN: 3205 SN: 601 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. ES3-3205_Dec15) 25-Apr-13 (No. DAE4-601_Apr13) Check Dats (in nouse) | Scheduled Calibration Cct-14 Cct-14 Cct-14 Apr-14 Apr-14 Dac-14 Apr-14 Dac-14 Apr-14 | | Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481 A Power sensor HP 8481 A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Recondary Standards RE generator R&S SMT-06 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Dats (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 | | Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481 A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Dats (in house) 04-Aug-99 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 | | | ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047,3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in nouse) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-14 Apr-14 Scheduled Check In house check: Oct-16 In house check: Oct-14 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.3 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 170 | | ### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.5 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 48.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.78 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.8 W/kg ± 16.5 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.8 \Omega + 3.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.5 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.2 \Omega + 5.2 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.8 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.155 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in
the 'Measurement Conditions' paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 01, 2003 | | #### DASY5 Validation Report for Head TSL Date: 21.01.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 746 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 25.04.2013 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.581 V/m; Power Drift = 0.06 dB Pcak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kgMaximum value of SAR (measured) = 17.0 W/kg 0 dB = 17.0 W/kg = 12.30 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.01.2014 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Scrial: D2450V2 - SN: 746 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 25.04.2013 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.204 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.0 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.78 W/kg Maximum value of SAR (measured) = 16.6 W/kg -19.20 -24.00 0 dB = 16.6 W/kg = 12.20 dBW/kg ### Impedance Measurement Plot for Body TSL