

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei 101, No.006, Keji south 12th Road, High-tech zone community, Yuehai Street, Nanshan District, Shenzhen, Guangdong, China Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

F	CC REPORT For LTE Cat NB				
Report No	CHTEW23060049	Report Verification:			
Project No	SHT2304055301EW				
FCC ID:	2AM8O-U212-2				
Applicant:	Alicn Medical Shenzhen, Inc				
Address	Room 410, Building A, 3rd Sub- Science Park, No. 22 Jinxiu Eas Shenzhen, Guangdong, PEOPL	t Road, Pingshan District, 518118			
Product Name:	Arm Blood Pressure Monitor				
Trade Mark	-				
Model No	AES-U212				
Listed Model(s)					
Standard: :	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part 22 Subp FCC CFR Title 47 Part 24 Subp FCC CFR Title 47 Part 27				
Date of receipt of test sample:	May.04, 2023				
Date of testing	May.04, 2023-Jun.27, 2023				
Date of issue	Jun.28, 2023				
Result:	Pass				
Compiled by (position+printedname+signature):	File administrators Fanghui Zhu	Jang Miri Zhu			
Supervised by (position+printedname+signature):	Project Engineer Xiaodong Zhao	Xiaodong Zheo			
Approved by (position+printedname+signature):	Manager Hans Hu	Homsty			
Testing Laboratory Name:	Shenzhen Huatongwei Interna	tional Inspection Co., Ltd.			
Address	1/F, Bldg 3, Hongfa Hi-tech Indu Gongming, Shenzhen, China	istrial Park, Genyu Road, Tianliao,			
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.					

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	
3.3.	Radio Specification Description	5 5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Test frequency list	7
4.2.	Test mode	8
4.3.	Test sample information	9
4.4.	Support unit used in test configuration and system	9
4.5.	Testing environmental condition	9
4.6.	Statement of the measurement uncertainty	10
4.7.	Equipments Used during the Test	11
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Conducted Output Power	12
5.2.	Peak-to-Average Ratio	13
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	14
5.4.	Band Edge	15
5.5.	Conducted Spurious Emissions	16
5.6.	Frequency stability VS Temperature measurement	17
5.7. 5.8.	Frequency stability VS Voltage measurement ERP and EIRP	18 19
5.8. 5.9.	Radiated Spurious Emission	20
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	38
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	39
<u>8.</u>	APPENDIX REPORT	39

Contents

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 2: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations

FCC CFR Title 47 Part 22 Subpart H: Cellular Radiotelephone Service

FCC CFR Title 47 Part 24 Subpart E: Broadband PCS

FCC CFR Title 47 Part 27: Miscellaneous Wireless Communications Services

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2023-06-28	Original

2. TEST DESCRIPTION

Section	Test Item	Section in CFR 47	Result #1	Test Engineer
5.1	Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass	Xiaodong Zhao
5.2	Peak-to-Average Ratio	Part 24.232 Part 27.50	Pass	Xiaodong Zhao
5.3	99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b) Part 27.53	Pass	Xiaodong Zhao
5.4	Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Xiaodong Zhao
5.5	Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Xiaodong Zhao
5.6	Frequency stability vs temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	Pass	Xiaodong Zhao
5.7	Frequency stability vs voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235 Part 27.54	Pass	Xiaodong Zhao
5.8	ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	Pass	Xiaodong Zhao
5.9	Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238 Part 27.53	Pass	Yifan Wang

Note:

#1: The test result does not include measurement uncertainty value

3. SUMMARY

3.1. Client Information

Applicant:	Alicn Medical Shenzhen, Inc
Address:	Room 410, Building A, 3rd Sub-park, Leibo Zhongcheng Life Science Park, No. 22 Jinxiu East Road, Pingshan District, 518118 Shenzhen, Guangdong, PEOPLE'S REPUBLIC OF CHINA
Manufacturer:	Alicn Medical Shenzhen, Inc
Address:	Room 410, Building A, 3rd Sub-park, Leibo Zhongcheng Life Science Park, No. 22 Jinxiu East Road, Pingshan District, 518118 Shenzhen, Guangdong, PEOPLE'S REPUBLIC OF CHINA

3.2. Product Description

Main unit information:	
Product Name:	Arm Blood Pressure Monitor
Trade Mark:	-
Model No.:	AES-U212
Listed Model(s):	-
Power supply:	3.7V, 1100mAh Li-ion battery
Hardware version:	AES-066-4G-JV01
Software version:	A.01.00.00

3.3. Radio Specification Description

Support LTE type:	🛛 Cat NB1	Cat NB2	
	FDD Band 2	S FDD Band 4	🛛 FDD Band 5
Support Operating Dands	SFDD Band 12	SFDD Band 13	FDD Band 17
Support Operating Band:	FDD Band 25	FDD Band 26	TDD Band 41
	FDD Band 66	FDD Band 71	
Operating Frequency Range:	Please refer to not	e #2	
Channel bandwidth:	200kHz		
Subcarrier spacing:	🛛 3.75kHz	🛛 15kHz	
Uplink Modulation type:	BPSK		
Downlink Modulation type:	BPSK		
Antenna type:	FPC		
Antenna gain ^{#3} :	-3.0dBi		

Note:

○ 🛛 : means that this feature is supported; 🗋 : means that this feature is not supported

• #2: Operating frequency range is as follow:

LTE Band	Uplink frequency	Downlink frequency
FDD Band 2	1850.7 – 1909.3 MHz	1930.7 – 1989.3 MHz
FDD Band 4	1710.7 – 1754.3 MHz	2110.7 – 2154.3 MHz
FDD Band 5	824.7 – 848.3 MHz	869.7 – 893.3 MHz
FDD Band 12	699.7 – 715.3 MHz	729.7 – 745.3 MHz
FDD Band 13	779.5 – 784.5 MHz	748.5 – 753.5 MHz

 #3: The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, HTW lab has not verified the authenticity of its information

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International I	nspection Co., Ltd.	
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Gongming, Shenzhen, China	Park, Genyu Road, Tianliao,	
Contact information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

FDD Band 2	Test Frequency ID	NuL	MuL	Frequency of Uplink [MHz]	NoL	MDL	Frequency of Downlink [MHz]	
	Low Range	18601	0	1850.1	601	-0.5	1930.1	
	Mid Range	18900	0	1880.0	900	-0.5	1960.0	
	High Range	19199	0	1909.9	1199	-0.5	1989.9	
	NOTE 1: Applica	ble to either 3.75	kHz or 15 kHz	NB-IoT UL subcarrie	er spacing		•	
FDD Band 4	Test Frequency ID	NuL	MuL	Frequency of Uplink [MHz]	N _{DL}	MDL	Frequency of Downlink [MHz]	
	Low Range	19951	0	1710.1	1951	-0.5	2110.1	
	Mid Range	20175	0	1732.5	2175	-0.5	2132.5	
	High Range	20399	0	1754.9	2399	-0.5	2154.9	
	NOTE 1: Applicable	e to either 3.75 kHz	or 15 kHz NB-lo	T UL subcarrier spacing)			
FDD Band 5	Test Frequency ID	NuL	MuL	Frequency of Uplink [MHz]	No.	Mol	Frequency of Downlink [MHz]	
	Low Range	20401	0	824.1	2401	-0.5	869.1	
	Mid Range	20525	0	836.5	2525	-0.5	881.5	
	High Range	20649	0	848.9	2649	-0.5	893.9	
	NOTE 1: Applicat	ble to either 3.75	kHz or 15 kHz	NB-IoT UL subcarrie	r spacing			
FDD Band 12	Test Frequency ID	Nul	Mul	Frequency of Uplink [MHz]	NDL	MDL	Frequency of Downlink [MHz]	
	Low Range	23011	0	699.1	5011	-0.5	729.1	
	Mid Range	23095	0	707.5	5095	-0.5	737.5	
	High Range	23179	0	715.9	5179	-0.5	745.9	
	NOTE 1: Applicat	ble to either 3.75	kHz or 15 kHz	NB-IoT UL subcarrie	r spacing			
FDD Band 13	Test Frequency ID	NUL	Mul	Frequency of Uplink [MHz]	NoL	MDL	Frequency of Downlink [MHz]	
	Low Range	23181	0	777.1	5181	-0.5	746.1	
	Mid Range	23230	0	782.0	5230	-0.5	751.0	
	High Range	23279	0	786.9	5279	-0.5	755.9	
	NOTE 1: Applicable to either 3.75 kHz or 15 kHz NB-IoT UL subcarrier spacing							

4.2. Test mode

l est mode Link mode	Test mode	Link mode
----------------------	-----------	-----------

- 1) Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems and ANSI C63.26 with maximum output power.
- Radiated measurements were performed with rotating EUT in different three orthogonal test planes to 2) find the maximum emission.

Test configuration is as follow:

Test Items	Subcarrier Modulation spacing	N _{Tones}			
rest tiems	wooulation	spacing	1	Half	Full
Conducted Output Power	#4	#5	0	0	0
Peak-to-Average Ratio	#4	#5	0	-	0
99% Occupied Bandwidth & 26 dB Bandwidth	#4	#5	-	-	0
Band Edge	#4	#5	0	-	0
Conducted Spurious Emission	#4	#5	0	-	-
Frequency Stability	#4	#5	-	-	0
ERP and EIRP	#4	#5	0	0	0
Radiated Spurious Emission	#4	#5	0	-	-

Note:

Ο #4: Test all kind of uplink modulation in section 3.3

Ο #5: Test all kind of subcarrier spacing in section 3.3

o: means that this configuration is chosen for testing Ο

-: means that this configuration is not test. Ο

0 The device is investigated from 30MHz to10 times offundamental signal for radiated spurious emission test under different modulations, Subcarrier spacing and N_{Tones} in exploratory test. Subsequently, only the worst case emissions(QPSK,15kHz SCS,and 1@0) are reported.

4.3. Test sample information

Test item	HTW sample no.
Conducted test items	Please refer to the description in the appendix report
Radiated test items	YPHT23040553009

Note:

Conducted test items: Conducted Output Power, Peak-Average Ratio, 99% Occupied Bandwidth & 26 dB Bandwidth, Band Edge, Conducted Spurious Emissions, Frequency stability, ERP and EIRP

Radiated test items: Radiated Spurious Emission

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?									
~	No								
Item	Equipment	Trade Name	Model No.	Other					
1									
2									

4.5. Testing environmental condition

	VN=Nominal Voltage	DC 3.8V		
Voltage	VL=Lower Voltage	DC 3.6V		
	VH=Higher Voltage	DC 4.35V		
	TN=Normal Temperature	25 °C		
Temperature	Extreme Temperature From -30°C to + 50°C			
Humidity	30~60 %			
Air Pressure	950-1050 hPa			

4.6.	Statement of the measurement uncert	ainty
------	-------------------------------------	-------

No.	Test Items	Measurement Uncertainty		
1	Conducted Output Power	0.66		
2	Peak-to-Average Ratio	-		
3	99% Occupied Bandwidth & 26 dB Bandwidth	0.002%		
4	Band Edge	1.68dB		
5	Conducted Spurious Emissions	1.68dB		
6	Frequency stability	0.02ppm		
7	Radiated Spurious Emission	4.54dB for 30MHz-1GHz		
		5.10dB for above 1GHz		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Page:

4.7. Equipments Used during the Test

•	Conducted test item								
Used	sed Test Equipment Manufacturer Equipment No. Model No. Serial No. Last Cal. Date (YY-MM-DD) (YY-M								
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2022/08/25	2023/08/24		
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2022/08/25	2023/08/24		
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A		
•	T-Cock	Weinschel	HTWE0289	1580	SC329	2022/08/25	2023/08/24		

•	Radiated Spurious Emission								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2023/4/17	2026/4/16		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2022/8/25	2023/8/24		
•	Spectrum Analyzer	R&S	HTWE0385	N9020A	MY54486658	2022/8/25	2023/8/24		
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/4/6	2024/4/5		
•	Horn Antenna	SCHWARZBECK	HTWE0126	BBHA 9120D	1011	2023/2/14	2026/2/13		
•	Pre-Amplifer	CD	HTWE0071	PAP-0102	12004	2023/5/25	2024/5/24		
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2023/5/25	2024/5/24		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

•	Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2022/08/25	2023/08/24		
•	High pass filter	Wainwright	HTWE0297	WHKX3.0/18G-10SS	38	2023/05/15	2024/05/14		
•	Band Stop filter	-	HTWE0039	N/A	N/A	2023/01/26	2024/01/25		

2023-06-28

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

<u>LIMIT</u>

N/A

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE

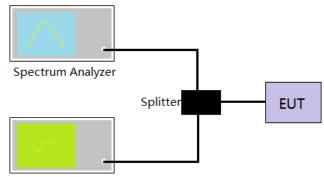
Please refer to the clause 4.2

TEST RESULTS

⊠ Passed

Not Applicable

TEST DATA


2023-06-28

5.2. Peak-to-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

Communication Tester

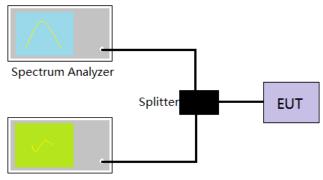
TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE

Please refer to the clause 4.2

TEST RESULTS


☑ Passed □ Not Applicable

TEST DATA

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u> N/A

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE

Please refer to the clause 4.2

TEST RESULTS

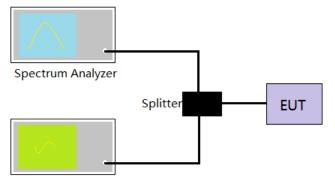
🛛 Passed

Not Applicable

TEST DATA

5.4. Band Edge

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Part 27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- 1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- 4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- 4. Spectrum analyzer setting as follow:

RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto

5. Record the test plot.

TEST MODE

Please refer to the clause 4.2

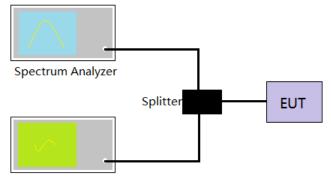
TEST RESULTS

☑ Passed □ Not Applicable

TEST DATA Refer to the appendix report

5.5. Conducted Spurious Emissions

<u>LIMIT</u>


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Part 27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- 1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- 4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

TEST CONFIGURATION

Communication Tester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=RMS, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=RMS, Sweep time= Auto Scan frequency range up to 10th harmonic.

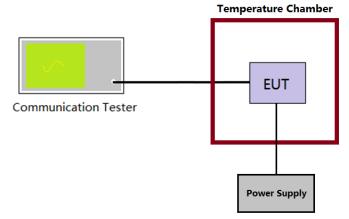
4. Record the test plot.

TEST MODE

Please refer to the clause 4.2

TEST RESULTS

☑ Passed □ Not Applicable


TEST DATA Refer to the appendix report

5.6. Frequency stability VS Temperature measurement

<u>LIMIT</u>

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

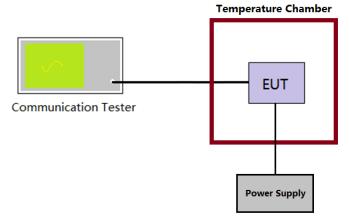
TEST MODE

Please refer to the clause 4.2

TEST RESULTS

🛛 Passed

Not Applicable


<u>TEST DATA</u>

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE

Please refer to the clause 4.2

TEST RESULTS

🛛 Passed

Not Applicable

TEST DATA Refer to the appendix report

5.8. ERP and EIRP

LIMIT

LTE Band 2: 2W EIRP

LTE Band 4: 1W EIRP

LTE Band 5: 7W ERP

LTE Band 12/13: 3W ERP

TEST PROCEDURE

- According to the power tested in section 5.1, select the maximum power in each mode, and use the 1. following formula to calculate the corresponding ERP/EIRP.
- ERP = conducted power + Gain(dBd) 2.
- 3. EIRP = conducted power + Gain(dBi) ERP = EIRP - 2.15

TEST RESULTS

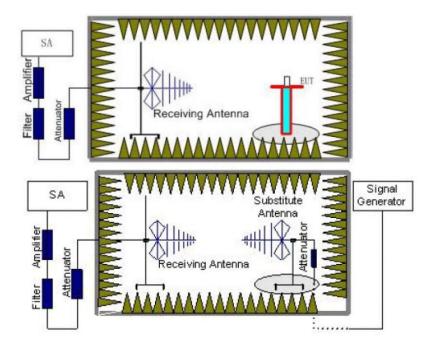
Passed Not Applicable

TEST DATA

5.9. Radiated Spurious Emission

<u>LIMIT</u>

Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.


The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Part 27.53(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

- 1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- 2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
- On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
- 4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

Part 27.53(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical

positions and lengths to maximize emissions levels.

- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

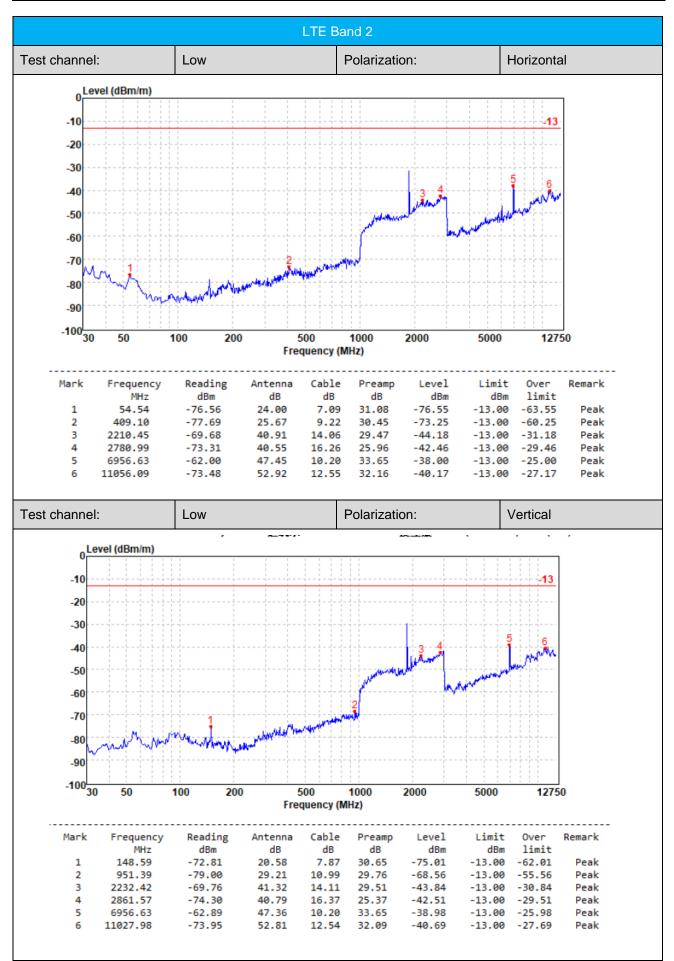
NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

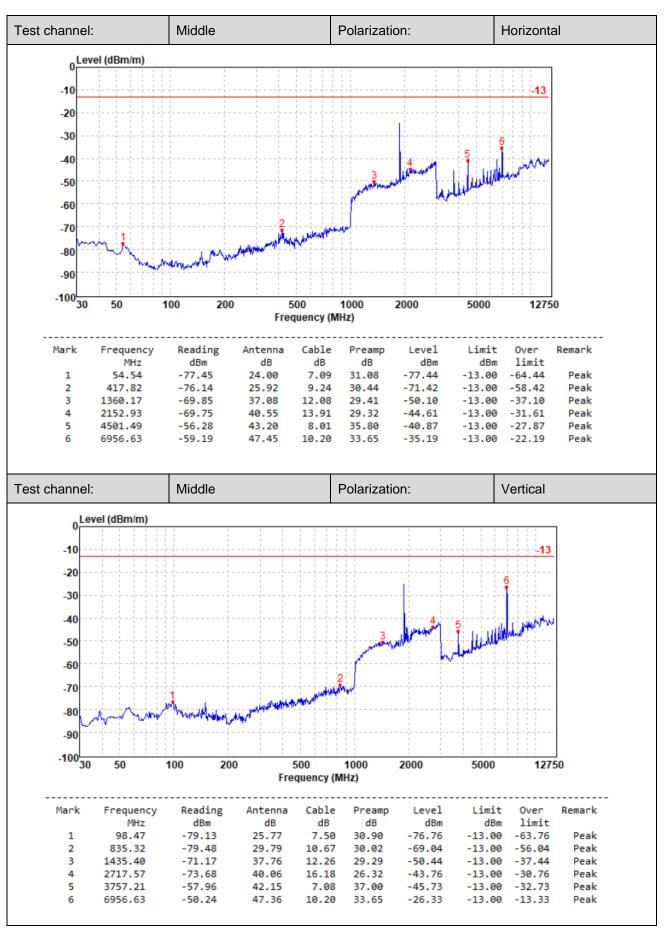
gain (dBd) = gain (dBi) - 2.15 dB.

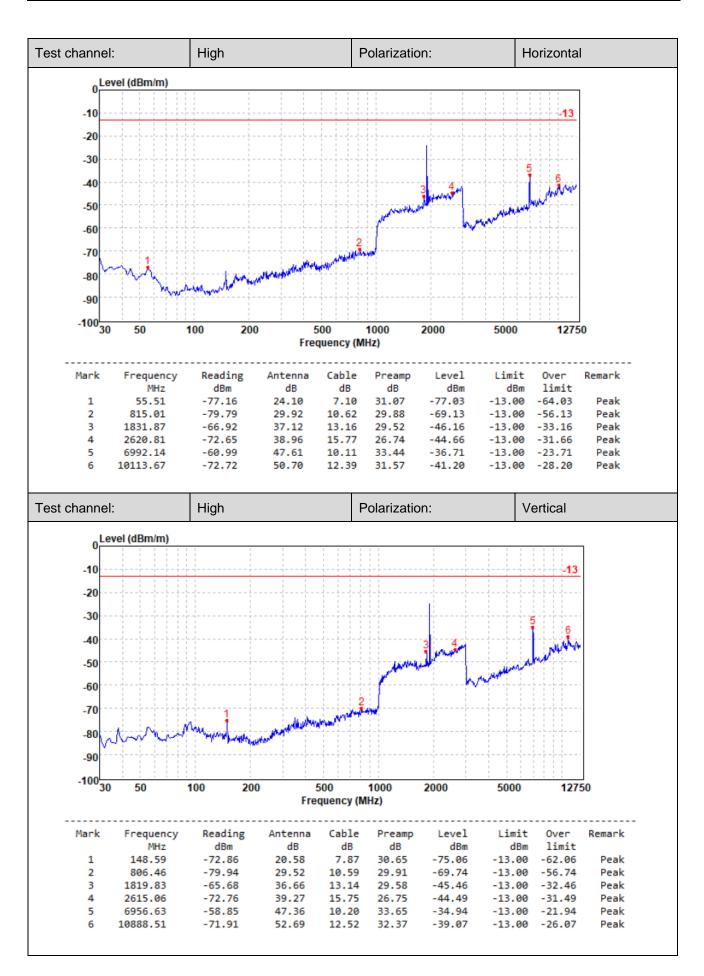
If necessary, the antenna gain can be calculated from calibrated antenna factor information

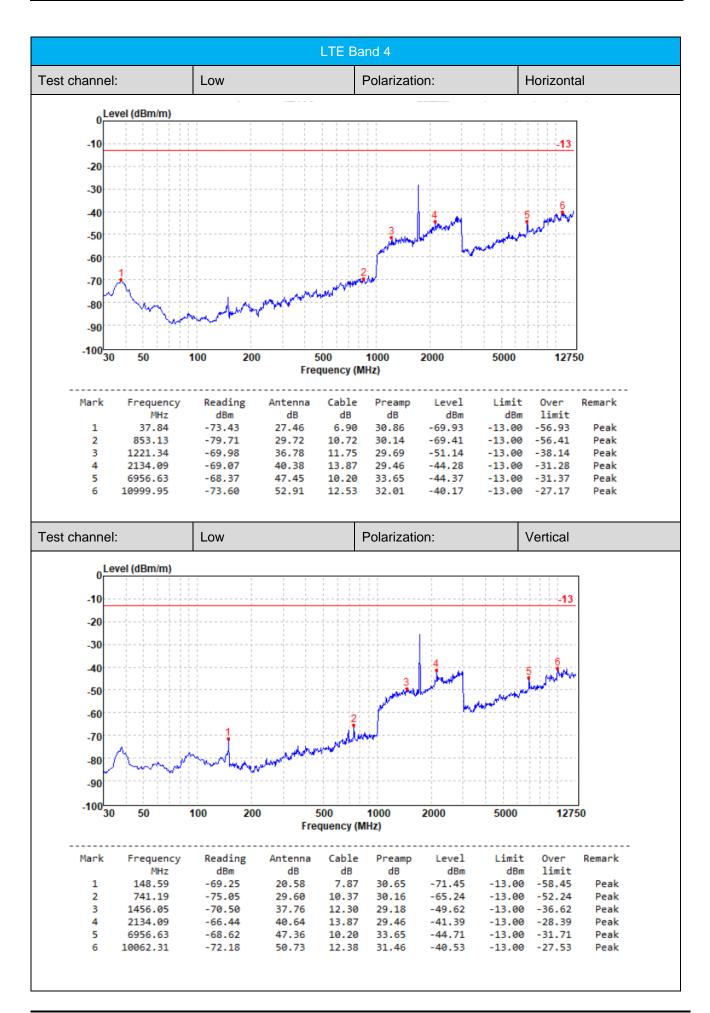
14. Provide the complete measurement results as a part of the test report.

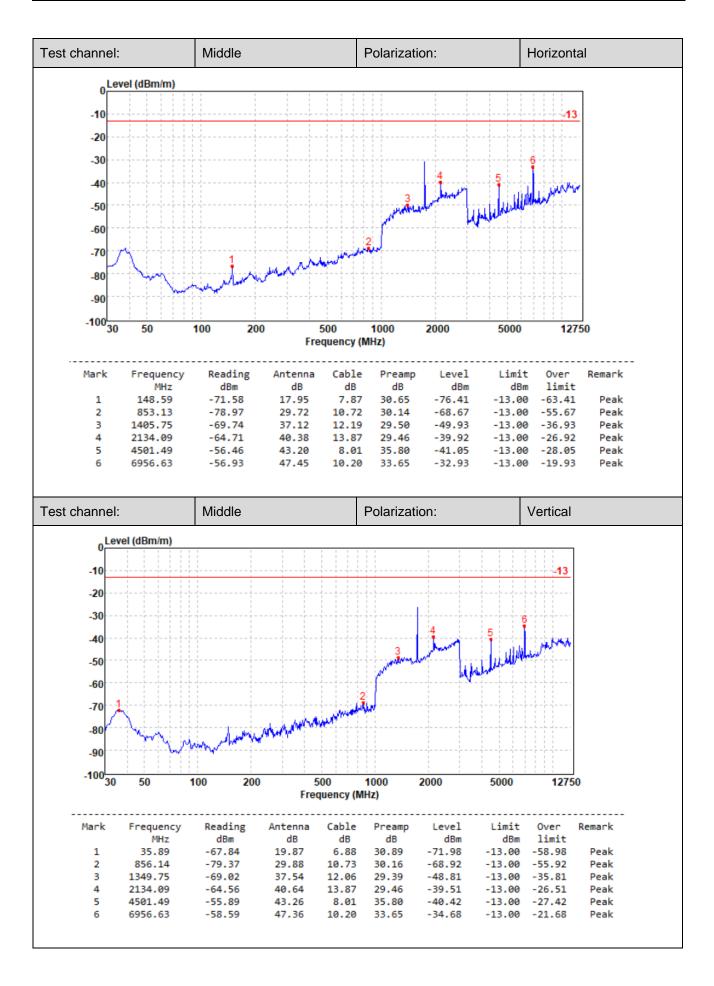

TEST MODE

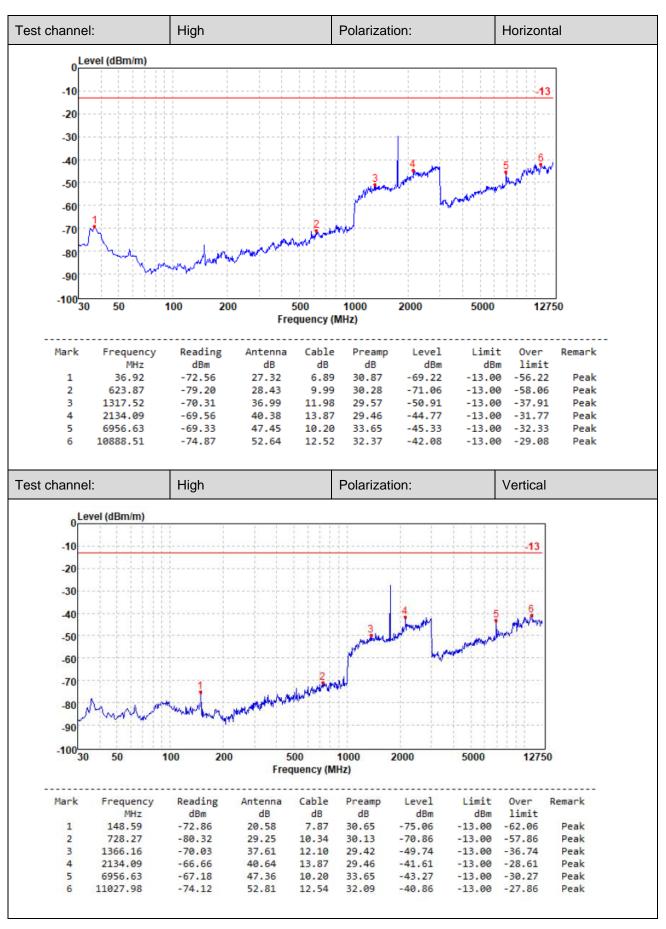
Please refer to the clause 4.2

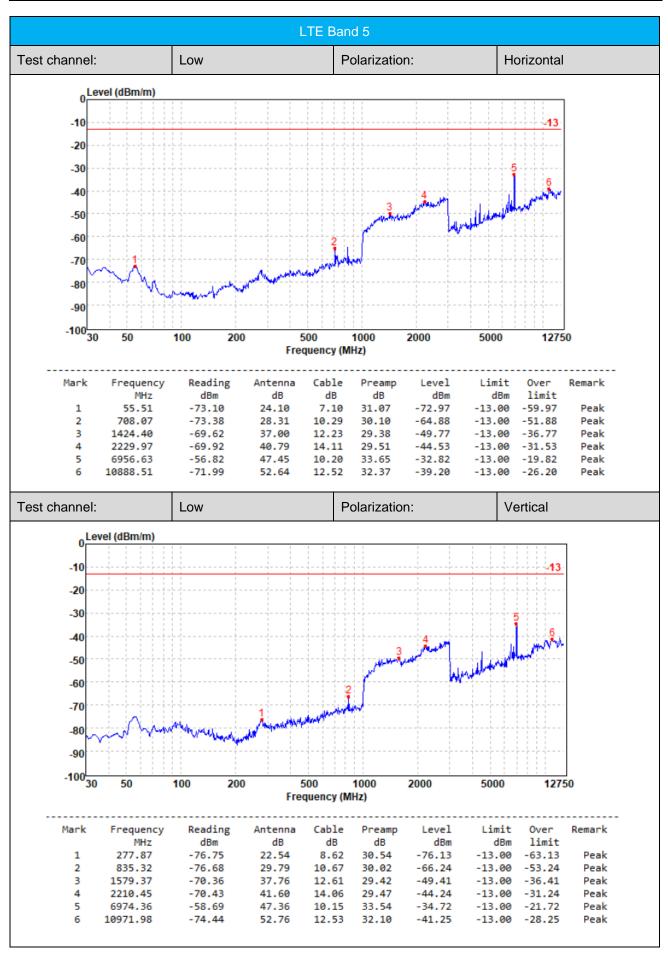

TEST RESULTS

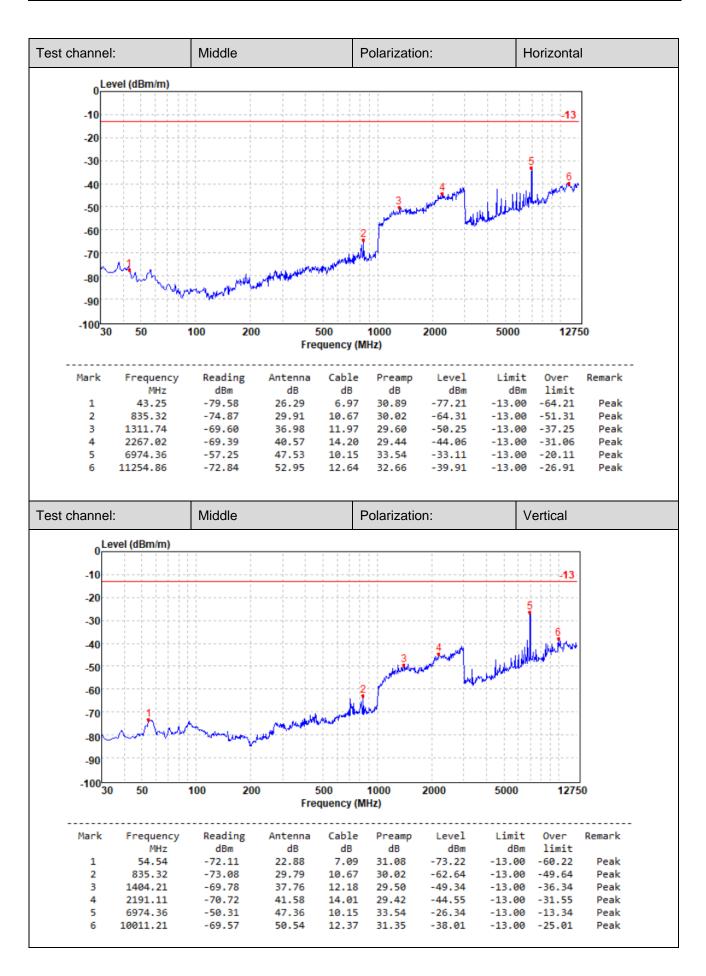

2023-06-28

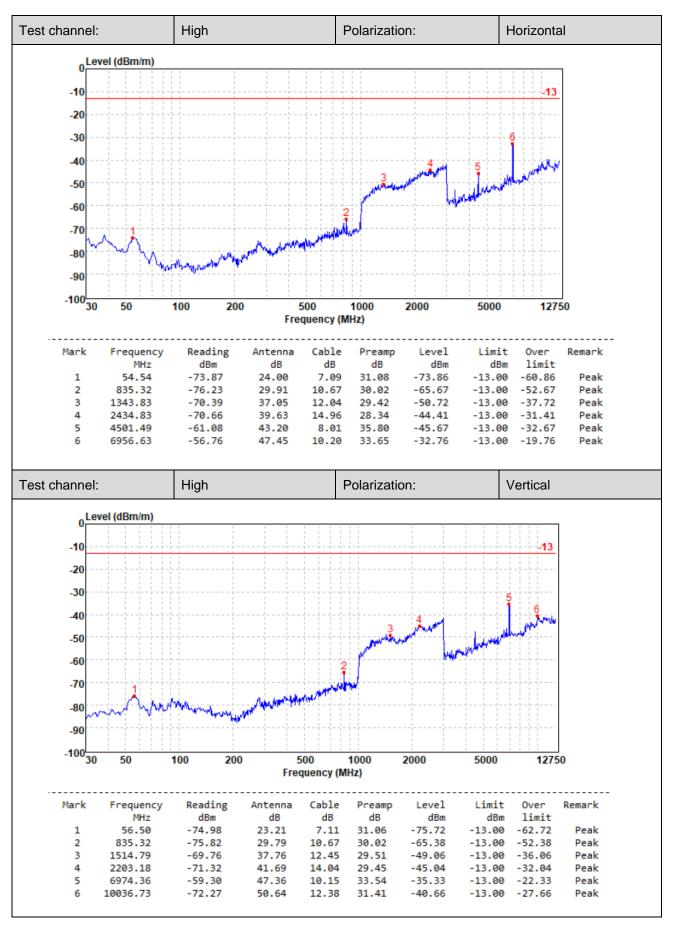

☑ Passed □ Not Applicable

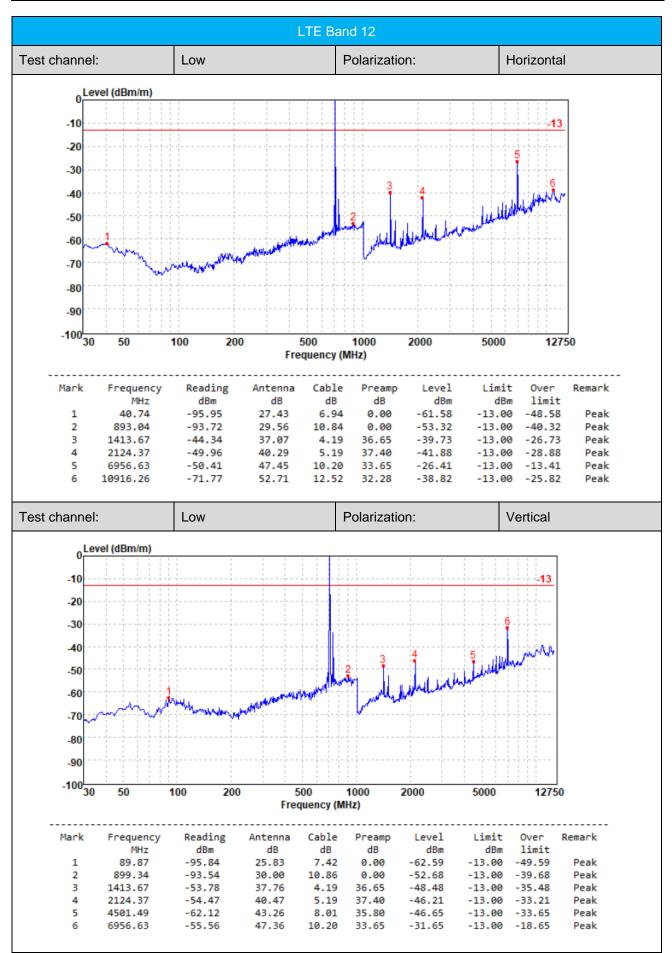


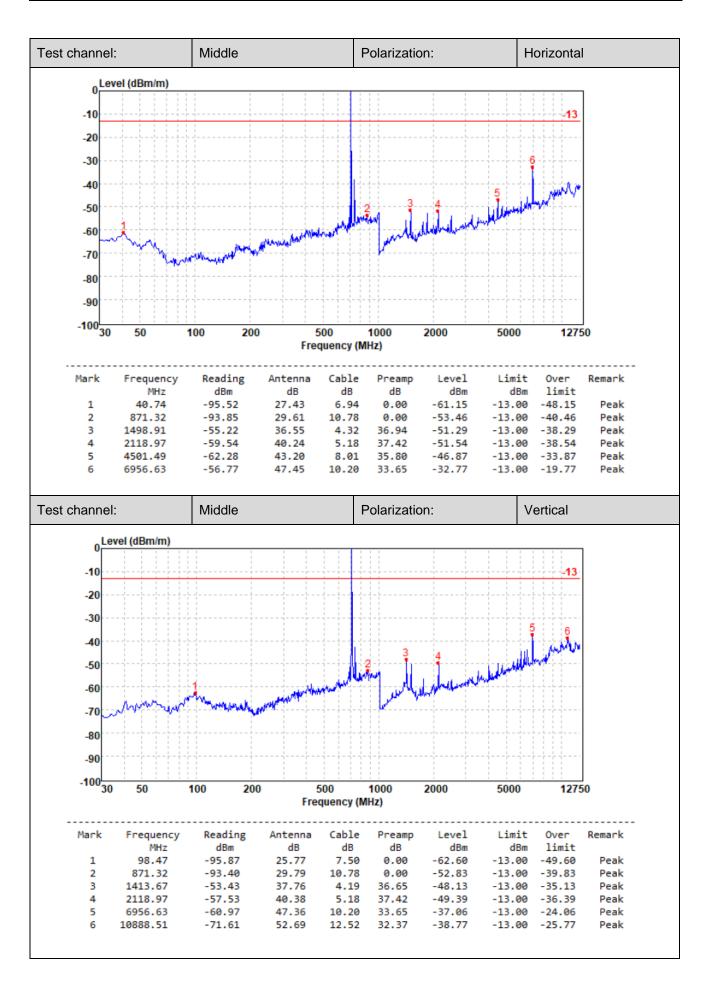

Page:

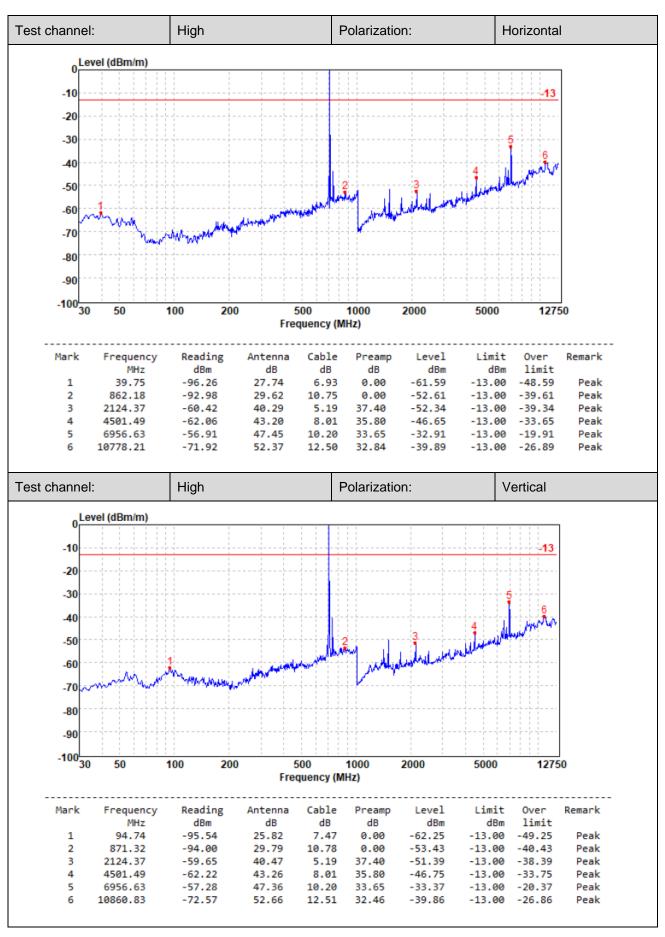


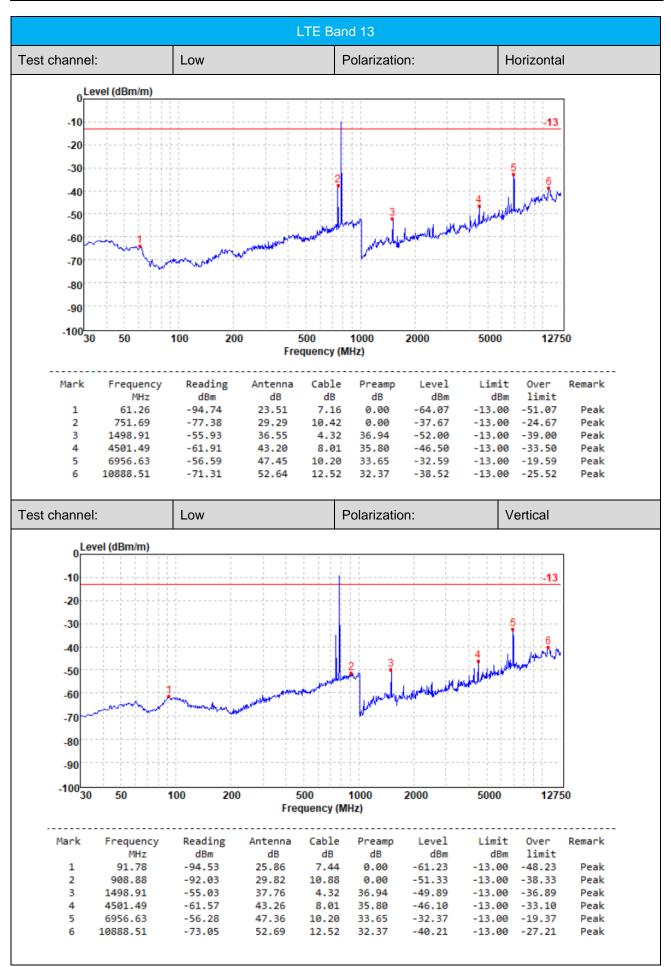


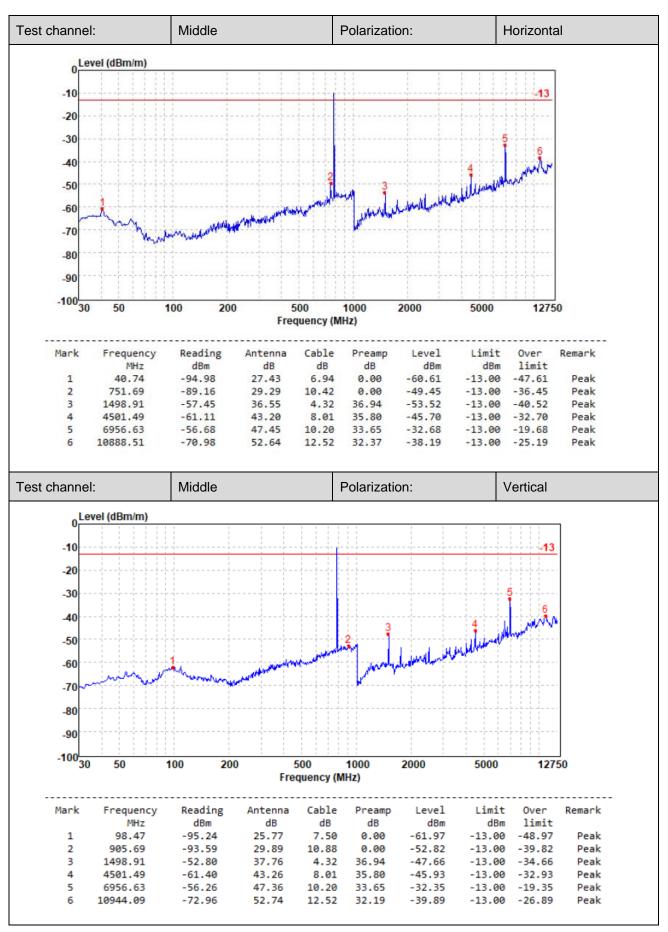


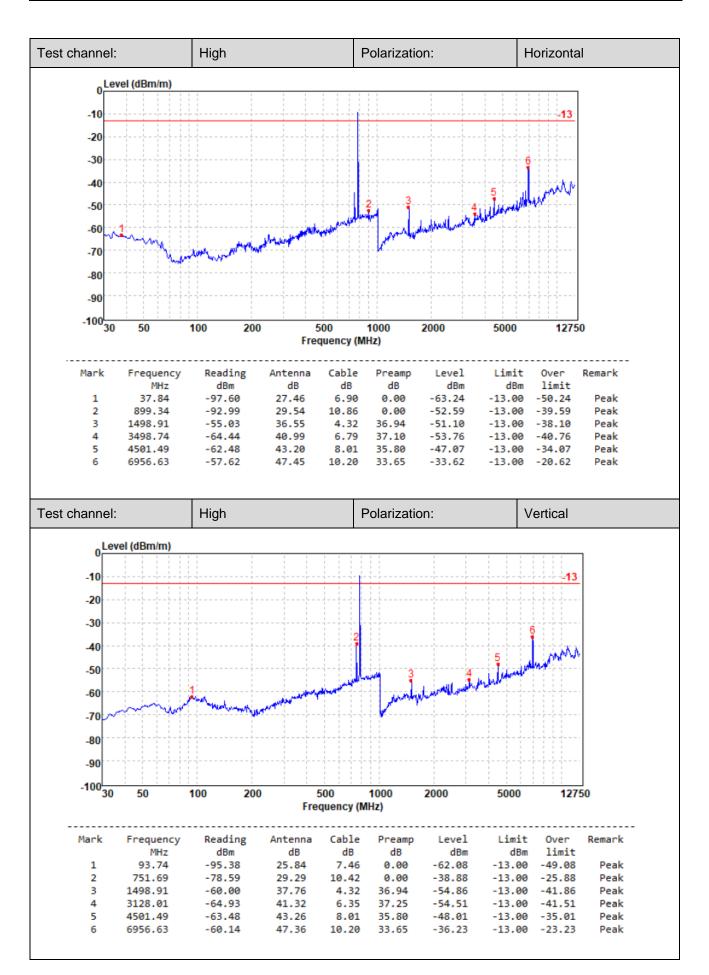




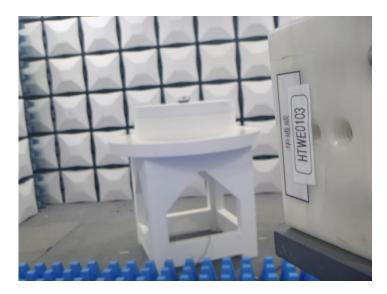







Page: 34 of 39

Page: 36 of 39



2023-06-28

6. TEST SETUP PHOTOS OF THE EUT

Shenzhen Huatongwei International Inspection Co., Ltd.

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refer to the test report No.: CHTEW23060048

8. APPENDIX REPORT