

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: 2021-11-03

Report Template Version: V05

Test Report

Report No.: CQASZ20240801671E

Applicant: Shenzhen Hollyland Technology Co.,Ltd

Address of Applicant: 8F,Building 5D,Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan

District Shenzhen, China

Equipment Under Test (EUT):

Product: Wireless Microphone

Model No.: LARK M1, LARK C1

Test Model No.: LARK M1

FCC ID: 2ADZC-6502PC

Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Date of Receipt: 2024-08-12

Date of Test: 2024-09-02 to 2024-09-11

Date of Issue: 2024-10-16
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By:

(Alex Wang)

Report No.: CQASZ20240801671E

1 Version

Revision History Of Report

Report No.	Version Description		Issue Date
CQASZ20240801671E	Rev.01	Initial report	2024-10-16

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 TEST ENVIRONMENT	_
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY 4.9 DEVIATION FROM STANDARDS	
4.10 Other Information Requested by the Customer	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	12
5.1 Antenna Requirement	12
5.2 CONDUCTED EMISSIONS	13
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6dB Occupy Bandwidth	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	48
7 PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	10

4 General Information

4.1 Client Information

Applicant:	Shenzhen Hollyland Technology Co.,Ltd
Address of Applicant:	8F,Building 5D,Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China
Manufacturer:	Shenzhen Hollyland Technology Co.,Ltd
Address of Manufacturer:	8F,Building 5D,Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China
Factory:	Shenzhen Hollyland Technology Co.,Ltd
Address of Factory:	8F,Building 5D,Skyworth Innovation Valley, Tangtou Road. Shiyan Street, Baoan District Shenzhen, China

4.2 General Description of EUT

_	
Product Name:	Wireless Microphone
Model No.:	LARK M1, LARK C1
Test Model No.:	LARK M1
Trade Mark:	HOLLYLAND
Software Version:	V1.0.0.7
Hardware Version:	V18
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	1Mbps, 2Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable
Test Software of EUT:	FCC
Antenna Type:	Chip antenna
Antenna Gain:	2.71 dBi
EUT Power Supply:	Li-ion battery: DC 3.8V 200mAh, Charge by DC 5V for Charging box
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.
	⊠ Simultaneous TX is not supported.

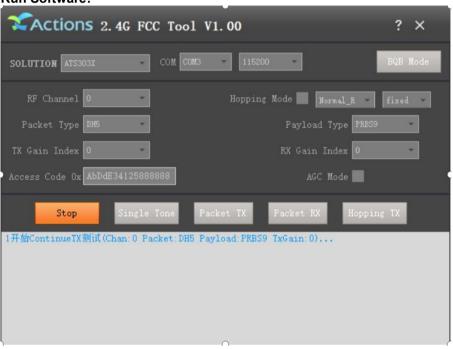
Report No.: CQASZ20240801671E

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel (CH0)	2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	



Report No.: CQASZ20240801671E

4.3 Additional Instructions

EUT Test Software Settings:						
Mode:	⊠ Special software is used.	⊠ Special software is used.				
		Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*				
EUT Power level:	Class2 (Power level is built-in set para selected)	ameters and cannot be changed and				
Use test software to set the lo	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep					
transmitting of the EUT.						
Mode	Channel	Frequency(MHz)				
	CH0 2402					
GFSK	CH19 2440					
	CH39	2480				

Run Software:

Report No.: CQASZ20240801671E

4.4 Test Environment

Operating Environment:	Operating Environment:			
Temperature:	24.5°C			
Humidity:	59% RH			
Atmospheric Pressure:	1009mbar			
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No. Certification		Supplied by
Adapter	MI	/	1	CQA
2) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	,	1	,	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	
1	Radiated Emission (Below 1GHz)	5.12dB	
2	Radiated Emission (Above 1GHz)	4.60dB	
3	Conducted Disturbance (0.15~30MHz)	3.34dB	
4	Radio Frequency	3×10 ⁻⁸	
5	Duty cycle	0.6 %	
6	Occupied Bandwidth	1.1%	
7	RF conducted power	0.86dB	
8	RF power density	0.74	
9	Conducted Spurious emissions	0.86dB	
10	Temperature test	0.8℃	
11	Humidity test	2.0%	
12	Supply voltages	0.5 %	
13	Frequency Error	5.5 Hz	

Report No.: CQASZ20240801671E

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

				0 111 11	0 111 11
Took Farringsont	Manufacturer	Madel Ne	Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date 2023/09/08	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2023/09/08	2024/09/07 2025/9/1
EIVII Test Receiver	Καδ	ESKI	CQA-005	2024/9/2	2023/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2023/09/08	2024/09/07
opcourant analyzor	πασ	1 0020	0071000	2023/09/08	2024/09/07
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
		AFS4-00010300-18-		2023/09/08	2024/09/07
Preamplifier	MITEQ	10P-4	CQA-035	2024/9/2	2025/9/1
		AMF-6D-02001800-		2023/09/08	2024/09/07
Preamplifier	MITEQ	29-20P	CQA-036	2024/9/2	2025/9/1
·				2023/09/08	2024/09/07
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
·					
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable				2023/09/08	2024/09/07
(Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable				2023/09/08	2024/09/07
(Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
RF	<u> </u>	14// (0010	2023/09/08	2024/09/07
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
			34.13.3	2023/09/08	
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
				2023/09/08	2024/09/07
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2024/9/2	2025/9/1
N1918A Power					
Analysis Manager	Agilent	N1918A	CQA-074	2023/09/08	2024/09/07
Power Panel				2024/9/2	2025/9/1
	B. 0	NID) (D	004.000	2023/09/08	2024/09/07
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
		PWD-2533-02-SMA-		2023/09/08	2024/09/07
Power divider	MIDWEST	79	CQA-067	2024/9/2	2025/9/1
				2023/09/08	2024/09/07
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
	B	END (0.4.0	004.555	2023/09/08	2024/09/07
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2023/09/08 2024/9/2	2024/09/07 2025/9/1
Coaxiai Cable	CQA	IN/A	CQA-0009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2023/09/06	2024/09/07
DO power	INE FOIGHT	LOUGIA	J GGA-020	20271312	20201311

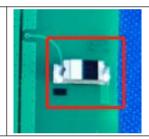
Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

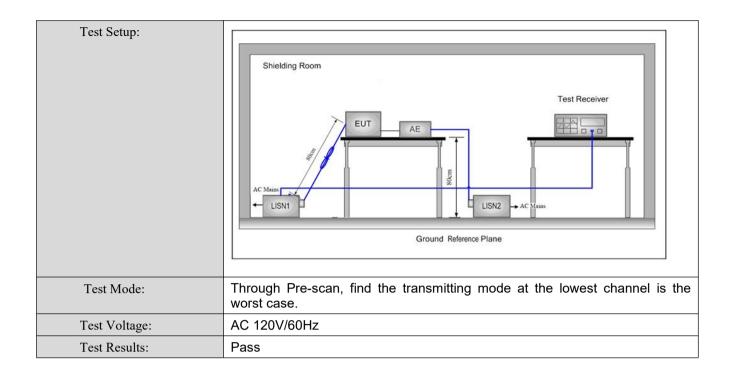
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment

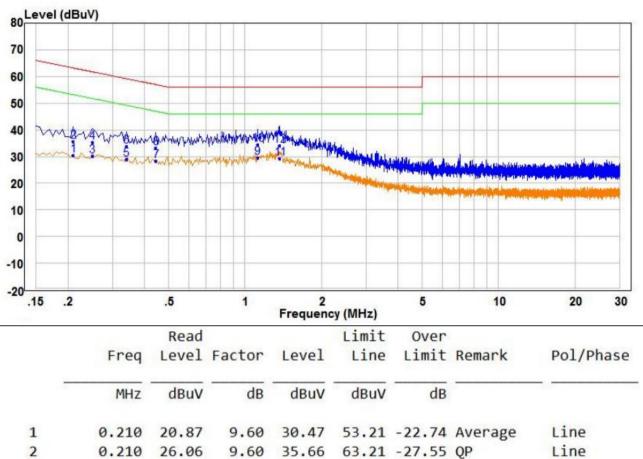
This is either permanently attachment or a unique coupling that satisfies the requirement.



Report No.: CQASZ20240801671E

5.2 Conducted Emissions

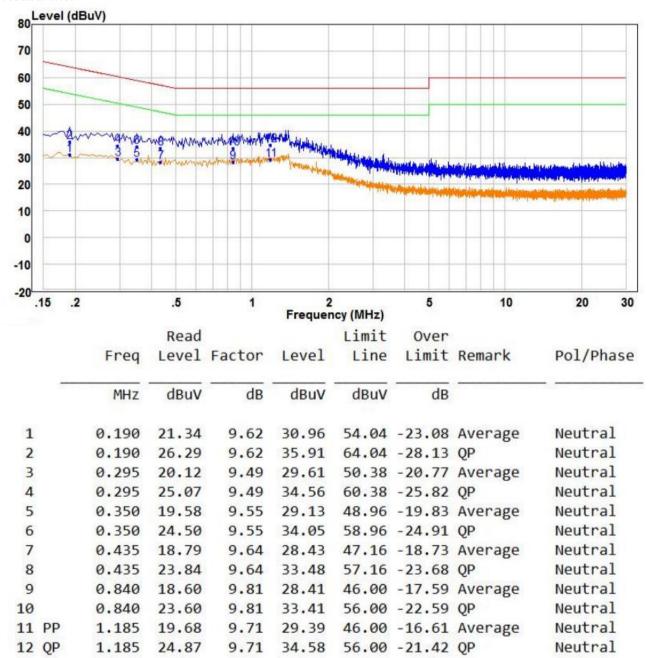
Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	E (MIL)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm o	* Decreases with the logarithm of the frequency.				
Test Procedure:	The mains terminal disturbance voltage test was conducted in a shielded room.					
	The EUT was connected to Impedance Stabilization N	•	•	near		
	impedance. The power cal	'	•	licai		
	connected to a second LIS					
	reference plane in the sam	e way as the LISN 1 fo	or the unit being			
	measured. A multiple socket outlet strip was used to connect multip					
	power cables to a single Li exceeded.	ISN provided the rating	of the LISN was not	•		
	3) The tabletop EUT was place	ced upon a non-metallio	c table 0.8m above th	he		
	ground reference plane. A	•	rangement, the EUT	was		
	placed on the horizontal gr	•				
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground					
			•	he		
	reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of					
	the EUT and associated equipment was at least 0.8 m from the LISN 2.					
	5) In order to find the maximu		•			
	equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.					



Measurement Data

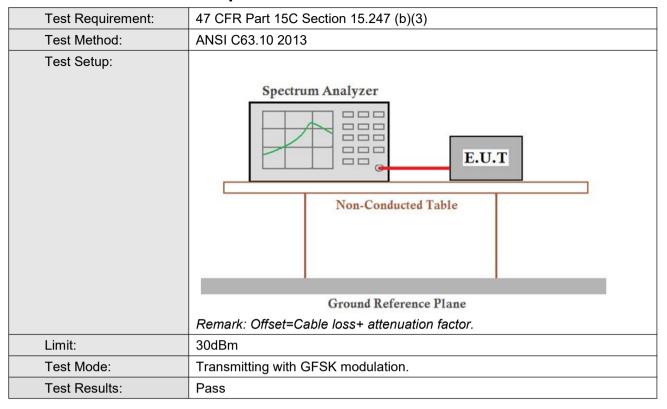
Live line:

		MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.210	20.87	9.60	30.47	53.21	-22.74	Average	Line
2		0.210	26.06	9.60	35.66	63.21	-27.55	QP	Line
3		0.250	20.66	9.55	30.21	51.76	-21.55	Average	Line
4		0.250	25.66	9.55	35.21	61.76	-26.55	QP	Line
5		0.340	19.39	9.54	28.93	49.20	-20.27	Average	Line
6		0.340	24.42	9.54	33.96	59.20	-25.24	QP	Line
7		0.445	18.59	9.65	28.24	46.97	-18.73	Average	Line
8		0.445	23.69	9.65	33.34	56.97	-23.63	QP	Line
9	PP	1.120	19.68	10.02	29.70	46.00	-16.30	Average	Line
10	QP	1.120	24.53	10.02	34.55	56.00	-21.45	QP	Line
11		1.370	18.55	10.58	29.13	46.00	-16.87	Average	Line
12		1.370	23.60	10.58	34.18	56.00	-21.82	QP	Line

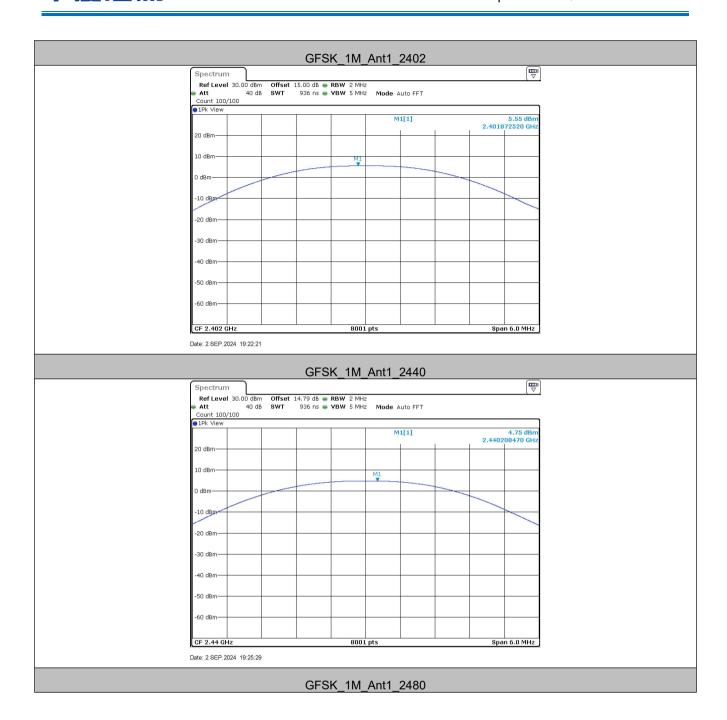

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

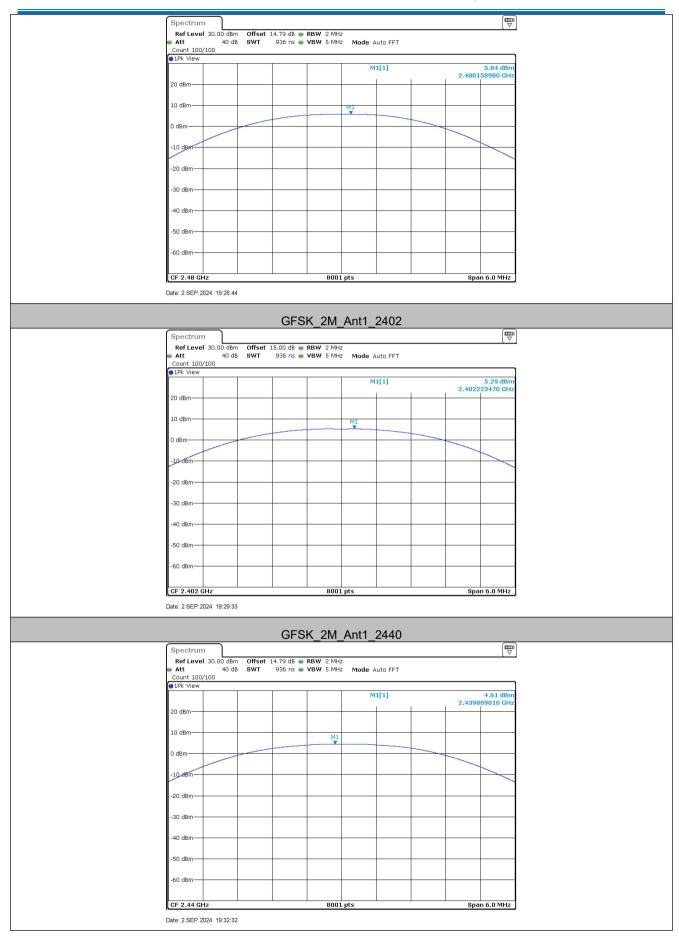
Neutral line:


Remark:

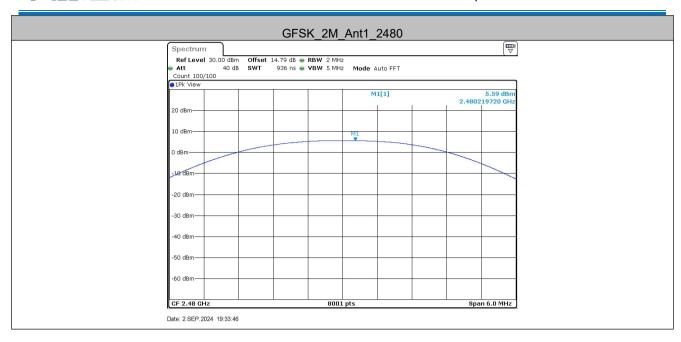
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

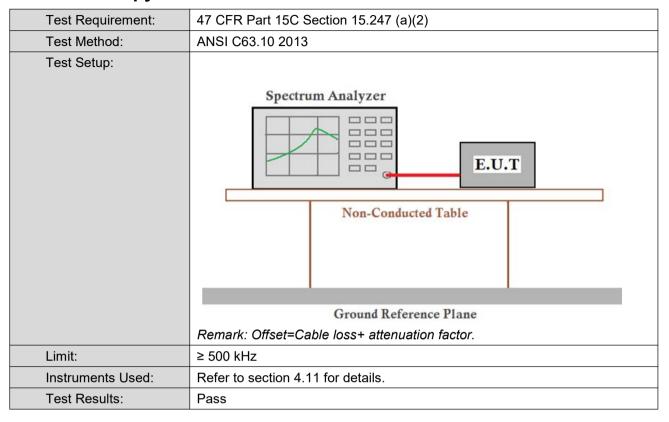


5.3 Conducted Peak Output Power

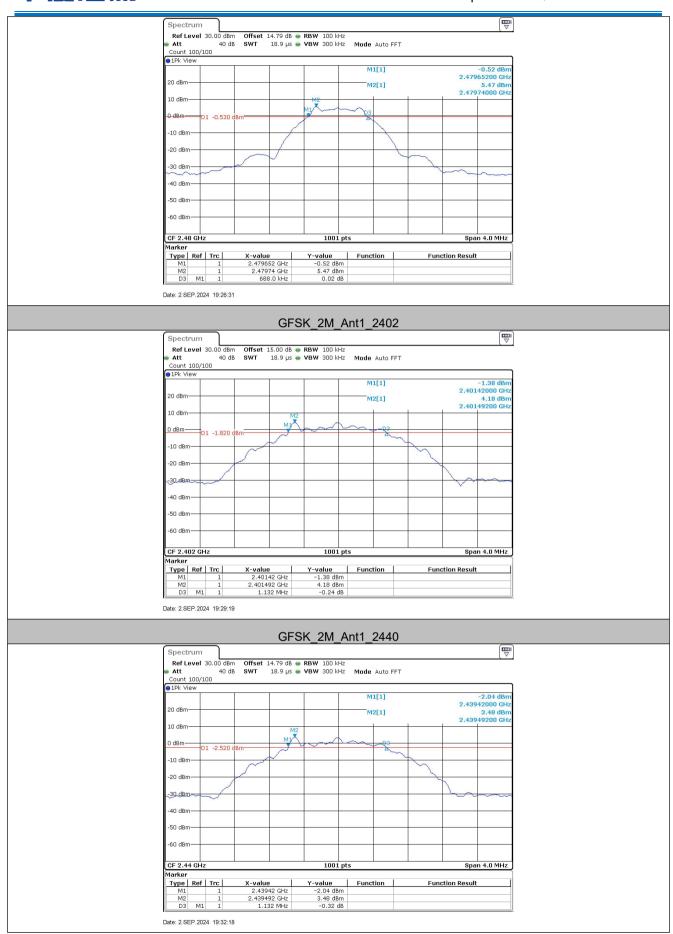


Measurement Data


GFSK mode (1Mbps)							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	5.55	30.00	Pass				
Middle	4.75	30.00	Pass				
Highest	5.84	30.00	Pass				
	GFSK mode (2Mbps)						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	5.29	30.00	Pass				
Middle	4.61	30.00	Pass				
Highest	5.59	30.00	Pass				

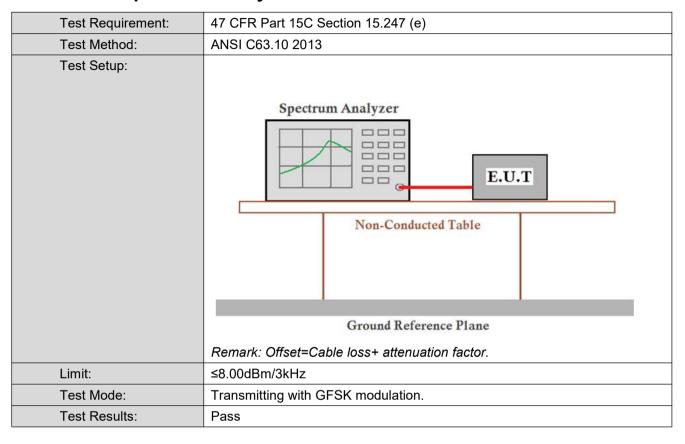


5.4 6dB Occupy Bandwidth

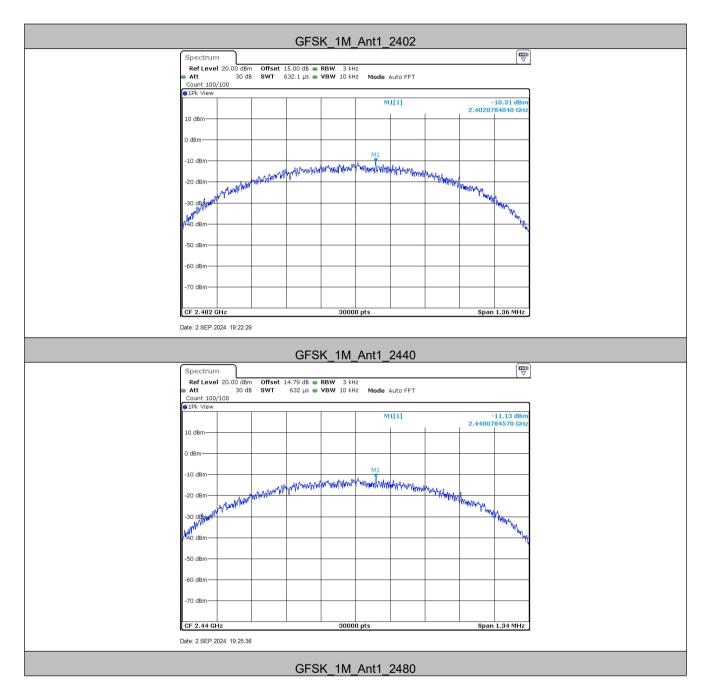

Measurement Data

GFSK mode (1Mbps)						
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	0.68	≥500	Pass			
Middle	0.67	≥500	Pass			
Highest	0.69	≥500	Pass			
	GFSK mode (2Mbps)					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	1.13	≥500	Pass			
Middle	1.13	≥500	Pass			
Highest	1.14	≥500	Pass			

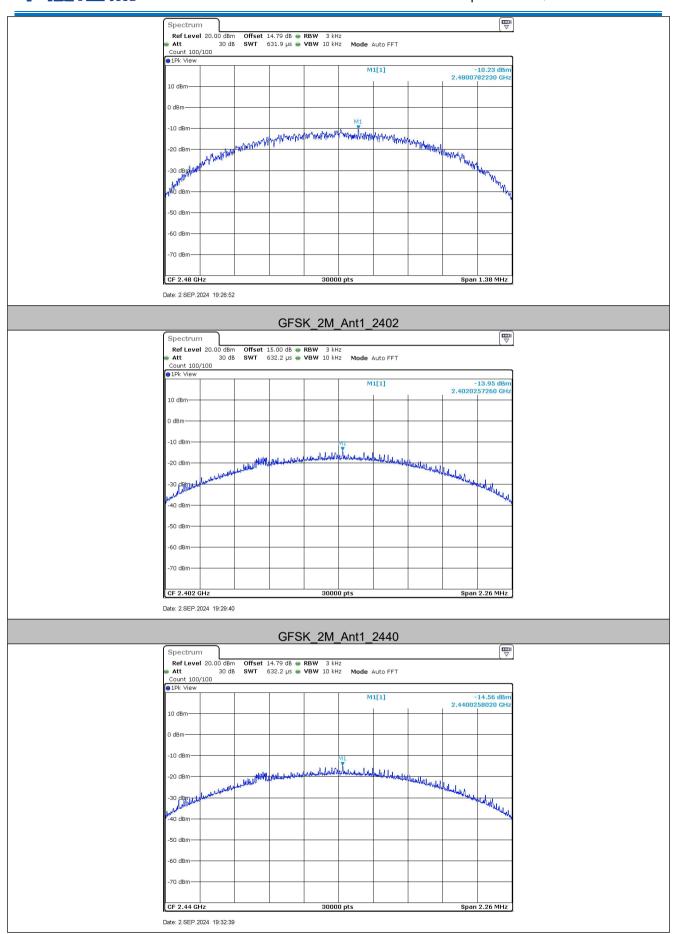


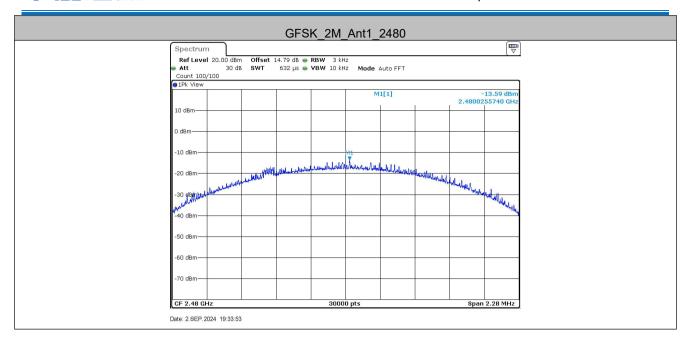


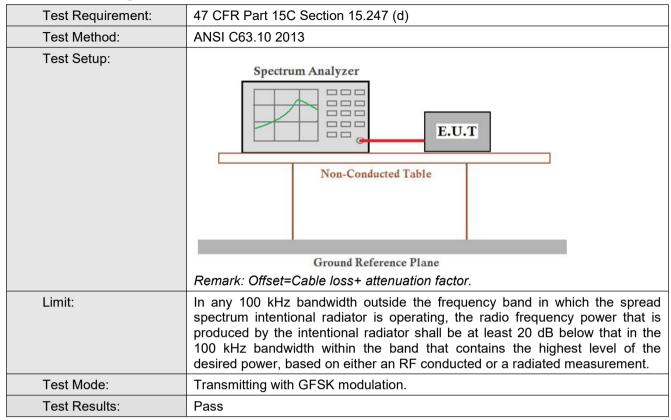
5.5 Power Spectral Density



Measurement Data

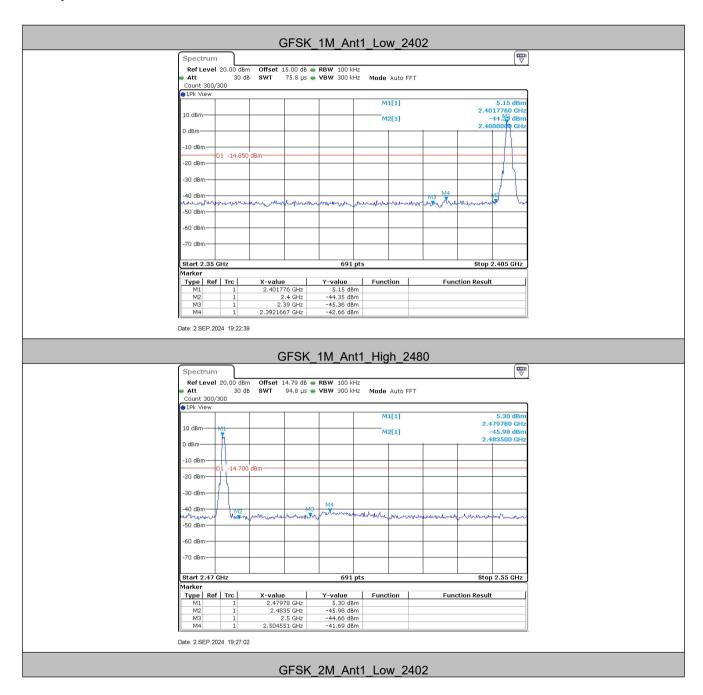

measurement bata						
GFSK mode (1Mbps)						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-10.31	≤8.00	Pass			
Middle	-11.13	≤8.00	Pass			
Highest	-10.23	≤8.00	Pass			
GFSK mode (2Mbps)						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-13.95	≤8.00	Pass			
Middle	-14.56	≤8.00	Pass			
Highest	-13.59	≤8.00	Pass			


Test plot as follows:



Report No.: CQASZ20240801671E

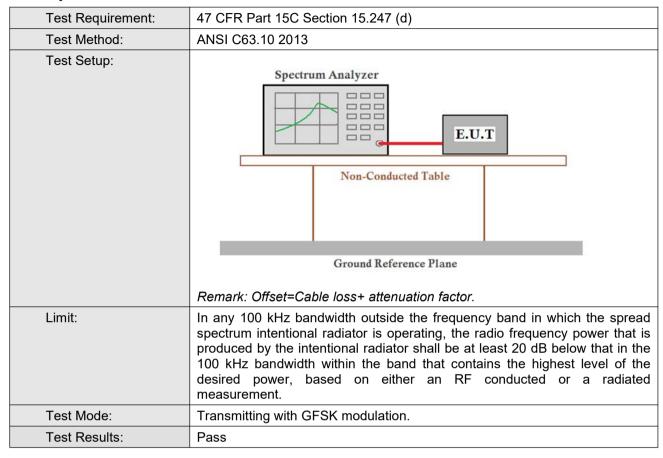
5.6 Band-edge for RF Conducted Emissions

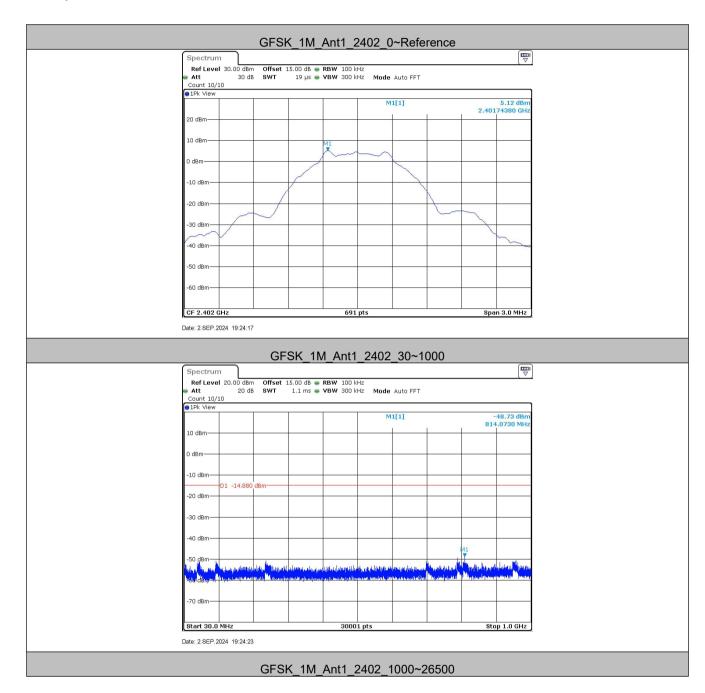


TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	5.15	-42.66	≤-14.85	PASS
GFSK_1M	High	2480	5.30	-41.69	≤-14.7	PASS
	Low	2402	4.25	-36.1	≤-15.75	PASS
GFSK_2M	High	2480	4.23	-40.79	≤-15.77	PASS

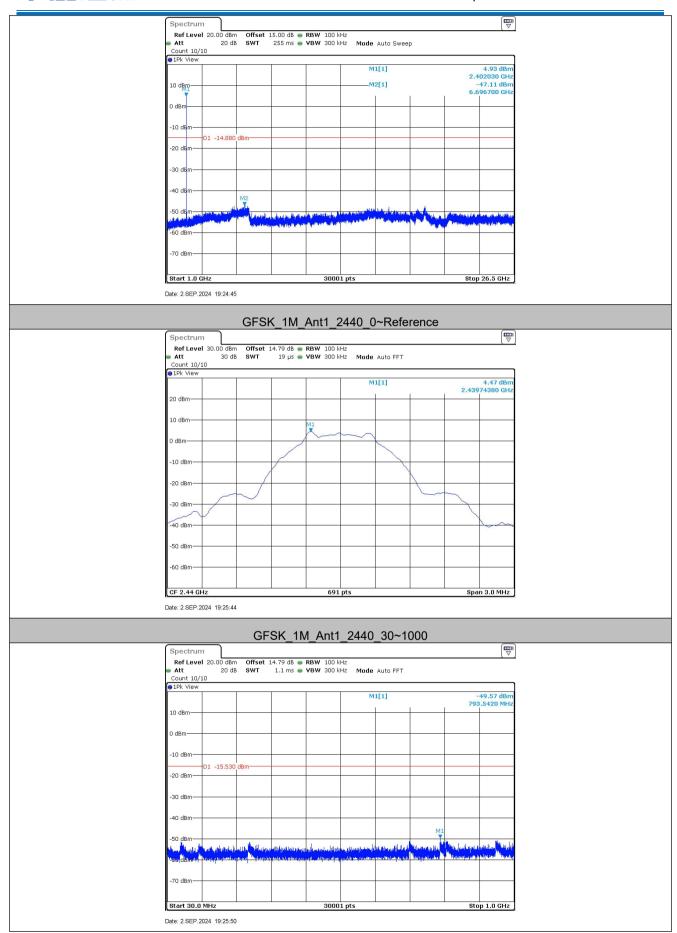
Report No.: CQASZ20240801671E

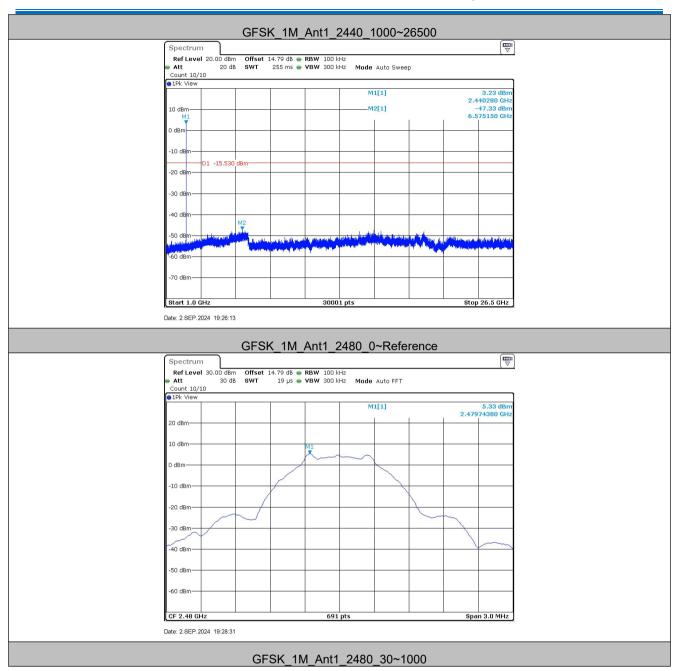
Test plot as follows:





5.7 Spurious RF Conducted Emissions




Test plot as follows:

