SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	CIPHERLAB CO.,LTD
Applicant Address	12F, 333, Dunhua S.Rd., Sec.2, Taipei, Taiwan
FCC ID	Q3N-510013M
Manufacturer's company	CIPHERLAB CO.,LTD
Manufacturer Address	12F, 333, Dunhua S.Rd., Sec.2, Taipei, Taiwan

Product Name	Security Controller
Brand Name	CIPHERLAB
Model Name	5000 (without LCD display), 5100 (with LCD
	display)
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.225
Test Freq. Range	13.553 ~ 13.567MHz
Receive Date	Mar. 16, 2006
Test Date	Apr. 20, 2006
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Lab Code: 200079-0

Table of Contents

1. CEF	RTIFICATE OF COMPLIANCE	
2. SUN	MMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	3
3.1.		
3.2.	. Accessories	3
3.3.	5. Table for Carrier Frequencies	3
3.4.	. Table for Filed Antenna	3
3.5.	. Table for Test Modes	4
3.6.	o. Table for Testing Locations	4
3.7.	'. Table for Supporting Units	4
3.8.	. Test Configurations	5
4. TES	ST RESULT	7
4.1.	. AC Power Line Conducted Emissions Measurement	7
4.2.	P. Field Strength of Fundamental Emissions Measurement	11
4.3.	20dB Spectrum Bandwidth Measurement	13
4.4.	Radiated Emissions Measurement	15
4.5.	b. Band Edge Emissions Measurement	22
4.6.	p. Frequency Stability Measurement	24
4.7.	'. Antenna Requirements	26
5. List	T OF MEASURING EQUIPMENTS	27
6. SPC	ORTON COMPANY PROFILE	29
6.1.	. Test Location	29
7. NVL	LAP CERTIFICATE OF ACCREDITATION	30
	NDIX A. PHOTOGRAPHS OF EUT	
$\Delta P P \vdash N$	NDIX B. TEST PHOTOS	R1 ~ R5

History of This Test Report

Original Issue Date: Apr. 25, 2006

Report No.: FR630921-ZA

■ No additional attachment.

□ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

FCC ID: Q3N-510013M Issued Date : Apr. 25, 2006

1. CERTIFICATE OF COMPLIANCE

Product Name :

Security Controller

Brand Name :

CIPHERLAB

Model Name :

5000 (without LCD display), 5100 (with LCD display)

Applicant :

CIPHERLAB CO.,LTD

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.225

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 16, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Prepared By:

Tina Jao / Specialist

Technical Acceptance By:

Carl Lee / Engineer

Jao \$6,06 Carl Lee, 26.4.06

Reviewed By:

Wayne Hsu / Supervisor

FCC ID: Q3N-510013M

Page No.

: 1 of 30

Issued Date : Apr. 25, 2006

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	3.06 dB		
4.2	15.225(a)	Field Strength of Fundamental Emissions	Complies	108.58 dB		
4.3	15.215(c)	20dB Spectrum Bandwidth	Complies	-		
4.4	15.225(d)	Radiated Emissions	Complies	7.39 dB		
4.5	15.225(d)	Band Edge Emissions	Complies	-		
4.6	15.225(e)	Frequency Stability	Complies	-		
4.7	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±3.72dB	Confidence levels of 95%
20dB Spectrum Bandwidth/ Frequency Stability	±6.25×10-7	Confidence levels of 95%
Radiated Emissions/ Band Edge Emissions	±3.72dB	Confidence levels of 95%

 Report Format Version: RF-15.225-2006-2-17-c
 Page No.
 : 2 of 30

 FCC ID: Q3N-510013M
 Issued Date
 : Apr. 25, 2006

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	RFID
Radio Type	Intentional Transceiver
Power Type	12V DC from adapter
Interface Type	PS2 / DC Port / LAN Port
Modulation	ASK
Frequency Range	13.553 ~ 13.567MHz
Channel Number	1
Channel Band Width (99%)	3.12 kHz

3.2. Accessories

Power	Brand	Model	Rating		
Adapter 1	BALANCE	GPSA-1200125	INPUT: 100~240V		
			OUTPUT: 12V		
Adapter 2	LEI	NU20-5120100-13	INPUT: 100~240V		
			OUTPUT: 12V		
Others					
NA					

3.3. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency
13.553 ~ 13.567MHz	1	13.56 MHz

3.4. Table for Filed Antenna

Ant.	Antenna Type	Connector	Gain (dBi)
1	Integrate Antenna	NA	-

Report Format Version: RF-15.225-2006-2-17-c : 3 of 30 Page No. FCC ID: Q3N-510013M Issued Date : Apr. 25, 2006

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel
AC Power Line Conducted Emissions	Normal Link	1
Field Strength of Fundamental Emissions	CTX	1
20dB Spectrum Bandwidth	CTX	1
Radiated Emissions 9kHz~30MHz	CTX	1
Radiated Emissions 9kHz~10 th Harmonic		
Band Edge Emissions	CTX	1
Frequency Stability	Un-modulation	1

Note:

- 1. CTX=continuously transmitting
- 2. Doing testing the WLAN function was powered on to evaluate the colocation issue.

3.6. Table for Testing Locations

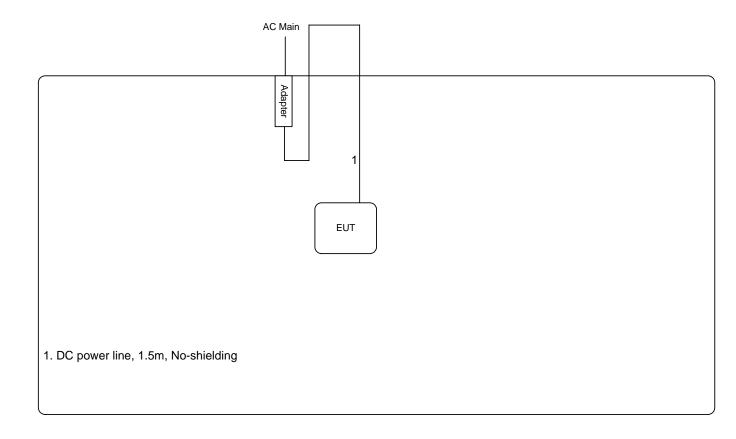
Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO01-HY	CON	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

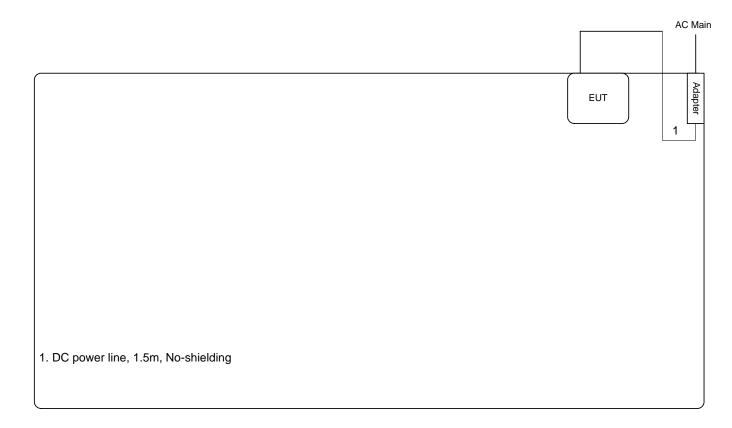
Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

The EUT was tested alone.


 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 4 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006



3.8. Test Configurations

3.8.1. Radiation Emissions Test Configuration

3.8.2. AC Power Line Conduction Emissions Test Configuration

 Report Format Version: RF-15.225-2006-2-17-c
 Page No.
 : 6 of 30

 FCC ID: Q3N-510013M
 Issued Date
 : Apr. 25, 2006

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

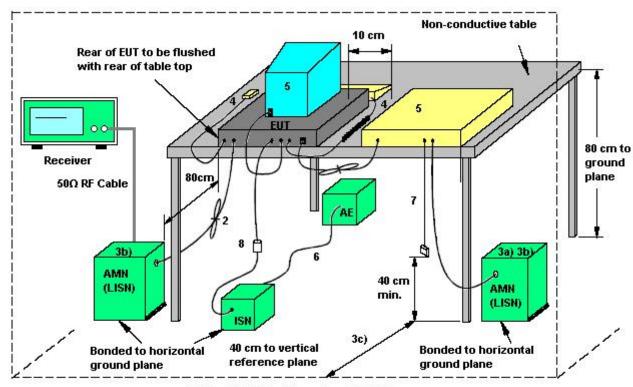
4.1.1. Limit

For a Low-power Radio-frequency Device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

: 7 of 30 Page No. FCC ID: Q3N-510013M Issued Date: Apr. 25, 2006

4.1.4. Test Setup Layout

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

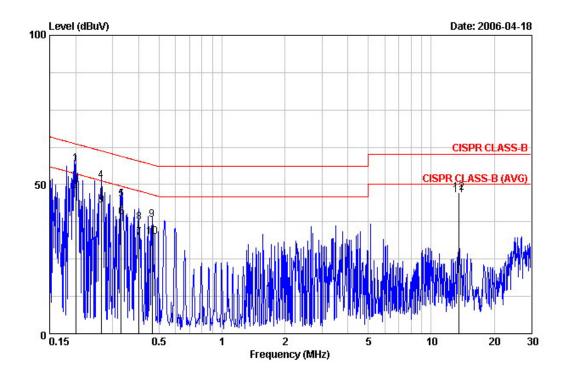
ISN = Impedance stabilization network

- If cables, which hang closer than 40 cm to the horizontal metal groundplane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- 2. Excess mains cord shall be bundled in the centre or shortened to appropriate length.
- 3. EUT is connected to one artificial mains network (AMN). All AMNs and ISNs may alternatively be connected to a vertical reference plane or metal wall.
- 4. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- 5. AMN and ISN are 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- 6. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- 7. Cables of hand operated devices, such as keyboards, mouses, etc. shall be placed as for normal usage.
- 8. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- 9. I/O signal cable intended for external connection.
- 10. The end of the I/O signal cables which are not connected to an AE may be terminated, if required, using correct terminating impedance.
- 11. If used, the current probe shall be placed at 0,1 m from the ISN.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 8 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.1.5. Test Deviation

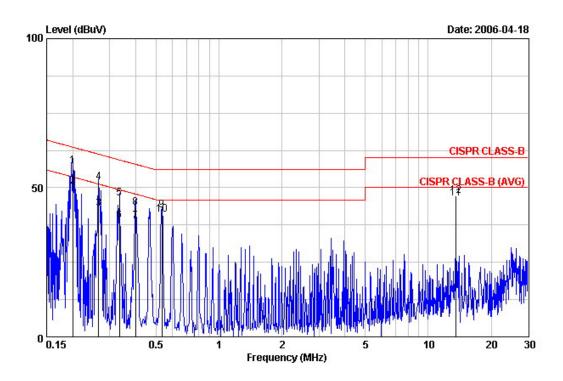

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	23.1℃	Humidity	51%
Test Engineer	Carl Lee	Phase	Line
Configuration	Normal Link		


MHz dBuV dB dBuV dBuV dB dB dB 1 0.200 56.89 -6.73 63.62 56.79 0.10 0.00 QP 2 0.200 47.98 -5.64 53.62 47.88 0.10 0.00 QP 3 0.264 42.96 -8.33 51.29 42.86 0.10 0.00 QP 4 0.264 51.39 -9.90 61.29 51.29 0.10 0.00 QP 5 0.330 45.05 -14.39 59.44 44.95 0.10 0.00 QP 6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 QP 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 QP 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 QP		Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable	Remark
2 0.200 47.98 -5.64 53.62 47.88 0.10 0.00 RVERM 3 0.264 42.96 -8.33 51.29 42.86 0.10 0.00 RVERM 4 0.264 51.39 -9.90 61.29 51.29 0.10 0.00 QP 5 0.330 45.05 -14.39 59.44 44.95 0.10 0.00 QP 6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 RVERM 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 RVERM 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERM		150							
3 0.264 42.96 -8.33 51.29 42.86 0.10 0.00 AVERA 4 0.264 51.39 -9.90 61.29 51.29 0.10 0.00 QP 5 0.330 45.05 -14.39 59.44 44.95 0.10 0.00 QP 6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 AVERA 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 AVERA 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERA	1	0.200	56.89	-6.73	63.62	56.79	0.10	0.00	QP
4 0.264 51.39 -9.90 61.29 51.29 0.10 0.00 QP 5 0.330 45.05 -14.39 59.44 44.95 0.10 0.00 QP 6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 AVERA 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 AVERA 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERA	2	0.200	47.98	-5.64	53.62	47.88	0.10	0.00	AVERAGE
5 0.330 45.05 -14.39 59.44 44.95 0.10 0.00 QP 6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 RVERN 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 RVERN 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERN	3	0.264	42.96	-8.33	51.29	42.86	0.10	0.00	AVERAGE
6 0.330 38.91 -10.53 49.44 38.81 0.10 0.00 RVERM 7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 RVERM 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERM	4	0.264	51.39	-9.90	61.29	51.29	0.10	0.00	QP
7 0.402 32.22 -15.59 47.81 32.12 0.10 0.00 AVERA 8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERA	5	0.330	45.05	-14.39	59.44	44.95	0.10	0.00	QP
8 0.402 37.45 -20.36 57.81 37.35 0.10 0.00 QP 9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERA	6	0.330	38.91	-10.53	49.44	38.81	0.10	0.00	AVERAGE
9 0.464 38.11 -18.52 56.63 38.01 0.10 0.00 QP 10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 RVERA	7	0.402	32.22	-15.59	47.81	32.12	0.10	0.00	AVERAGE
10 0.464 32.58 -14.05 46.63 32.48 0.10 0.00 AVERA	8	0.402	37.45	-20.36	57.81	37.35	0.10	0.00	QP
	9	0.464	38.11	-18.52	56.63	38.01	0.10	0.00	QP
11 @ 13.560 46.57 -3.43 50.00 45.99 0.30 0.28 AVERN	10	0.464	32.58	-14.05	46.63	32.48	0.10	0.00	AVERAGE
	11 @	13.560	46.57	-3.43	50.00	45.99	0.30	0.28	AVERAGE
12 13.560 47.31 -12.69 60.00 46.73 0.30 0.28 QP	12	13.560	47.31	-12.69	60.00	46.73	0.30	0.28	QP

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 9 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

Temperature	23.1℃	Humidity	51%
Test Engineer	Carl Lee	Phase	Neutral
Configuration	Normal Link		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	S
1	0.200	57.40	-6.22	63.62	57.30	0.10	0.00	QP
2 @	0.200	50.56	-3.06	53.62	50.46	0.10	0.00	AVERAGE
3	0.266	42.90	-8.35	51.25	42.80	0.10	0.00	AVERAGE
4	0.266	51.82	-9.43	61.25	51.72	0.10	0.00	QP
5	0.334	46.53	-12.82	59.35	46.43	0.10	0.00	QP
6	0.334	39.03	-10.32	49.35	38.93	0.10	0.00	AVERAGE
7	0.400	38.74	-9.12	47.86	38.64	0.10	0.00	AVERAGE
8	0.400	43.31	-14.55	57.86	43.21	0.10	0.00	QP
9	0.532	42.33	-13.67	56.00	42.23	0.10	0.00	QP
10	0.532	40.94	-5.06	46.00	40.84	0.10	0.00	AVERAGE
11	13.560	46.43	-3.57	50.00	45.85	0.30	0.28	AVERAGE
12	13.560	47.24	-12.76	60.00	46.66	0.30	0.28	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Field Strength of Fundamental Emissions Measurement

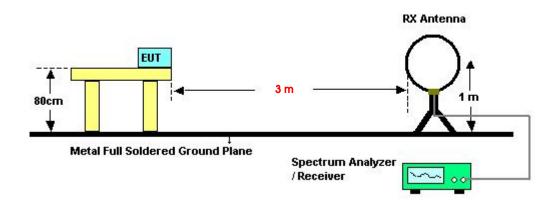
4.2.1. Limit

The field strength of any emissions within this band shall not exceed 15848 microvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing an QP detector.

Frequency Band (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
13.553 ∼ 13.567MHz	124 (QP)

4.2.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.


Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RB	9 kHz
Detector	QP

4.2.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

: 11 of 30 Page No. FCC ID: Q3N-510013M Issued Date: Apr. 25, 2006

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	25 ℃	Humidity	58%
Test Engineer	Vic	Configurations	X axis / Channel 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV/m)	(dB)	(dBuV/m) at 3m	
13.56 MHz	15.42	-108.58	124	QP

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 12 of 30

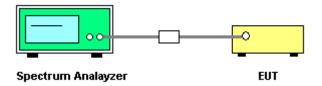
 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band ($13.553 \sim 13.567$ MHz).

4.3.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	1 kHz
VB	1 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

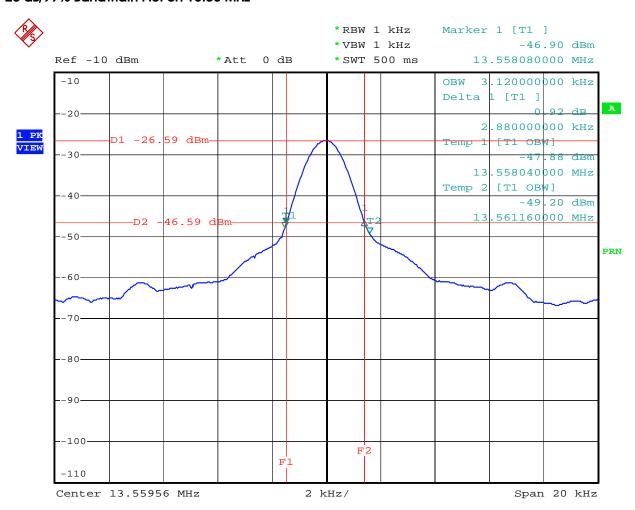
There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 13 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006



4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	25℃	Humidity	58%
Test Engineer	Vic	Configurations	Channel 1

Frequency	20dB BW (kHz)	99% OBW (kHz)	range (MHz) f _L > 13.553MHz	Frequency range (MHz) f _H < 13.567MHz	Test Result
13.56 MHz	2.88	3.12	13.5581	13.5608	Complies

20 dB/99% Bandwidth Plot on 13.56 MHz

Date: 7.APR.2006 15:47:47

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 14 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.4. Radiated Emissions Measurement

4.4.1. Limit

The field strength of any emissions which appear outside of $13.553 \sim 13.567$ MHz band shall not exceed the general radiated emissions limits in Section 15.209(a)

9	` '	
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

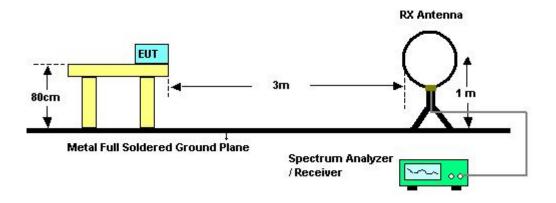
Please refer to section 5 in this report. The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

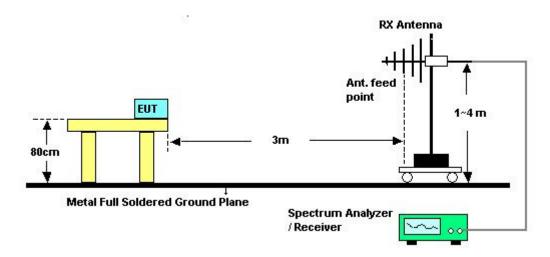
4.4.3. Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
 meter above ground. The phase center of the receiving antenna mounted on the top of a
 height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters
 above ground to find the maximum emissions field strength of both horizontal and vertical
 polarization.
- 4. For each suspected emissions, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not

 Report Format Version: RF-15.225-2006-2-17-c
 Page No.
 : 15 of 30


 FCC ID: Q3N-510013M
 Issued Date
 : Apr. 25, 2006

exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.


7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.4.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

4.4.5. Test Deviation

There is no deviation with the original standard.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 16 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	23.5℃	Humidity	53%
Test Engineer	Carl Lee	Configurations	X axis / Channel 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

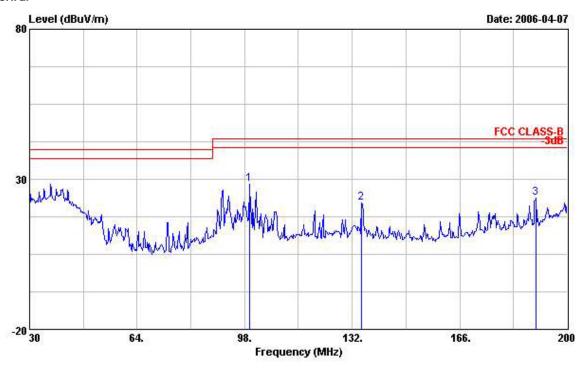
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

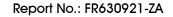
The fundamental field streng this not recorded in this section.

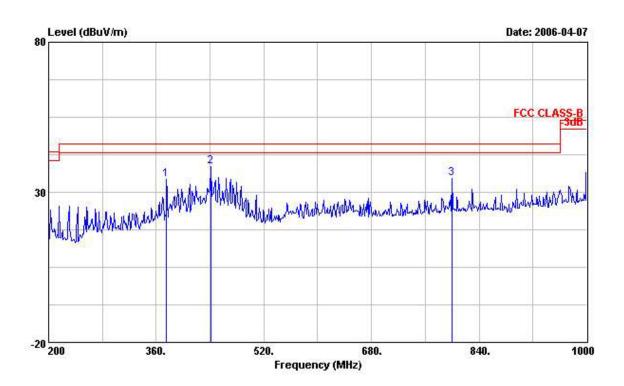

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 17 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.4.8. Results for Radiated Emissions (30MHz~1GHz)

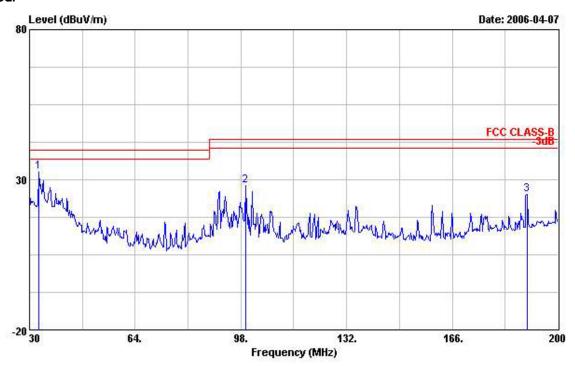
Temperature	23.5°C	Humidity	53%	
Test Engineer	Carl Lee	Configurations	X axis / Channel 1	


Horizontal


			0ver	Read	Limit	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m	dB	dB	Ş .	cm	deg
1 @	99.700	28.50	-15.00	48.17	43.50	8.98	1.41	30.06	Peak	222	0.000
2	135.060	22.08	-21.42	37.79	43.50	12.47	1.90	30.08	Peak		222
3	190.140	23.77	-19.73	36.51	43.50	15.01	2.40	30.15	Peak	***	

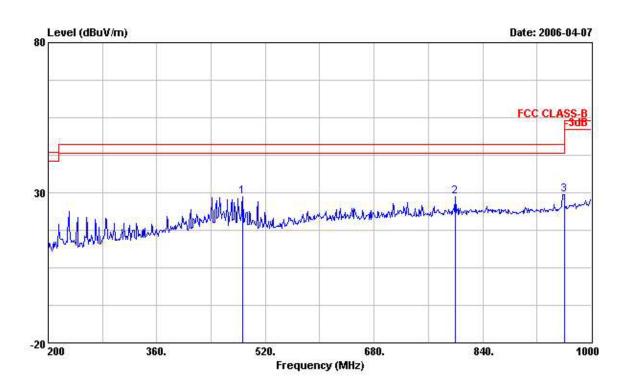
 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 18 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006



				0ver	Read	Limit	Antenna	Cable	Preamp		Ant	Table
		Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m	dB	dB	Ş 	cm	deg
1	0	375.200	34.17	-11.83	44.86	46.00	16.06	3.42	30.16	Peak	2000	2332
2	0	441.600	38.50	-7.50	48.43	46.00	16.47	3.68	30.08	Peak		222
3	@	800.000	34.62	-11.38	36.97	46.00	21.90	5.44	29.69	Peak		

: 20 of 30



Vertical

				0ver	Read	Limit	Antenna	Cable	Preamp		Ant	Table
		Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m	m dB	dB	· · · · · ·	cm	deg
1	0	33.060	32.61	-7.39	49.86	40.00	12.33	0.46	30.04	Peak	222	23.22
2	0	99.700	28.12	-15.38	47.79	43.50	8.98	1.41	30.06	Peak		222
3		190.140	25.06	-18.44	37.80	43.50	15.01	2.40	30.15	Peak		

			0ver	Read	Limit	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB/m	dB	dB	9	cm	deg
1	486.400	28.66	-17.34	38.93	46.00	16.10	3.86	30.24	Peak	320	2000
2	800.000	28.55	-17.45	30.90	46.00	21.90	5.44	29.69	Peak		
3 @	960.000	29.48	-16.52	30.17	46.00	23.02	5.78	29.48	Peak		

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Pol.: V is Vertical Polarization; H is Horizontal Polarization.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 21 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.5. Band Edge Emissions Measurement

4.5.1. Limit

Band edge emissions outside of the frequency bands shown in below table.

Outside Frequency Band Edge	Limit (dBuV/m) at 3m
Low band edge	69.54 (QP)
High band edge	69.54 (QP)

4.5.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting		
Attenuation	Auto		
Center Frequency Fundamental Frequency			
RB	9 KHz		
Detector	QP		

4.5.3. Test Procedures

The test procedure is the same as section 4.2.3, only the frequency range investigated is limited to 2MHz around bandedges.

4.5.4. Test Setup Layout

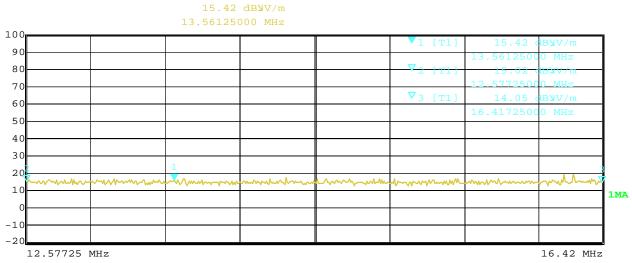
This test setup layout is the same as that shown in section 4.2.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 22 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.5.7. Test Result of Band Edge and Fundamental Emissions

Temperature	23.5℃	Humidity	53%
Test Engineer	Carl Lee	Configurations	X axis / Channel 1

Date: 8.APR.2006 01:59:15

Note:

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Marker 1 [T1]

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 23 of 30

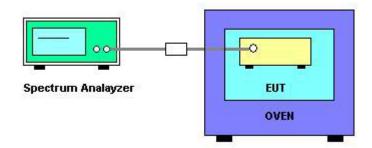
 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.6. Frequency Stability Measurement

4.6.1. Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.6.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	1 kHz
VB	1 kHz
Sweep Time	Auto

4.6.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 1 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc \times 10⁶ ppm and the limit is less than \pm 100ppm.
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -20°C~50°C.

4.6.4. Test Setup Layout

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 24 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.6.7. Test Result of Frequency Stability

Temperature	25°C	Humidity	58%
Test Engineer	Vic	Configurations	Channel 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	13.56 MHz
126.50	13.5587
110.00	13.5586
93.50	13.5585
Max. Deviation (MHz)	0.0005
Max. Deviation (ppm)	39.0884

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	13.56 MHz
-20	13.5598
-10	13.5592
0	13.5584
10	13.5586
20	13.5584
30	13.5586
40	13.5584
50	13.5580
Max. Deviation (MHz)	0.0014
Max. Deviation (ppm)	106.2025

: 25 of 30 Page No. FCC ID: Q3N-510013M Issued Date : Apr. 25, 2006

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.4 in this test report, all antenna connectors comply with the requirements.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 26 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	R&S ESCS 30 10		9kHz – 2.75GHz	Oct. 19, 2005	Conduction (CO01-HY)
LISN	MessTec	NNB-2/16Z	2001/008	9kHz – 30MHz	Mar. 29, 2006	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9kHz – 30MHz	Apr. 19, 2006	Conduction (CO01-HY)
EMI Filter	LINDGREN	LRE-2060	1004	< 450Hz	N/A	Conduction (CO01-HY)
EMI Filter	LINDGREN	N6006	201052	0 – 60Hz	N/A	Conduction (CO01-HY)
RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9kHz – 30MHz	Dec. 22, 2005	Conduction (CO01-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	3565	9 kHz - 2 GHz	Jan. 18, 2006	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 31, 2005	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30 MHz - 200 MHz	Jul. 22, 2005	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200 MHz - 1 GHz	Jul. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6903	1GHz ~ 18GHz	Mar. 15, 2006	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec.02, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.02, 2005	Radiation (03CH03-HY)
Turn Table	HD	D\$ 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	1 m - 4 m N/A	
Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
DC power source	G.W.	GPC-6030D C671845 DC 1V ~ 60V Dec. 28, 200		Dec. 28, 2005	Conducted (TH01-HY)	
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A Oct. 01, 2005		Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz Dec. 30, 2005		Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz Dec. 30, 2005		Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz Dec. 30, 2005		Conducted (TH01-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz Jun. 02, 2005		Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 27 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 24, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 24, 2004*	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jun. 09, 2004*	Radiation (03CH03-HY)
Oscilloscope	Tektronix	TD\$1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005*	Conducted (TH01-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

6. SPORTON COMPANY PROFILE

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

6.1. Test Location

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	02-2696-2468
	FAX	:	02-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	03-327-3456
	FAX	:	03-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	02-2601-1640
	FAX	:	02-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	02-2631-4739
	FAX	:	02-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	02-8227-2020
	FAX	:	02-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	02-2794-8886
	FAX	:	02-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
	TEL	:	03-656-9065
	FAX	:	03-656-9085
	•		

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 29 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.

Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2005-05-19)

 Report Format Version: RF-15.225-2006-2-17-c
 Page No. : 30 of 30

 FCC ID: Q3N-510013M
 Issued Date : Apr. 25, 2006