

Test Report

Report No.: MTi241019001-04E1

Date of issue: 2024-11-25

Applicant: SHENZHEN ZIKUN ELECTRONICS CO., LTD

Product name: 5 in 1 Magnetic Wireless Charger

Model(s): G809

FCC ID: 2BMNB-G809

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5		
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 5 7 7		
2	Sum	mary of Test Result	8		
3	Test	Facilities and accreditations	9		
	3.1	Test laboratory	9		
4	List of test equipment				
5	Evaluation Results (Evaluation)				
	5.1	Antenna requirement	11		
6	Radi	io Spectrum Matter Test Results (RF)	12		
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line	15 20		
Ph	otogr	aphs of the test setup	26		
Ph	otogr	aphs of the EUT	27		

Date of test:

Test result:

Report No.: MTi241019001-04E1 **Test Result Certification** Applicant: SHENZHEN ZIKUN ELECTRONICS CO., LTD 6F, Building B11, Hengfeng Industrial City, No.739, Choushi Road, Hezhou Community, Hangcheng Street, Bao'an District, Shenzhen, Address: China. Manufacturer: SHENZHEN ZIKUN ELECTRONICS CO., LTD 6F, Building B11, Hengfeng Industrial City, No.739, Choushi Road, Address: Hezhou Community, Hangcheng Street, Bao'an District, Shenzhen, China. **Factory:** SHENZHEN ZIKUN ELECTRONICS CO., LTD 6F, Building B11, Hengfeng Industrial City, No.739, Choushi Road, Address: Hezhou Community, Hangcheng Street, Bao'an District, Shenzhen, China. **Product description** 5 in 1 Magnetic Wireless Charger Product name: Trade mark: N/A Model name: G809 N/A Series Model(s): Standards: 47 CFR Part 15C Test Method: ANSI C63.10-2013 **Date of Test**

2024-10-25 to 2024-10-29

Pass

Test Engineer	:	letter.lan.
		(Letter Lan)
Reviewed By		David. Cee
		(David Lee)
Approved By		leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	5 in1 Magnetic Wireless Charger		
Model name:	G809		
Series Model(s):	N/A		
Model difference:	N/A		
Electrical rating:	Input: 12V 3A Phone Output: 15W/10W/7.5W/5W Airpods Output: 3W (Max) Watch Output: 3W (Max)		
Accessories:	Adaptor: Model: SJT36E Input: 100-240V~50/60Hz 1A MAX Output: 12.0V 3A Cable: 1. USB-A to lightning cable 0.28m 2. Type-C to Type-C cable 0.3m		
Hardware version:	V1.2		
Software version:	V1.2		
Test sample(s) number:	MTi241019001-04S1001		
RF specification			
Operating frequency range:	Phone: 115-205kHz Airpods: 115-205kHz Watch: 300-350kHz		
Modulation type:	ASK		
Antenna(s) type:	Coil		
1.2 Description of test	wooden		

1.2 Description of test modes

No.	Emission test modes	
Mode1	Wireless output phone(5W)+earphone(3W)+watch(3W)	
Mode2	Wireless output phone(7.5W)+earphone(3W)+watch(3W)	
Mode3	Wireless output phone(10W)+earphone(3W)+watch(3W)	
Mode4	Wireless output phone(EPP:15W)+earphone(3W)+watch(3W)	
Mode5	Wireless output phone(5W)+earphone(3W)	
Mode6	Wireless output phone(7.5W)+earphone(3W)	
Mode7	Wireless output phone(10W)+earphone(3W)	
Mode8	Wireless output phone(EPP:15W)+earphone(3W)	
Mode9	Wireless output phone(5W)+watch(3W)	
Mode10	Wireless output phone(7.5W)+watch(3W)	
Mode11	Wireless output phone(10W)+watch(3W)	
Mode12	Wireless output phone(EPP:15W)+watch(3W)	
Mode13	Wireless output earphone(3W)+watch(3W)	

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com

Mode14	Wireless output phone(5W)
Mode15	Wireless output phone(7.5W)
Mode16	Wireless output phone(10W)
Mode17	Wireless output phone(EPP:15W)
Mode18	Wireless output watch(3W)
Mode19	Wireless output earphone(3W)
Mode20	Stand by

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list					
Description	Model	Serial No.	Manufacturer		
Load	/	/	/		
wireless charging load	YBZ1.1	/	YBZ		
watch	Apple watch S7	M0JVGQG1VP	Apple		
Air Pods MQD83CH/A		/	Apple		
Support cable list					
Description	Length (m)	From	То		
/	/	/	/		

1.5 Measurement uncertainty

	-
Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.		
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Telephone:	(86-755)88850135		
Fax:	(86-755)88850136		
CNAS Registration No.:	CNAS L5868		
FCC Registration No.:	448573		
IC Registration No.:	21760		
CABID:	CN0093		

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
	Conducted Emission at AC power line					
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19
		20dB Od	cupied Bandwid	th		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20
Emissions in frequency bands (below 30MHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
Emissions in frequency bands (30MHz - 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

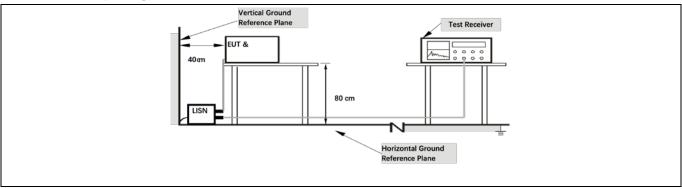
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or
	of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.

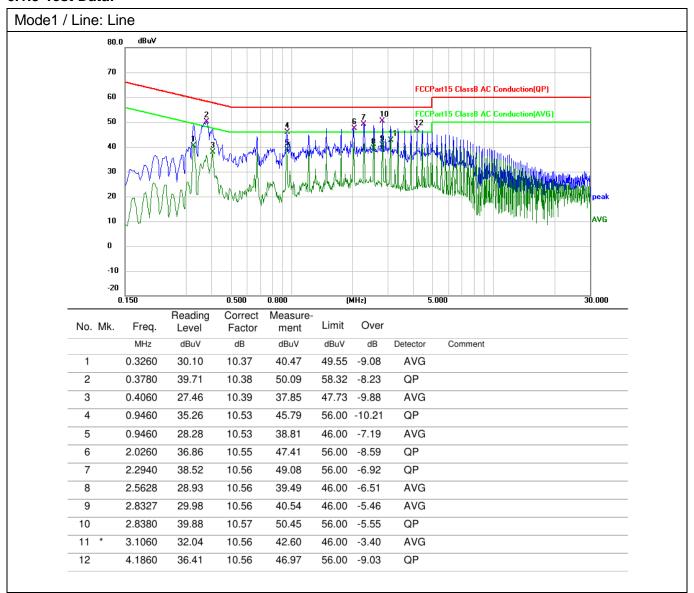
The EUT complies with the requirement of FCC PART 15.203.

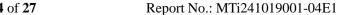
6 Radio Spectrum Matter Test Results (RF)

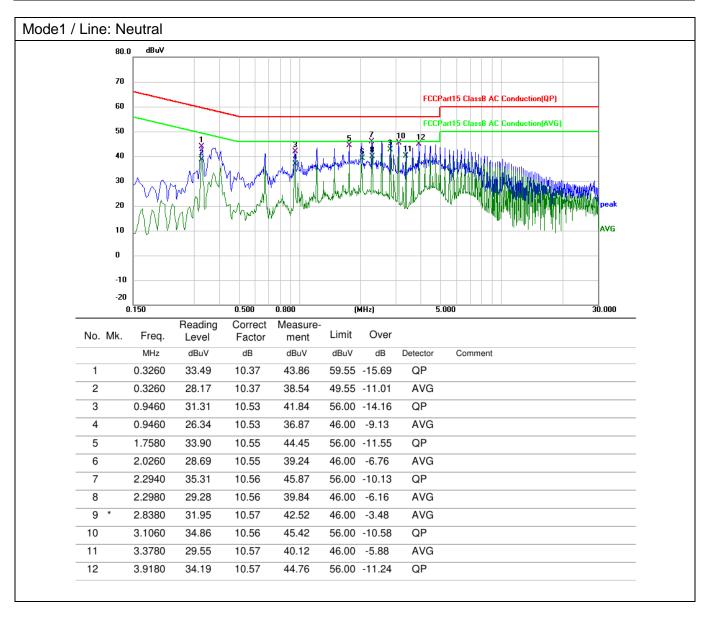

6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Conducted limit (dBµV)					
		Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 60 50							
	*Decreases with the logarithm of the frequency.							
Test Method:	ANSI C63.10-2013 section 6.2 Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices							
Procedure:								

6.1.1 E.U.T. Operation:

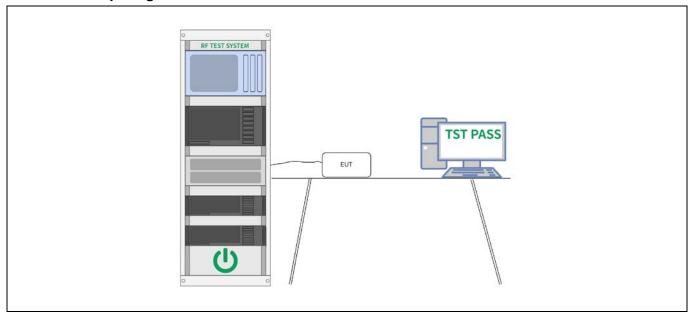

Operating Environment:									
Temperature:	25.9 °C		Humidity:	44 %	Atmospheric Pressure:	101 kPa			
Pre test mode:		Mode	, ,	1, Mode12, Mo	4, Mode5, Mode6, Mode7, ode13, Mode14, Mode15,	,			
Final test mode			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode				


6.1.2 Test Setup Diagram:



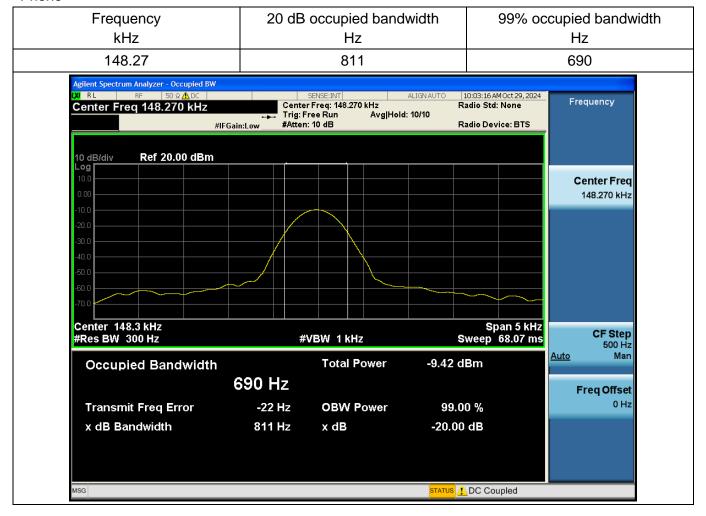
6.1.3 Test Data:

6.2 20dB Occupied Bandwidth

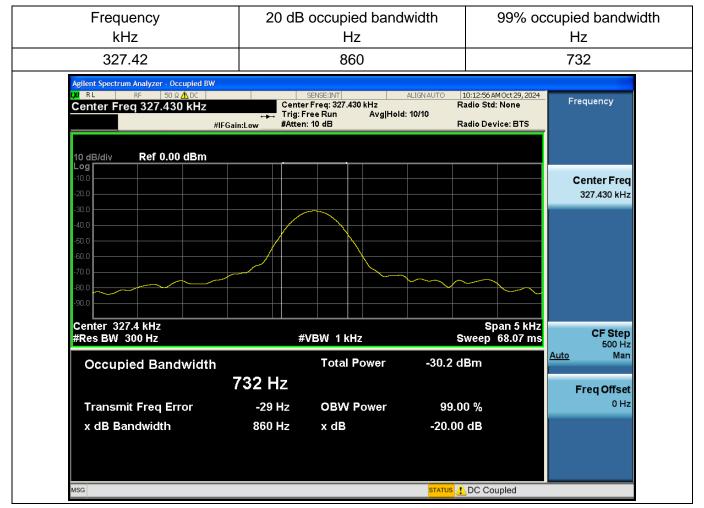

Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do

6.2.1 E.U.T. Operation:

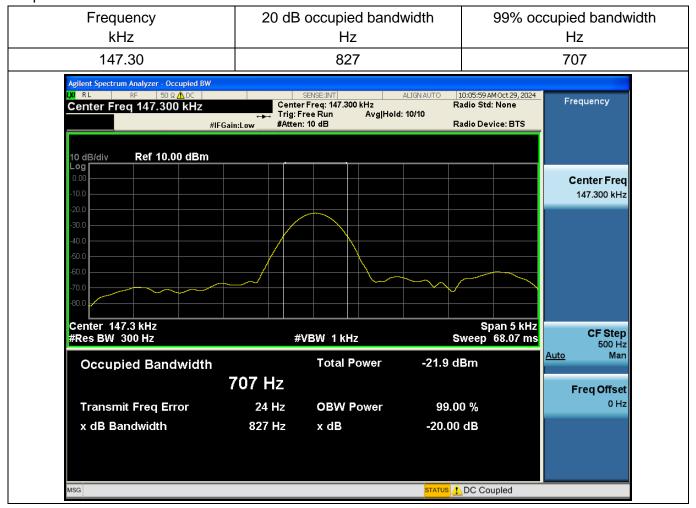
Operating Environment:										
Temperature:	26 °C		Humidity:	101 kPa						
Pre test mode:		Mode		1, Mode12, Mo	, Mode5, Mode6, Mode7, de13, Mode14, Mode15,	•				
Final test mode	e:				vere tested, only the data recorded in the report	of the worst mode				


6.2.2 Test Setup Diagram:

6.2.3 Test Data:


Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

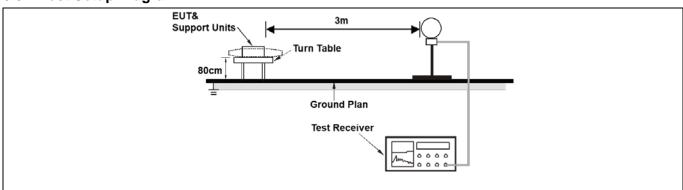
Phone


Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Watch

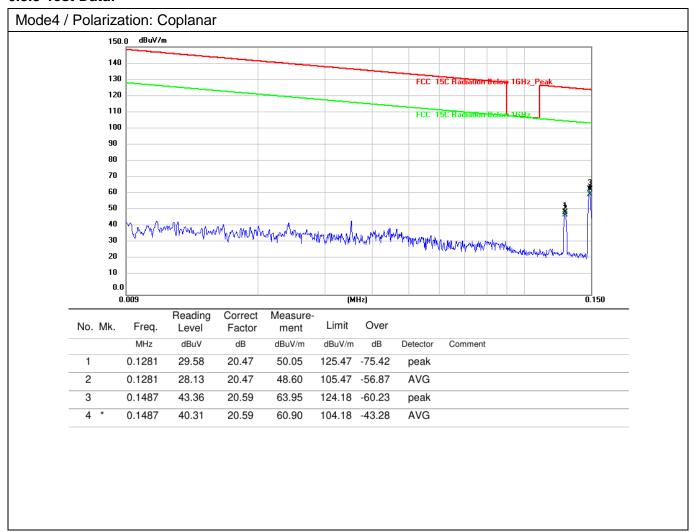
Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

Airpods


6.3 Emissions in frequency bands (below 30MHz)

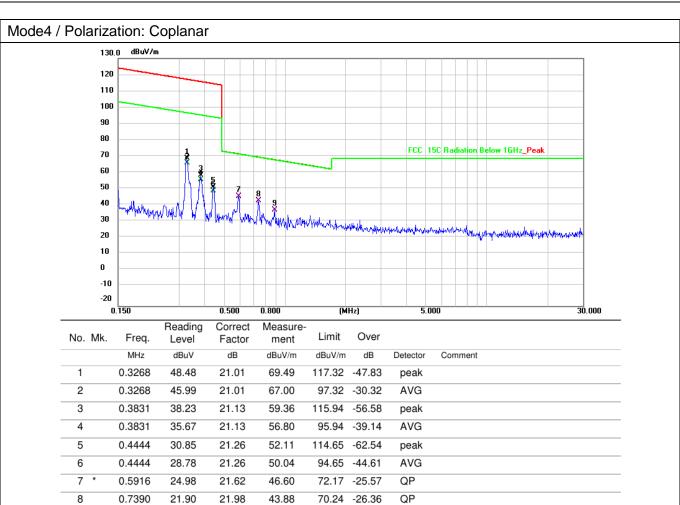
Test Requirement:	est Requirement: 47 CFR Part 15.209							
Test Limit:	Frequency (MHz)	Field strength	Measuremen					
		(microvolts/meter)	t distance					
			(meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
		n paragraph (g), fundamental						
		erating under this section sha						
		MHz, 76-88 MHz, 174-216 M						
		nin these frequency bands is	permitted under other					
		g., §§ 15.231 and 15.241. pove, the tighter limit applies a	at the band added					
		ove, the lighter limit applies a wn in the above table are bas						
		asi-peak detector except for the						
		above 1000 MHz. Radiated e						
	three bands are based	on measurements employing	an average detector.					
	As shown in § 15.35(b)	, for frequencies above 1000	MHz, the field strength					
	limits in paragraphs (a)	and (b)of this section are base	ed on average limits.					
	However, the peak field	strength of any emission sha	all not exceed the					
		erage limits specified above b						
		ation. For point-to-point opera						
	(b)of this section, the peak field strength shall not exceed 2500							
	millivolts/meter at 3 meters along the antenna azimuth.							
Test Method:	ANSI C63.10-2013 sec	tion 6.4						
Procedure:	ANSI C63.10-2013 sec	tion 6.4						

6.3.1 E.U.T. Operation:


Operating Environment:										
Temperature:		Humidity:	midity: 43 % Atmospheric Pressure: 101 kPa							
Pre test mode:		Mode		1, Mode12, Mo	Mode5, Mode6, Mode7, de13, Mode14, Mode15,	•				
Final test mode			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode					

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


0.8896

9

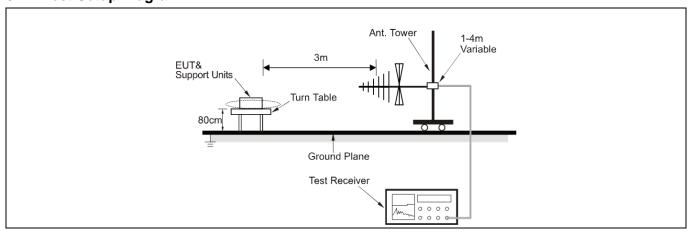
16.11

22.34

38.45

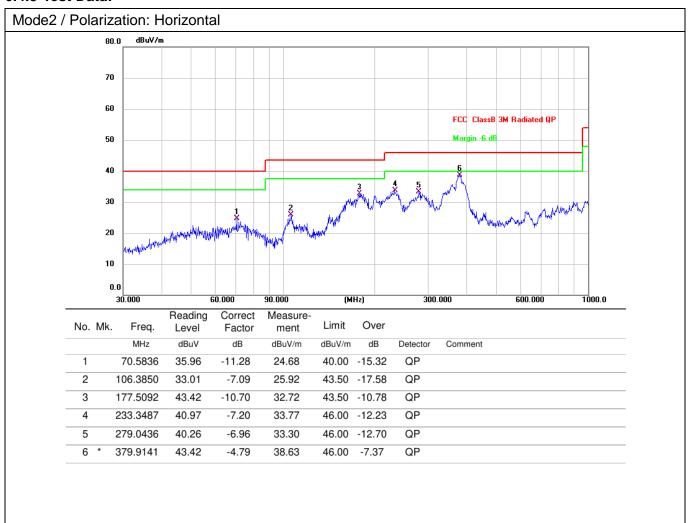
QP

68.63 -30.18

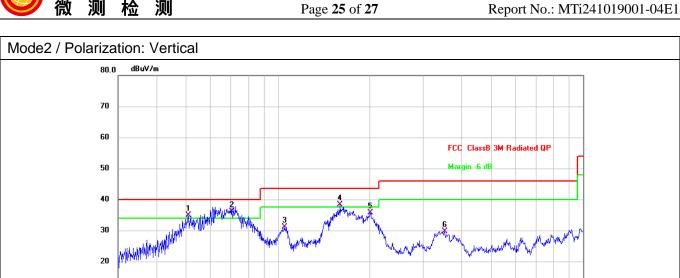

6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	However, operation wit sections of this part, e In the emission table at The emission limits show the employing a CISPR quarter (Line 10 three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted avany condition of modular (b) of this section, the permillivolts/meter at 3 meters and the emission of the peak field maximum permitted avany condition of modular (b) of this section, the pemillivolts/meter at 3 meters (Line 10 three parts) and the emission of the peak field three permitted avany condition of modular (b) of this section, the pemillivolts/meter at 3 meters (Line 10 three parts) and the emission table at the emi	hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employing, for frequencies above 1000 and (b)of this section are bastrength of any emission sherage limits specified above ation. For point-to-point oper eak field strength shall not exters along the antenna azim	s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these g an average detector. MHz, the field strength sed on average limits. hall not exceed the by more than 20 dB under ation under paragraph exceed 2500			
Test Method:	ANSI C63.10-2013 sec	tion 6.5				
Procedure:	rocedure: ANSI C63.10-2013 section 6.5					

6.4.1 E.U.T. Operation:


Operating Environment:										
Temperature:	26 °C		Humidity:	98.3 kPa						
Pre test mode:		Mode		1, Mode12, Mo	, Mode5, Mode6, Mode7, de13, Mode14, Mode15,					
Final test mode	All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report									

6.4.2 Test Setup Diagram:


6.4.3 Test Data:

0.0

60.000

90.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	!	50.7637	42.12	-7.25	34.87	40.00	-5.13	QP	
2	*	70.5836	47.38	-11.28	36.10	40.00	-3.90	QP	
3		104.9033	38.43	-7.37	31.06	43.50	-12.44	QP	
4	!	159.7844	49.04	-10.74	38.30	43.50	-5.20	QP	
5		200.6881	41.95	-6.34	35.61	43.50	-7.89	QP	
6		351.7079	34.84	-5.11	29.73	46.00	-16.27	QP	

(MHz)

300.000

600.000

1000.0

Photographs of the test setup

Refer to Appendix - test setup

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----