FCC TEST REPORT

FCC Part 22 /Part 24

Report Reference No.....:: LCS201116085AEE FCC ID.....:: 2AVTH-8LAB1 Date of Issue.:: January 05, 2021

Testing Laboratory Name Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Address....:

Shajing Street, Baoan District, Shenzhen, 518000, China

Applicant's name..... Hyundai Technology Group, Inc.

Address.....: 2601 Walnut Ave. Tustin, CA 92780, United States

Test specification:

FCC Part 22: Public Mobile Services Standard:

FCC Part 24: Personal Communication Services

Test Report Form No: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF...... Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Tablet Trade Mark: N/A

Test Model....: 8LAB1

DC 3.7V by Rechargeable Li-ion Battery, 4000mAh

For Adapter Input: 100-240V~, 50/60Hz, 0.35A Ratings....:

Adapter Output: 5.0V = 2000mA

Hardware version /

Software version:

Frequency...... GSM 850MHz; PCS 1900MHz

Result....:

Compiled by:

Supervised by:

Approved by:

Linda He / Technique principal

Gavin Liang/ Manager

Jin Wang/ File administrator

TEST REPORT

January 05, 2021 Test Report No.: LCS201116085AEE Date of issue

Equipment under Test : Tablet

Test Model : 8LAB1

Applicant : Hyundai Technology Group, Inc.

Address 2601 Walnut Ave. Tustin, CA 92780, United States

: Hyundai Technology Group, Inc. Manufacturer

Address 2601 Walnut Ave. Tustin, CA 92780, United States

Factory Address

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
000	January 05, 2021	Initial Issue	Gavin Liang

Contents

<u>1</u>	TEST STANDARDS	<u>5</u>
<u>2</u>	SUMMARY	<u> 6</u>
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	8
2.4	Short description of the Equipment under Test (EUT)	8
2.5 2.6	Internal Identification of AE used during the test Normal Accessory setting	8 8
2.7	EUT configuration	9
2.8	Related Submittal(s) / Grant (s)	9
2.9	Modifications	9
2.10	General Test Conditions/Configurations	9
<u>3</u>	TEST ENVIRONMENT	10
3.1	Address of the test laboratory	10
3.2	Test Facility	10
3.3	Environmental conditions	10
3.4	Test Description	10
3.5	Equipment Used during the Test	12
3.6	Measurement uncertainty	13
<u>4</u>	TEST CONDITIONS AND RESULTS	14
4.1	Output Power	14
4.2	Radiated Spurious Emission	18
4.3	Occupied Bandwidth and Emission Bandwidth	22
4.4	Band Edge Complicance	25
4.5	Spurious Emission on Antenna Port	28
4.6 4.7	Frequency Stability Test Peak-to-Average Ratio (PAR)	38 41
4.7	reak-to-Average Ratio (FAR)	41
<u>5</u>	TEST SETUP PHOTOGRAPHS OF EUT	44
<u>6</u>	EXTERIOR PHOTOGRAPHS OF THE EUT	44
<u>7</u>	INTERIOR PHOTOGRAPHS OF THE EUT	44

TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-16 Edition): Cellular Radiotelephone Service.

FCC Part 24(10-1-16 Edition): Broadband PCS.

ANSI/TIA-603-E-2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: Unintentional Radiators.

FCC Part 2: Frequency Allocations And Radio Treaty Matters: General Rules And Regulations.

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	December 10, 2020
Testing commenced on	:	December 10, 2020 ~ December 29, 2020
Date of Report	:	January 05, 2021

2.2 Product Description

The Hyundai Technology Group, Inc.'s Model: 8LAB1 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT : Tablet

Test Model : 8LAB1

Power Supply : DC 3.7V by Rechargeable Li-ion Battery, 4000mAh

For Adapter Input: 100-240V~, 50/60Hz, 0.35A

Adapter Output: 5.0V=2000mA

Hardware Version :/

Software Version :/

Bluetooth

Frequency Range : 2402MHz ~ 2480MHz

Bluetooth Version : V4.0

Channel Number : 79 channels for Bluetooth V4.0(BDR/EDR)

40 channels for Bluetooth V4.0(BT LE)

: 1MHz for Bluetooth V4.0(BDR/EDR) Channel Spacing

2MHz for Bluetooth V4.0(BT LE)

: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V4.0(BDR/EDR) Modulation Type

GFSK for Bluetooth V4.0(BT LE)

Antenna Description : PIFA Antenna, 0dBi(Max.)

WIFI(2.4G Band)

: 2412MHz ~ 2462MHz Frequency Range

Channel Spacing : 5MHz

Channel Number : 11 Channel for 20MHz bandwidth(2412~2462MHz)

: 802.11b: DSSS; 802.11g/n: OFDM Modulation Type

Antenna Description : PIFA Antenna, 0dBi(Max.)

2G

Support Band : GSM 900 (EU-Band) DCS 1800 (EU-Band)

 \square GSM 850 (U.S.-Band) \square PCS 1900 (U.S.-Band)

Release Version : R99

: Class 12 **GPRS Class**

EGPRS Class : Class 12 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AVTH-8LAB1 Report No.: LCS201116085AEE Type Of Modulation : GMSK for GSM/GPRS; 8PSK for EGPRS Antenna Description : PIFA Antenna; 0dBi (max.) For GSM 850; 0dBi (max.) For PCS 1900. 3G Support Band : WCDMA Band II (U.S.-Band) \boxtimes WCDMA Band V (U.S.-Band) WCDMA Band IV (U.S.-Band) WCDMA Band I (EU-Band) WCDMA Band VIII (EU-Band) Release Version : R7 Type Of Modulation : WCDMA: QPSK; HSDPA/HSUPA: QPSK Antenna Description : PIFA Antenna; 0dBi (max.) For WCDMA Band II; 0dBi (max.) For WCDMA Band V. LTE Support Band : XE-UTRA Band 2(U.S.-Band) ⊠E-UTRA Band 4(U.S.-Band) E-UTRA Band 5(U.S.-Band) E-UTRA Band 7(U.S.-Band) LTE Release Version : R9 Type Of Modulation : QPSK/16QAM **Antenna Description** : PIFA Antenna: 0dBi (max.) For E-UTRA Band 2; 0dBi (max.) For E-UTRA Band 4; 0dBi (max.) For E-UTRA Band 5; 0dBi (max.) For E-UTRA Band 7; **Power Class** : Class 3 **GPS** function : Support and only RX FM function : Support and only RX Extreme temp. Tolerance : -30°C to +50°C Extreme vol. Limits

: 3.3VDC to 4.2VDC (nominal: 3.7VDC)

Equipment under Test 2.3

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow) 3.7 V DC

Test frequency list

Test Mode	TX/RX	RF Channel			
r est iviode		Low(L)	Middle (M)	High (H)	
	TX	Channel 128	Channel 190	Channel 251	
GSM850	1.8	824.2 MHz	836.6 MHz	848.8 MHz	
GSIVIOSU	RX	Channel 128	Channel 190	Channel 251	
		869.2 MHz	881.6 MHz	893.8 MHz	
Test Mode	TX/RX	RF Channel			
rest wode		Low(L)	Middle (M)	High (H)	
	TX	Channel 512	Channel 661	Channel 810	
PCS1900		1850.2 MHz	1880.0 MHz	1909.8 MHz	
	DV	Channel 512	Channel 661	Channel 810	
	RX	1930.2 MHz	1960.0 MHz	1989.8 MHz	

Short description of the Equipment under Test (EUT)

2.4.1 General Description

Tablet is subscriber equipment in the BT / BLE / 2.4WIFI / GSM / WCDMA / LTE system. GSM/GPRS/EGPRS frequency bands are GSM 850 and PCS 1900.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Rechargeable Li-Polymer Battery
AE2	Adapter

AE2

Adapter Model: PS101050K2000UU Adapter Input: 100-240V~, 50/60Hz, 0.35A

Adapter Output: 5.0V == 2000mA

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/
		Shield:	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No. :	/

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AVTH-8LAB1 filling to comply with FCC Part 22 and Part 24 Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
GSM/TM1	GSM system, GSM,GMSK modulation
GSM/TM2	GSM system, GPRS, GMSK modulation
GSM/TM3	GSM system, EDGE, 8PSK modulation

Note:

1. As GSM and GPRS with the same emission designator, test result recorded in this report at the worst case GSM/TM1 only after exploratory scan.

2.10.2 Test Environment

Environment Parameter	Selected Values During Tests		
Relative Humidity	Ambient		
Temperature	TN	Ambient	
	VL	DC 3.3V	
Voltage	VN	DC 3.7V	
	VH	DC 4.2V	

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

3.4.1 Cellular Band (824-849MHz paired with 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict			
Effective(Isotropic) Radiated	§2.1046,	FCC: ERP ≤ 7W.	Pass			
Output Power	§22.913	ISED: ERP ≤ 11.5W.	Pass			
Modulation Characteristics	§2.1047	Digital modulation	N/A			
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass			
Band Edges Compliance	§2.1051, §22.917	≤-13dBm/1%*EBW, in 1MHz bands immediately outside and adjacent to The frequency block.	Pass			
Spurious Emission at Antenna Terminals	§2.1051, §22.917	≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass			
Field Strength of Spurious Radiation	§2.1053, §22.917	≤ -13dBm/100kHz.	Pass			
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass			
Peak-Average Ratio	§22.913	IC:Limit≤13dB	Pass			
Receiver Spurious Emissions	N/A		Pass			
NOTE 1: For the verdict, the "N/A" denotes "not applicable", the "N/T" de notes "not tested".						

3.4.2 PCS Band (1850-1910MHz paired with 1930-1990MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §24.232	EIRP ≤ 2W	Pass
Peak-Average Ratio	§2.1046, §24.232	≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §24.238	≤ -13dBm/1%*EBW, In 1MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §24.238	≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §24.238	≤ -13dBm/1MHz.	Pass
Frequency Stability	§2.1055, §24.235	≤ ±2.5ppm.	Pass
Peak-Average Ratio	§24.232	IC:Limit≤13dB	Pass
Receiver Spurious Emissions	N/A		Pass
NOTE 1: For the verdi	ct, the "N/A" der	notes "not applicable", the "N/T" de notes "not tested"	·

Remark: The measurement uncertainty is not included in the test result.

Equipment Used during the Test 3.5

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
2	RF Control Unit	Tonscend	JS0806	158060009	2020-06-22	2021-06-21
3	MXA Signal Analyzer	Agilent	N9020A	MY51250905	2020-11-21	2021-11-20
4	DC Power Supply	Agilent	E3642A	N/A	2020-11-13	2021-11-12
5	MXG Vector Signal Generator	Agilent	N5182A	MY47071151	2020-06-22	2021-06-21
6	PSG Analog Signal Generator	Agilent	E8257D	MY4520521	2020-06-22	2021-06-21
7	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2020-10-08	2021-10-07
8	EMI Test Software	AUDIX	E3	/	N/A	N/A
9	3m Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2020-06-22	2021-06-21
10	Positioning Controller	MF	MF7082	MF78020803	2020-06-22	2021-06-21
11	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-07-26	2021-07-25
12	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-07-26	2021-07-25
13	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
14	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020-09-20	2023-09-19
15	Broadband Preamplifier	SCHWARZBECK	BBV9745	9719-025	2020-06-22	2021-06-21
16	EMI Test Receiver	R&S	ESR 7	101181	2020-06-22	2021-06-21
17	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-21	2021-11-20
18	Broadband Preamplifier	/	BP-01M18G	P190501	2020-06-22	2021-06-21
19	RF Cable-R03m	Jye Bao	RG142	CB021	2020-06-22	2021-06-21
20	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2020-06-22	2021-06-21
21	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2020-06-22	2021-06-21
22	RF Filter	Micro-Tronics	BRC50718	S/N-017	2020-11-21	2021-11-20
23	RF Filter	Micro-Tronics	BRC50719	S/N-011	2020-11-21	2021-11-20
24	RF Filter	Micro-Tronics	BRC50720	S/N-011	2020-11-21	2021-11-20
25	RF Filter	Micro-Tronics	BRC50721	S/N-013	2020-11-21	2021-11-20
26	RF Filter	Micro-Tronics	BRM50702	S/N-195	2020-06-22	2021-06-21
27	6dB Attenuator	/	100W/6dB	1172040	2020-06-22	2021-06-21
28	3dB Attenuator	/	2N-3dB	/	2020-06-22	2021-06-21
29	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2020-11-21	2021-11-20
Note:	All equipment is calibrated through	CHINA CEPREI LABORA	TORY and GUANGZ	HOU LISAI CALIBRATIO	N AND TEST CO.	, LTD.

3.6 Measurement uncertainty

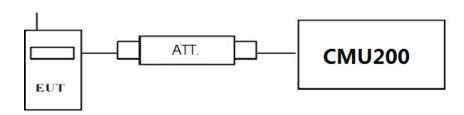
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028 " Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	•	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

TEST CONDITIONS AND RESULTS


4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1 Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

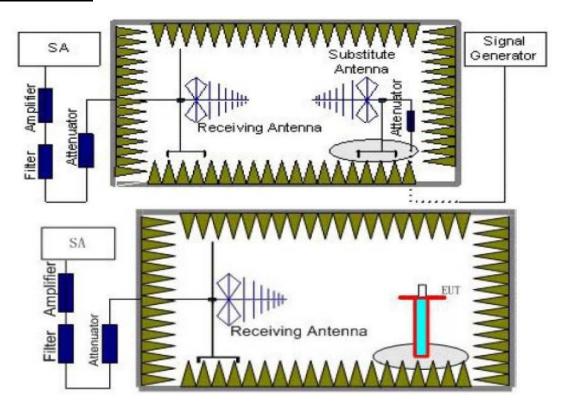
- Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW 500 by an Att.
- EUT Communicate with CMW 500 then selects a channel for testing.
- Add a correction factor to the display CMW 500, and then test.

TEST RESULTS

		Burst A	Average Conducted power	er (dBm)			
GSM	1 850		Channel/Frequency(MHz)				
		128/824.2	190/836.6	251/848.8			
GS	SM	32.43	32.38	32.38			
	1TX slot	32.31	32.29	32.31			
GPRS	2TX slot	30.83	30.79	30.82			
(GMSK)	3TX slot	29.31	29.32	29.27			
	4TX slot	27.81	27.79	27.79			
	1TX slot	25.82	25.80	25.79			
EDGE	2TX slot	24.29	24.28	24.31			
(8PSK)	3TX slot	22.80	22.79	22.83			
	4TX slot	21.31	21.29	21.31			

		Burst Average Conducted power (dBm)						
PCS	1900		Channel/Frequency(MHz)					
		512/1850.2	661/1880	810/1909.8				
G	SM	29.49	29.50	29.49				
	1TX slot	29.32	29.28	29.31				
GPRS	2TX slot	27.79	27.82	27.79				
(GMSK)	3TX slot	26.32	26.31	26.30				
	4TX slot	24.77	24.83	24.80				
	1TX slot	25.28	25.28	25.29				
EDGE	2TX slot	23.81	23.80	23.83				
(8PSK)	3TX slot	22.31	22.27	22.27				
	4TX slot	20.78	20.80	20.81				

4.1.2 Radiated Output Power


TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

Per rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Per rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the

- previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

- Power(EIRP)= P_{Mea} + P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST LIMIT

According to 22.913(a), 24.232(c), the ERP should be not exceed following table limits:

GSM850(GPRS850,EDGE850)								
Function	Power Step	Burst Peak ERP (dBm)						
GSM	5	FCC: ≤38.45dBm (7W)						
GPRS	3	FCC: ≤38.45dBm (7W)						
EDGE	8	FCC: ≤38.45dBm (7W)						

PCS1900(GPRS1900,EDGE1900)							
Function	Power Step	Burst Peak EIRP (dBm)					
GSM	0	≤33.01dBm (2W)					
GPRS	3	≤33.01dBm (2W)					
EDGE	2	≤33.01dBm (2W)					

TEST RESULTS

Remark:

- 1. We were tested all Configuration refer 3GPP TS151 010.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Aq}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We test the H direction and V direction recorded worst case.

GSM/TM1/GSM850

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Aq} (dB)	Burst Average ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.20	-7.06	3.45	8.45	2.15	33.79	29.58	38.45	-8.87	V
836.60	-6.99	3.49	8.45	2.15	33.85	29.67	38.45	-8.78	V
848.80	-7.09	3.55	8.36	2.15	33.88	29.45	38.45	-9.00	V

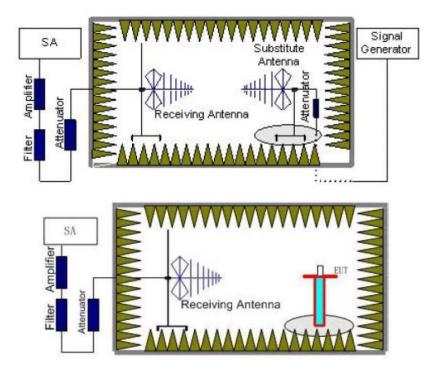
GSM/TM3/EDGE850

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Aq} (dB)	Burst Average ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.20	-11.95	3.45	8.45	2.15	33.79	24.69	38.45	-13.76	V
836.60	-11.91	3.49	8.45	2.15	33.85	24.75	38.45	-13.70	V
848.80	-11.91	3.55	8.36	2.15	33.88	24.63	38.45	-13.82	V

GSM/TM1/GSM1900

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.20	-12.00	4.03	8.38	35.51	27.86	33.01	-5.15	V
1880.00	-11.95	4.08	8.33	35.56	27.86	33.01	-5.15	V
1909.80	-12.01	4.14	8.26	35.63	27.74	33.01	-5.27	V

GSM/TM3/EDGE1900


Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Burst Average EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.20	-17.04	4.03	8.38	35.51	22.82	33.01	-10.19	V
1880.00	-17.03	4.08	8.33	35.56	22.78	33.01	-10.23	V
1909.80	-17.09	4.14	8.26	35.63	22.66	33.01	-10.35	V

4.2 Radiated Spurious Emission

TEST APPLICABLE

According to the TIA/EIA 603D:2010 and FCC Part 2.1033 test method, The Receiver or Spectrum was scanned from lowest frequency generated within the equipment to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238, Part 22.917, RSS-132 §5.5 and RSS-133 §6.5. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) , the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Aq}) should be recorded after test.
 - The measurement results are obtained as described below:
 - Power(EIRP)= P_{Mea} + P_{Ag} P_{cl} + G_a
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
TM1/GSM 850	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
TM1/GSM 1900	2~5	1 MHz	3 MHz	3
11011/63101 1900	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2

TEST LIMITS

According to 24.238 and 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -10GHz	PASS
TM1/GSM 850	Middle	9KHz -10GHz	PASS
	High	9KHz -10GHz	PASS
	Low	9KHz -20GHz	PASS
TM1/GSM 1900	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS

TEST RESULTS

Remark:

- 1. We were tested all refer 3GPP TS151 010.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = EIRP Limit

GSM/TM1/GSM850_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1648.40	-43.42	3.86	3.00	8.56	-38.72	-13.00	-25.72	Н
2472.60	-44.43	4.29	3.00	6.98	-41.74	-13.00	-28.74	Н
1648.40	-39.66	3.86	3.00	8.56	-34.96	-13.00	-21.96	V
2472.60	-41.83	4.29	3.00	6.98	-39.14	-13.00	-26.14	V

GSM/TM1/GSM850_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.20	-41.79	3.9	3.00	8.58	-37.11	-13.00	-24.11	Н
2509.80	-46.36	4.32	3.00	6.8	-43.88	-13.00	-30.88	Н
1673.20	-37.35	3.9	3.00	8.58	-32.67	-13.00	-19.67	V
2509.80	-42.91	4.32	3.00	6.8	-40.43	-13.00	-27.43	V

GSM/TM1/GSM850 High Channel

	<u> </u>	9 0						
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1697.60	-47.21	3.91	3.00	9.06	-42.06	-13.00	-29.06	Н
2546.40	-49.83	4.32	3.00	6.65	-47.50	-13.00	-34.50	Н
1697.60	-43.28	3.91	3.00	9.06	-38.13	-13.00	-25.13	V
2546.40	-44.72	4.32	3.00	6.65	-42.39	-13.00	-29.39	V

GSM/TM3/GSM850_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1648.40	-45.28	3.86	3.00	8.56	-40.58	-13.00	-27.58	Н
2472.60	-46.46	4.29	3.00	6.98	-43.77	-13.00	-30.77	Н
1648.40	-41.82	3.86	3.00	8.56	-37.12	-13.00	-24.12	V
2472.60	-44.11	4.29	3.00	6.98	-41.42	-13.00	-28.42	V

GSM/TM3/GSM850_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.20	-44.08	3.9	3.00	8.58	-39.40	-13.00	-26.40	Н
2509.80	-48.77	4.32	3.00	6.8	-46.29	-13.00	-33.29	Н
1673.20	-39.65	3.9	3.00	8.58	-34.97	-13.00	-21.97	V
2509.80	-45.12	4.32	3.00	6.8	-42.64	-13.00	-29.64	V

GSM/TM3/GSM850_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1697.60	-48.69	3.91	3.00	9.06	-43.54	-13.00	-30.54	Н
2546.40	-51.34	4.32	3.00	6.65	-49.01	-13.00	-36.01	Н
1697.60	-45.35	3.91	3.00	9.06	-40.20	-13.00	-27.20	V
2546.40	-47.27	4.32	3.00	6.65	-44.94	-13.00	-31.94	V

GSM/TM1/GSM1900_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3700.40	-45.51	5.26	3.00	9.88	-40.89	-13.00	-27.89	Н
5550.60	-46.78	6.11	3.00	11.36	-41.53	-13.00	-28.53	Н
3700.40	-41.89	5.26	3.00	9.88	-37.27	-13.00	-24.27	V
5550.60	-44.20	6.11	3.00	11.36	-38.95	-13.00	-25.95	V

GSM/TM1/GSM1900_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.00	-43.68	5.32	3.00	10.03	-38.97	-13.00	-25.97	Н
5640.00	-48.04	6.19	3.00	11.41	-42.82	-13.00	-29.82	Н
3760.00	-39.38	5.32	3.00	10.03	-34.67	-13.00	-21.67	V
5640.00	-45.37	6.19	3.00	11.41	-40.15	-13.00	-27.15	V

GSM/TM1/GSM1900_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3819.60	-48.66	5.36	3.00	9.62	-44.40	-13.00	-31.40	Н
5729.40	-51.69	6.24	3.00	11.46	-46.47	-13.00	-33.47	Н
3819.60	-45.29	5.36	3.00	9.62	-41.03	-13.00	-28.03	V
5729.40	-47.36	6.24	3.00	11.46	-42.14	-13.00	-29.14	V

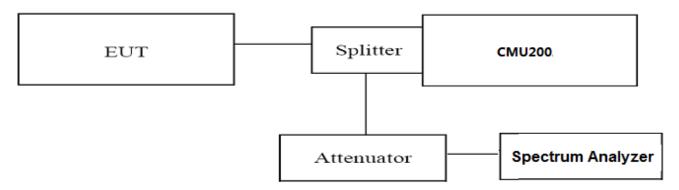
GSM/TM3/GSM1900_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3700.40	-47.35	5.26	3.00	9.88	-42.73	-13.00	-29.73	Н
5550.60	-48.64	6.11	3.00	11.36	-43.39	-13.00	-30.39	Н
3700.40	-43.77	5.26	3.00	9.88	-39.15	-13.00	-26.15	V
5550.60	-45.91	6.11	3.00	11.36	-40.66	-13.00	-27.66	V

GSM/TM3/GSM1900_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.00	-46.18	5.32	3.00	10.03	-41.47	-13.00	-28.47	Н
5640.00	-50.72	6.19	3.00	11.41	-45.50	-13.00	-32.50	Н
3760.00	-41.74	5.32	3.00	10.03	-37.03	-13.00	-24.03	V
5640.00	-46.67	6.19	3.00	11.41	-41.45	-13.00	-28.45	V

GSM/TM3/GSM1900_ High Channel

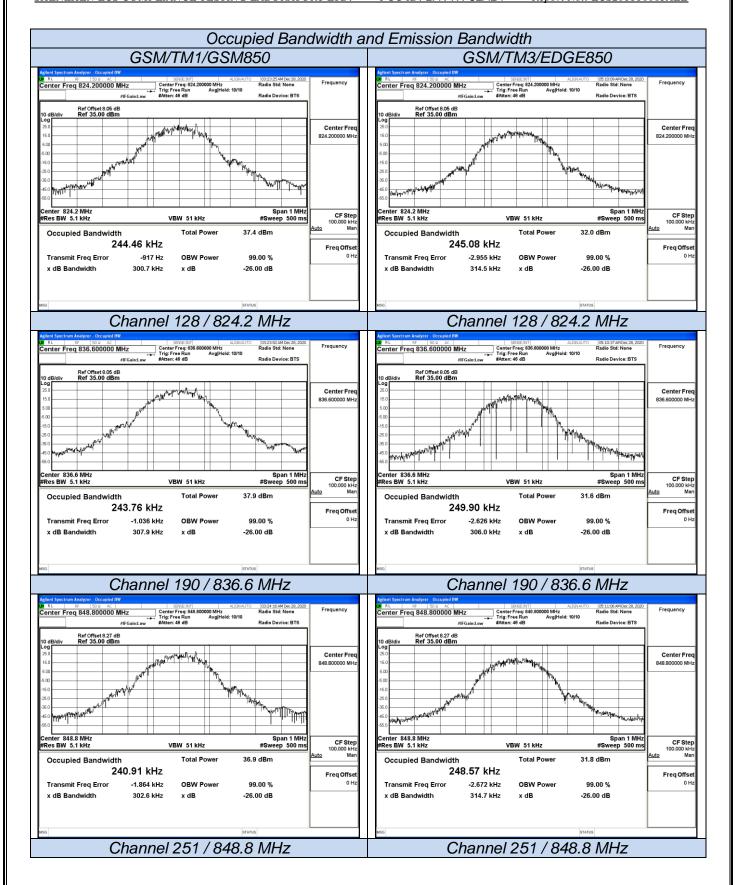

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3819.60	-51.19	5.36	3.00	9.62	-46.93	-13.00	-33.93	Н
5729.40	-53.24	6.24	3.00	11.46	-48.02	-13.00	-35.02	Н
3819.60	-47.14	5.36	3.00	9.62	-42.88	-13.00	-29.88	V
5729.40	-48.86	6.24	3.00	11.46	-43.64	-13.00	-30.64	V

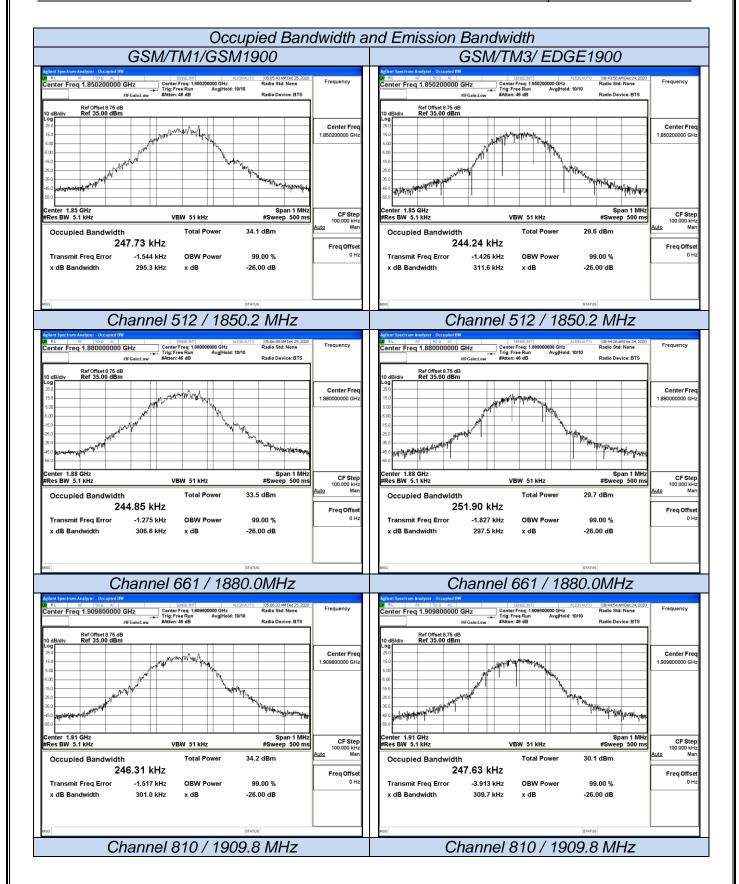
Occupied Bandwidth and Emission Bandwidth 4.3

TEST APPLICABLE

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of PCS1900 band and GSM850 band. The table below lists the measured 99% Bandwidth and -26dBc Bandwidth.

TEST CONFIGURATION

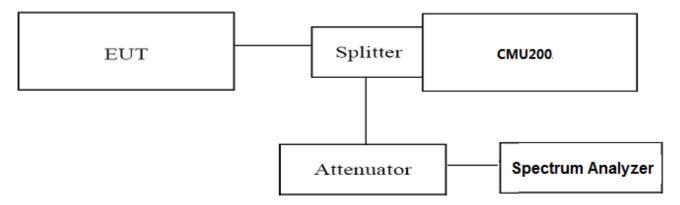

TEST PROCEDURE


- The EUT was set up for the max output power with pseudo random data modulation;
- The Occupied bandwidth and Emission Bandwidth were measured with Spectrum AnalyzerN9020A;
- Set RBW=5.1KHz,VBW=51KHz,Span=1MHz,SWT=Auto;
- Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
- These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (Low, middle and high of operational frequency range).

TEST RESULTS

Test Mode	Channel	Frequency (MHz)	Occupied Bandwidth (99% BW) (KHz)	Emission Bandwidth (-26 dBc BW) (KHz)	Verdict
GSM/TM1	128	824.2	244.46	300.7	PASS
/GSM850	190	836.6	243.76	307.9	PASS
/631/1030	251	848.8	240.91	302.6	PASS
GSM/TM3	128	824.2	245.08	314.5	PASS
/EDGE850	190	836.6	249.90	306.0	PASS
/EDGE030	251	848.8	248.57	314.7	PASS
GSM/TM1	512	1850.2	240.91	302.6	PASS
/GSM1900	661	1880.0	244.85	306.6	PASS
/G3W1900	810	1909.8	246.31	301.0	PASS
CCM/TM2	512	1850.2	244.24	311.6	PASS
GSM/TM3	661	1880.0	251.90	297.5	PASS
/EDGE1900	810	1909.8	247.63	309.7	PASS

- 1. Test results including cable loss;
- 2. Please refer to following plots;



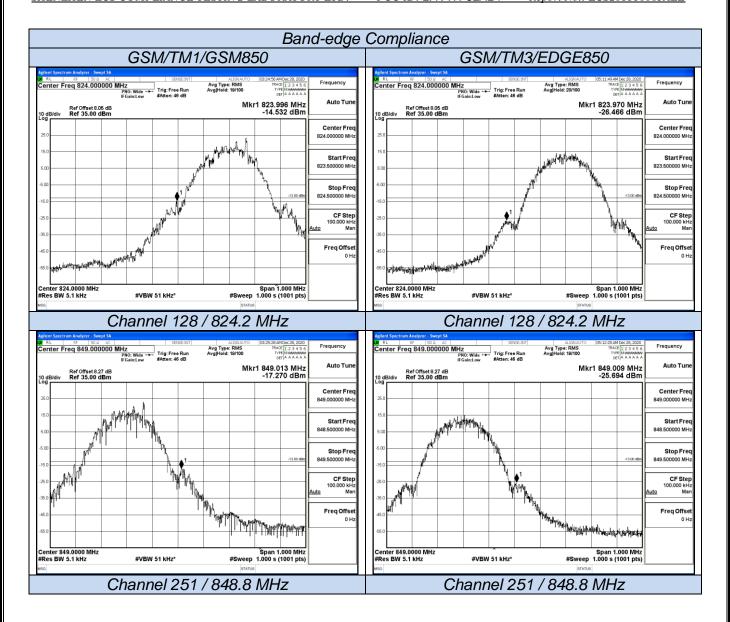
4.4 **Band Edge Complicance**

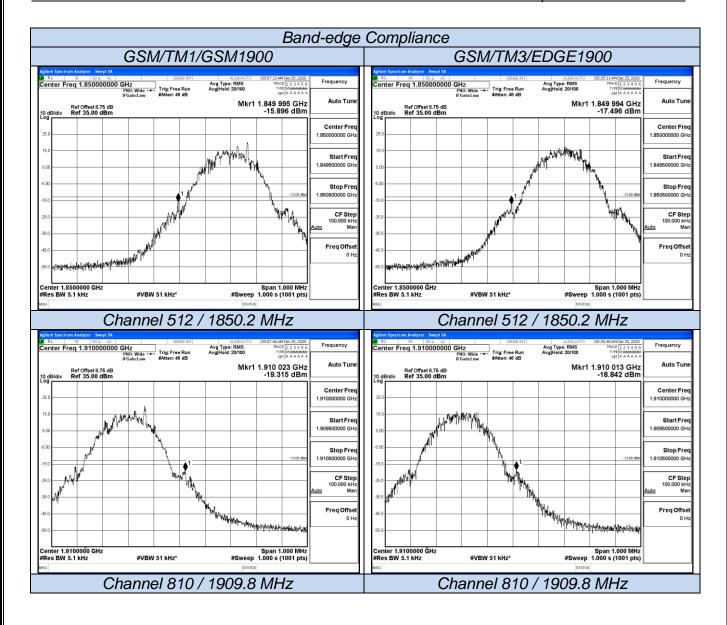
TEST APPLICABLE

During the process of testing, the EUT was controlled via Digital Radio Communication tester (CMW 500) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

TEST PROCEDURE

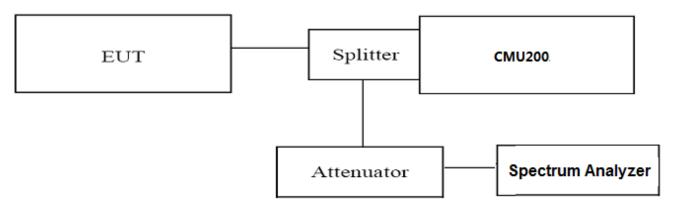

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- The power was measured with Spectrum Analyzer N9020A;
- Set RBW=5.1KHz,VBW=51KHz,Span=1MHz,SWT=Auto, Dector: RMS;
- These measurements were done at 2 frequencies, 1850.20 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz and 848.80 MHz for GSM850 band. (bottom and top of operational frequency range).


TEST RESULTS

Test Mode	Channel	Frequency (MHz)	Band Edg Compliance (dBm)	Limits (dBm)	Verdict	
GSM/TM1/GSM850	128	824.2	<-13dBm	-13dBm	PASS	
GSIVI/TIVIT/GSIVIOSU	251	848.8	<-13dBm	-13dBm	PASS	
GSM/TM3/EDGE850	128	824.2	<-13dBm	-13dBm	PASS	
GSIVI/TIVIS/EDGE650	251	848.8	<-13dBm	-13dBm		
GSM/TM1/GSM1900	512	1850.2	<-13dBm	-13dBm	PASS	
GSW/TWT/GSWT900	810	1909.8	<-13dBm	-13dBm	PASS	
GSM/TM3/EDGE1900	512	1850.2	<-13dBm	-13dBm	PASS	
GSW/TWS/EDGE1900	810	1909.8	<-13dBm	-13dBm	PASS	

Remark:

- 1. Test results including cable loss;
- 2. Please refer to following plots;


4.5 **Spurious Emission on Antenna Port**

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

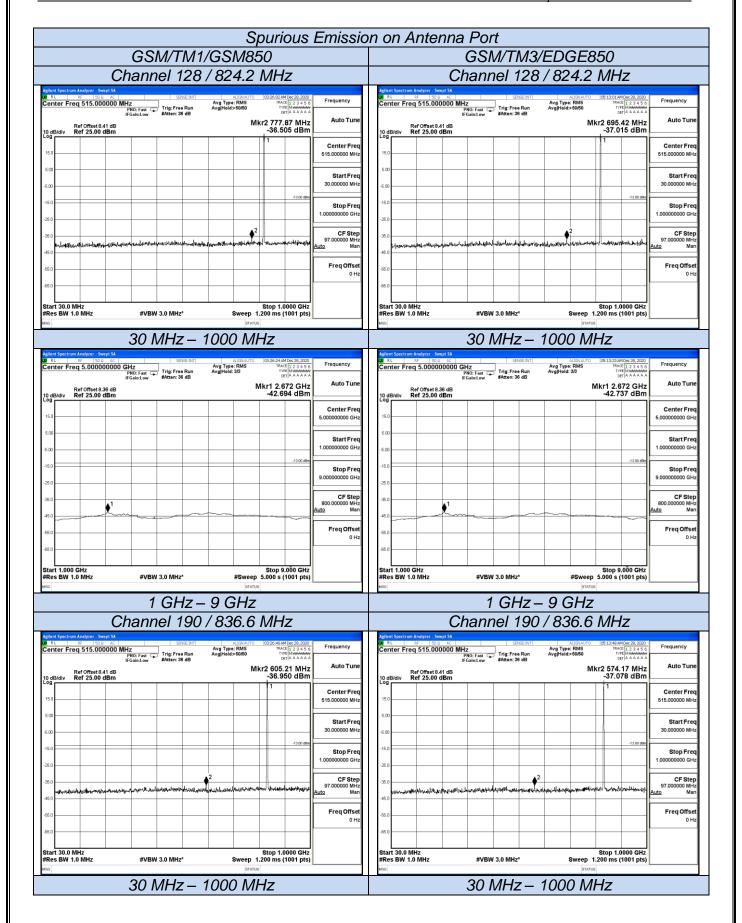
- 1. Determine frequency range for measurements: From CFR 2.1057 and RSS-GEN the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 9 KHz to 20 GHz, data taken from 30 MHz to 20 GHz. For GSM850, this equates to a frequency range of 9 KHz to 9 GHz data taken from 30 MHz to 9 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
- The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds: Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

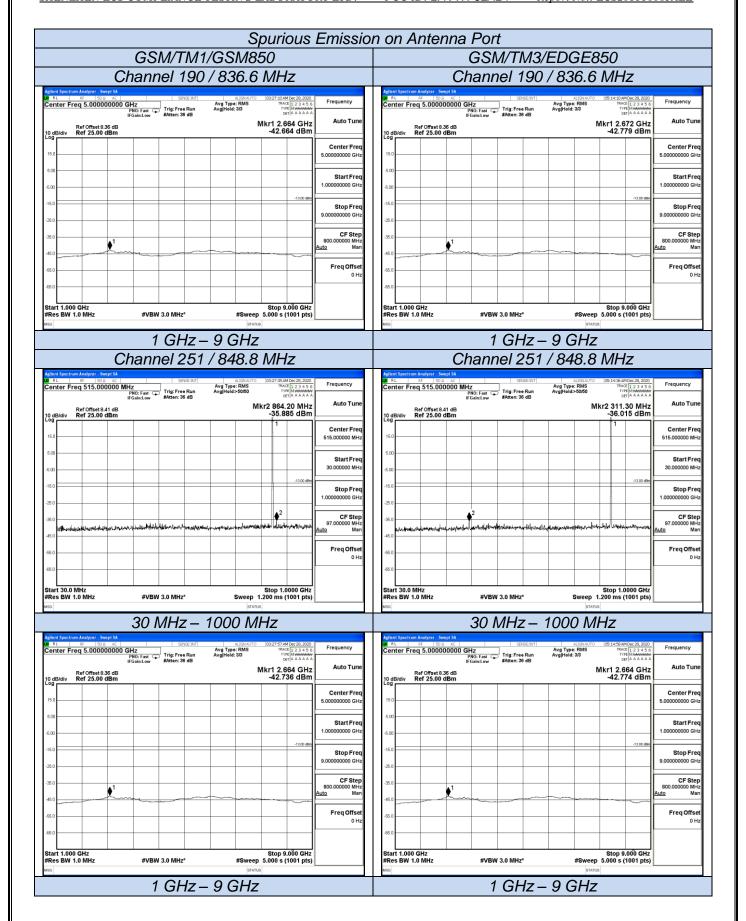
TEST CONFIGURATION

TEST PROCEDURE

- The EUT was set up for the max output power with pseudo random data modulation:
- The power was measured with Spectrum Analyzer N9020A:
- These measurements were done at 3 frequencies, 1850.20 MHz, 1880.00 MHz and 1909.80 MHz for PCS1900 band; 824.20 MHz, 836.60 MHz and 848.80 MHz for GSM850 band. (Low, middle and high of operational frequency range).

TEST LIMIT

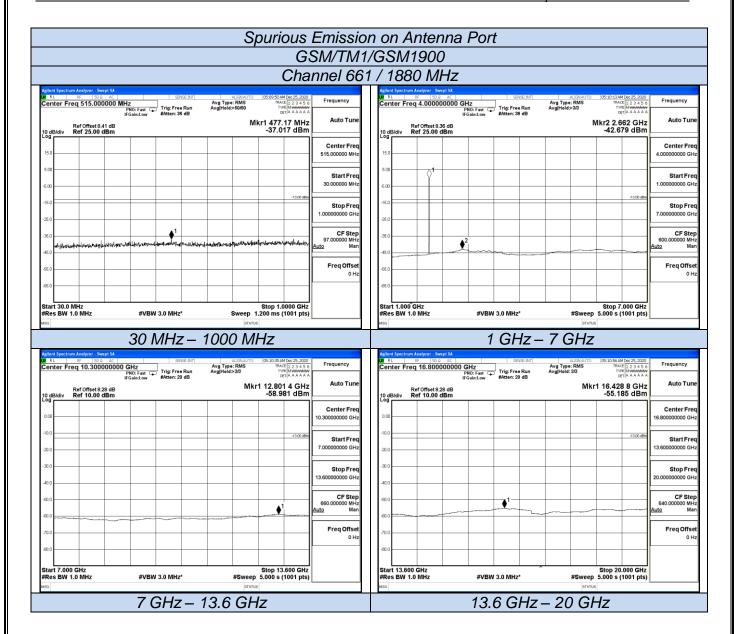

Part 24.238, Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.


TEST RESULTS

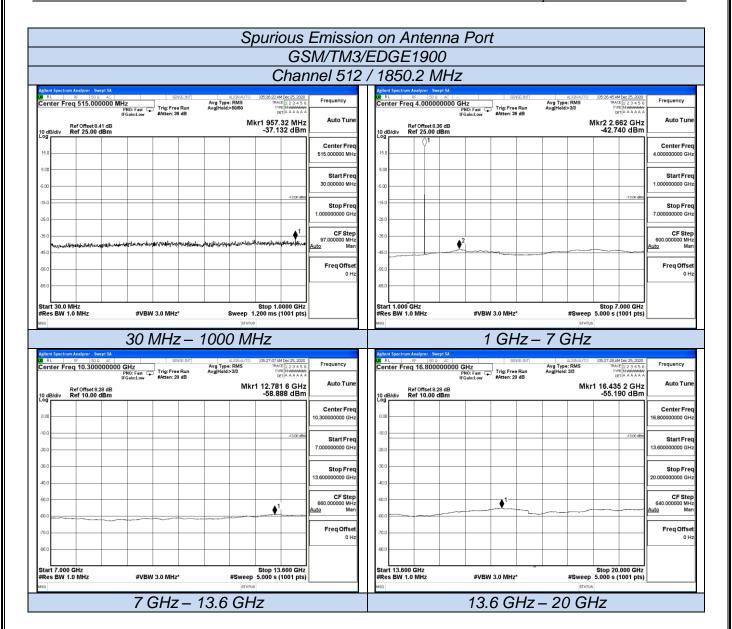
Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBm)	Limits (dBm)	Verdict
	128	824.2	<-13dBm	-13dBm	
GSM/TM1/GSM850	190	836.6	<-13dBm	-13dBm	PASS
	251	848.8	<-13dBm	-13dBm	
	128	824.2	<-13dBm	-13dBm	
GSM/TM3/EDGE850	190	836.6	<-13dBm	-13dBm	PASS
	251	848.8	<-13dBm	-13dBm	
	512	1850.2	<-13dBm	-13dBm	
GSM/TM1/GSM1900	661 1880.0		<-13dBm	-13dBm	PASS
	810	1909.8	<-13dBm	-13dBm	
	512	1850.2	<-13dBm	-13dBm	
GSM/TM3/EDGE1900	661	1880.0	<-13dBm	-13dBm	PASS
	810	1909.8	<-13dBm	-13dBm	

Remark:

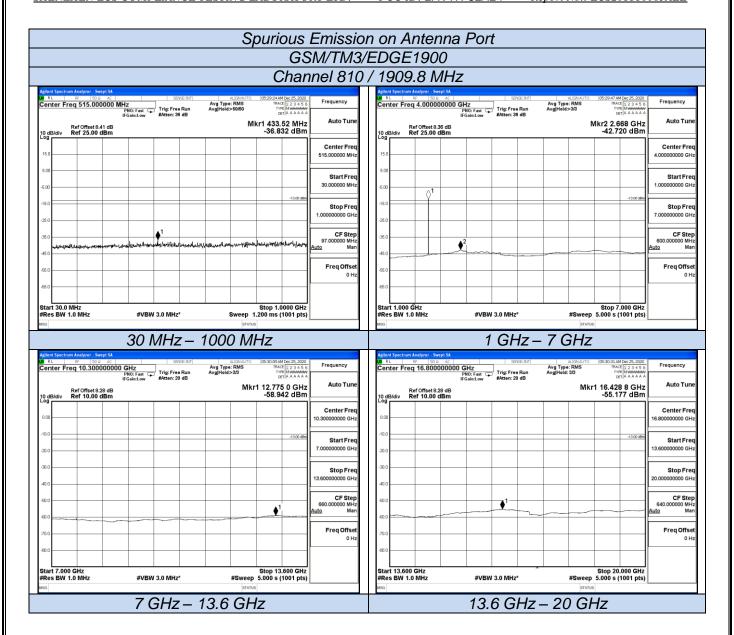
- Test results including cable loss;
 Please refer to following plots;
- 3. Not reorded test plots from 9 KHz to 30 MHz as emission levels 20dB lower than emission limit;



#VBW 3.0 MHz*


13.6 GHz - 20 GHz

#VBW 3.0 MHz*

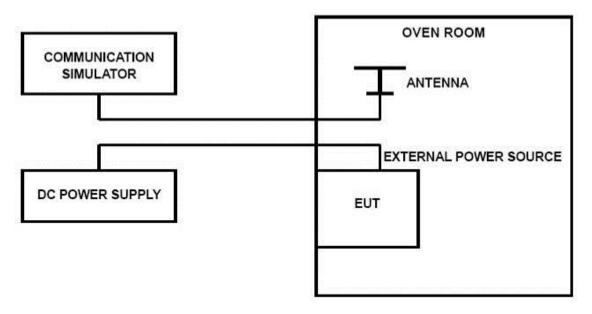

7 GHz - 13.6 GHz

Spurious Emission on Antenna Port GSM/TM1/GSM1900 Channel 810 / 1909.8 MHz Rt RF SOQ AC enter Freq 515.000000 MHz PRO: Fast IF Gainct ow #Atten: 36 dB AUGNAL Avg Type: RMS Avg|Hold:>50/50 Avg Type: RMS Avg|Hold:>3/3 Auto Tun Mkr1 937.92 MHz -37.150 dBm Mkr2 2.674 GHz -42.719 dBm Ref Offset 8.41 dB Ref 25.00 dBm Ref Offset 8.36 dB Ref 25.00 dBm Center Fre Center Fre Start Free Start Free Stop Free Stop Free CF Step 600.000000 MH: ato Mar Freq Offse Freq Offse Start 30.0 MHz #Res BW 1.0 MHz Start 1.000 GHz #Res BW 1.0 MHz Stop 7.000 GHz #Sweep 5.000 s (1001 pts) 1 GHz - 7 GHz 30 MHz - 1000 MHz RL RF 50 0 AC PNO: Fast Free Run | FGaint.tow | FAtten: 20 dB RL RF 500 AC | enter Freq 16.800000000 GHz PN0: Fast | IFGainclow #Atten: 20 dB Avg Type: RMS AvgIHold: 3/3 Avg Type: RMS AvgHold: 3/3 Mkr1 12.814 6 GHz -58.917 dBm Mkr1 16.409 6 GHz -55.211 dBm Ref Offset 8.28 dB Ref 10.00 dBm Ref Offset 8.28 dB Ref 10.00 dBm Center Fre 300000000 GH Center Fre Start Fre Start Free Stop Fre Stop Fre CF Step 640.000000 MH: uto Mar **♦** Freq Offse Freq Offse Start 7.000 GHz #Res BW 1.0 MHz Stop 13.600 GHz #Sweep 5.000 s (1001 pts) Start 13.600 GHz #Res BW 1.0 MHz Stop 20.000 GHz #Sweep 5.000 s (1001 pts) #VBW 3.0 MHz* #VBW 3.0 MHz* 7 GHz - 13.6 GHz 13.6 GHz - 20 GHz

Spurious Emission on Antenna Port GSM/TM3/EDGE1900 Channel 661 / 1880 MHz Rt RF SOQ AC enter Freq 515.000000 MHz PRO: Fast IF Gainct ow #Atten: 36 dB Avg Type: RMS Avg|Hold:>50/50 Avg Type: RMS Avg|Hold:>3/3 Auto Tun Mkr1 385.99 MHz -37.287 dBm Mkr2 2.662 GHz -42.696 dBm Ref Offset 8.41 dB Ref 25.00 dBm Ref Offset 8.36 dB Ref 25.00 dBm Center Fre Center Fre Start Free Start Free Stop Free Stop Free CF Step 600.000000 MH: ato Mar Freq Offse Freq Offse Start 30.0 MHz #Res BW 1.0 MHz Start 1.000 GHz #Res BW 1.0 MHz Stop 7.000 GHz #Sweep 5.000 s (1001 pts) #VBW 3.0 MHz* 1 GHz - 7 GHz 30 MHz - 1000 MHz RL RF 50 0 AC PNO: Fast Free Run | FGaint.tow | FAtten: 20 dB RL RF 500 AC | enter Freq 16.800000000 GHz PN0: Fast | IFGainclow #Atten: 20 dB Avg Type: RMS AvgHold:>3/3 Avg Type: RMS AvgHold: 3/3 Mkr1 12.794 8 GHz -58.928 dBm Mkr1 16.416 0 GHz -55.220 dBm Ref Offset 8.28 dB Ref 10.00 dBm Ref Offset 8.28 dB Ref 10.00 dBm Center Fre 300000000 GH Center Fre Start Fre Start Free Stop Fre Stop Fre CF Step 640.000000 MH: uto Mar ϕ^1 Freq Offse Freq Offse Start 7.000 GHz #Res BW 1.0 MHz Stop 13.600 GHz #Sweep 5.000 s (1001 pts) Start 13.600 GHz #Res BW 1.0 MHz Stop 20.000 GHz #Sweep 5.000 s (1001 pts) #VBW 3.0 MHz* #VBW 3.0 MHz* 7 GHz - 13.6 GHz 13.6 GHz - 20 GHz

4.6 Frequency Stability Test

TEST APPLICABLE


- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- 2. According to FCC Part 2 Section 2.1055 (E) (2), for hand carried, battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried voltage equipment.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW 500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature;
- 2. Subject the EUT to overnight soak at -30°C;
- With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on middle channel of PCS 1900 and GSM850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at +50°C;
- 7. With the EUT, powered via nominal voltage, connected to the CMW 500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming:
- 8. Repeat the above measurements at 10°C increments from +50°C to -30°C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

- § 2.1055(a), 2.1055(d),
- § 22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

For Mobile devices operating in the 824 to 849 MHz band at a power level less than or equal to 3 Watts, the limit specified in Table C-1 is +/- 2.5 ppm.

- § 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

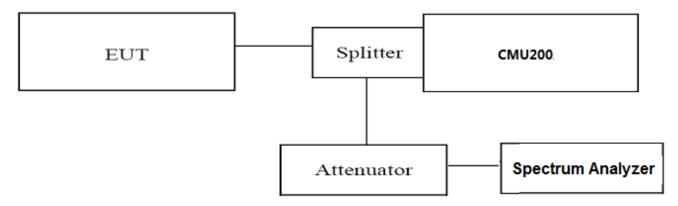
TEST RESULTS

	GSM/TM1/GSM850							
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict			
3.3	25	44	0.053	2.50	PASS			
3.7	25	50	0.061	2.50	PASS			
4.2	25	41	0.050	2.50	PASS			
3.7	-30	-41	-0.050	2.50	PASS			
3.7	-20	-34	-0.041	2.50	PASS			
3.7	-10	-19	-0.023	2.50	PASS			
3.7	0	26	0.032	2.50	PASS			
3.7	10	33	0.040	2.50	PASS			
3.7	20	1	0.001	2.50	PASS			
3.7	30	-22	-0.027	2.50	PASS			
3.7	40	-29	-0.035	2.50	PASS			
3.7	50	-34	-0.041	2.50	PASS			

GSM/TM3/EDGE850						
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict	
3.3	25	-43	-0.052	2.50	PASS	
3.7	25	18	0.022	2.50	PASS	
4.2	25	38	0.046	2.50	PASS	
3.7	-30	12	0.015	2.50	PASS	
3.7	-20	-7	-0.008	2.50	PASS	
3.7	-10	29	0.035	2.50	PASS	
3.7	0	4	0.005	2.50	PASS	
3.7	10	-9	-0.011	2.50	PASS	
3.7	20	15	0.018	2.50	PASS	
3.7	30	-14	-0.017	2.50	PASS	
3.7	40	-44	-0.053	2.50	PASS	
3.7	50	-4	-0.005	2.50	PASS	

GSM/TM1/GSM1900							
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.3	25	9	0.005	2.50	PASS		
3.7	25	35	0.019	2.50	PASS		
4.2	25	48	0.026	2.50	PASS		
3.7	-30	10	0.005	2.50	PASS		
3.7	-20	-36	-0.019	2.50	PASS		
3.7	-10	38	0.020	2.50	PASS		
3.7	0	-39	-0.021	2.50	PASS		
3.7	10	22	0.012	2.50	PASS		
3.7	20	44	0.023	2.50	PASS		
3.7	30	18	0.010	2.50	PASS		
3.7	40	-33	-0.018	2.50	PASS		
3.7	50	37	0.020	2.50	PASS		

GSM/TM3/EDGE1900							
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.3	25	44	0.023	2.50	PASS		
3.7	25	-34	-0.018	2.50	PASS		
4.2	25	35	0.019	2.50	PASS		
3.7	-30	-11	-0.006	2.50	PASS		
3.7	-20	-42	-0.022	2.50	PASS		
3.7	-10	-22	-0.012	2.50	PASS		
3.7	0	-27	-0.014	2.50	PASS		
3.7	10	-4	-0.002	2.50	PASS		
3.7	20	32	0.017	2.50	PASS		
3.7	30	20	0.011	2.50	PASS		
3.7	40	44	0.023	2.50	PASS		
3.7	50	43	0.023	2.50	PASS		


Note: The EUT is hand carried battery powered equipment.

4.7 Peak-to-Average Ratio (PAR)

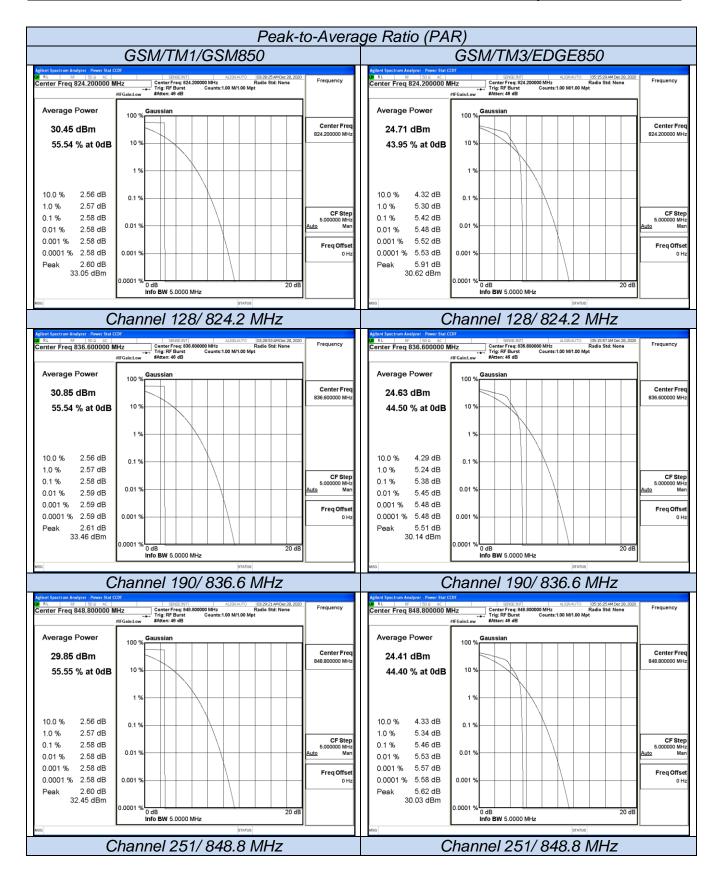
LIMIT

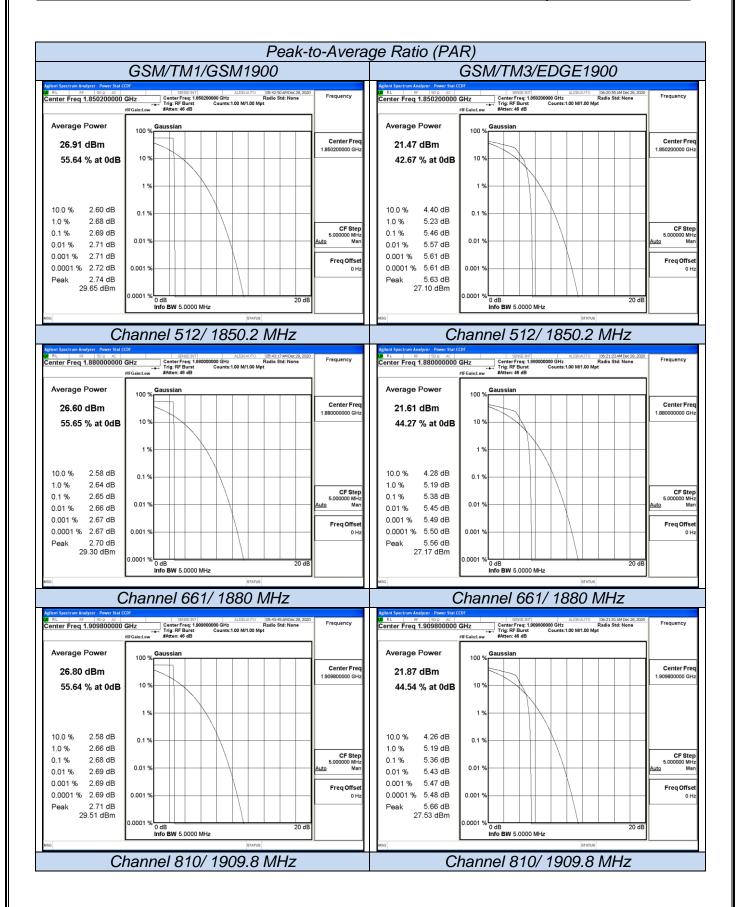
The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

Use spectrum to measure the total peak power and record as P_{Pk}. Use spectrum to measure the total average power and record as P_{Avq}. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm).


Determine the PAPR from:


PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm).

Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Test Mode	Channel	Frequency (MHz)	PAPR Value (dB)	Limits (dB)	Verdict
	128	824.2	2.58	13.0	
GSM/TM1/GSM850	190	836.6	2.58	13.0	PASS
	251	848.8	2.58	13.0	
	128	824.2	5.42	13.0	
GSM/TM3/EDGE850	190	836.6	5.38	13.0	PASS
	251	848.8	5.46	13.0	
	512	1850.2	2.69	13.0	
GSM/TM1/GSM1900	661	1880.0	2.65	13.0	PASS
	810	1909.8	2.68	13.0	
	512	1850.2	5.46	13.0	
GSM/TM3/EDGE1900	661	1880.0	5.38	13.0	PASS
	810	1909.8	5.36	13.0	

Please refer to separated files for Test Setup Photos of the EUT.

6 EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

7 INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

	Donort	
 .Ena oi	Report.	