TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC1910-0276(1)

Dt&C

- 2. Customer
 - Name (FCC) : Asterisk Inc. / Name (IC) : Asterisk Inc.
 - Address (FCC) : 5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201, Osaka, Japan 532-0011
 - Address (IC) : 5-6-16 Nishinakajima, Shin-Osaka Dainichi Bldg 201, Yodogawa-ku, Osaka 532-0011, Japan
- 3. Use of Report : FCC & IC Original Grant

4. Product Name / Model Name : COMBO Reader / ASR-X23XD

FCC ID : 2AJXE-ASR-X23XD / IC : 22976-ASRX23XD

5. Test Method Used : ANSI C63.10-2013, KDB558074 D01v05r02 Test Specification : FCC Part 15.247

RSS-247 Issue 2 (2017-02), RSS-GEN Issue 5 (2018-04)

- 6. Date of Test : 2019.10.18 ~ 2019.10.28
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

	Affirmation	Tested by	Reviewed by	RO		
		Name : JaeHyeok Bang	Name : GeunKi Son	(Signalute)		
	The test results presented in this test report are limited only to the sample supplied by applicant and					
	the use of this test report is inhibited other than its purpose. This test report shall not be reproduced					
	except in full, without the written approval of DT&C Co., Ltd.					

2019.11.19.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1910-0276	Oct. 31, 2019	Initial issue
DRTFCC1910-0276(1)	Nov. 19, 2019	Changed Product Name, Equipment type(1, 6 Page)

Table of Contents

1.General Information5
1.1 Testing Laboratory5
1.2 Details of Applicant5
1.3 Description of EUT6
1.4 Declaration by the manufacturer6
1.5 Test conditions6
1.6 Test Equipment List7
1.7 Summary of Test Results8
1.8 Conclusion of worst-case and operation mode9
2. Test Methodology10
2.1 EUT Configuration
2.2 EUT Exercise10
2.3 General Test Procedures
3. Maximum Peak Output Power Measurement
3.2 Limit
3.3 Test Procedure
3.3 Test Procedure
4. 20dBc BW & Occupied BW
4.1 Test Setup
4.2 Limit
4.3 Test Procedure
4.4 Test Results
5. Carrier Frequency Separation17
5. Carrier Frequency Separation17
5. Carrier Frequency Separation
5. Carrier Frequency Separation. 17 5.1 Test Setup 17 5.2 Limit. 17 5.3 Procedure. 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit. 18 6.3 Procedure. 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time). 19 7.1 Test Setup 19 7.2 Limit. 19
5. Carrier Frequency Separation
5. Carrier Frequency Separation. 17 5.1 Test Setup 17 5.2 Limit. 17 5.3 Procedure. 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit. 18 6.3 Procedure. 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time) 19 7.1 Test Setup 19 7.2 Limit. 19 7.3 Test Procedure 19 7.4 Test Results 19
5. Carrier Frequency Separation 17 5.1 Test Setup 17 5.2 Limit 17 5.3 Procedure 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit 18 6.3 Procedure 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time) 19 7.1 Test Setup 19 7.2 Limit 19 7.3 Test Procedure 19 7.4 Test Results 19 8. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 20
5. Carrier Frequency Separation. 17 5.1 Test Setup 17 5.2 Limit. 17 5.3 Procedure. 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit. 18 6.3 Procedure. 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time) 19 7.1 Test Setup 19 7.2 Limit. 19 7.3 Test Procedure 19 7.4 Test Results 19
5. Carrier Frequency Separation 17 5.1 Test Setup 17 5.2 Limit 17 5.3 Procedure 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit 18 6.3 Procedure 18 6.4 Test Results 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time) 19 7.1 Test Setup 19 7.2 Limit 19 7.3 Test Procedure 19 7.4 Test Results 19 7.4 Test Results 19 8. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 20 8.1 Test Setup 20 8.2 Limit 20
5. Carrier Frequency Separation
5. Carrier Frequency Separation 17 5.1 Test Setup 17 5.2 Limit 17 5.3 Procedure 17 5.4 Test Results 17 6. Number of Hopping Frequencies 18 6.1 Test Setup 18 6.2 Limit 18 6.3 Procedure 18 6.4 Test Results 18 7. Time of Occupancy (Dwell Time) 19 7.1 Test Setup 19 7.1 Test Setup 19 7.2 Limit 19 7.3 Test Procedure 19 7.4 Test Results 19 8. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission 20 8.1 Test Setup 20 8.2 Limit 20 8.3 Test Procedures 21 8.3.1 Test Procedures for Radiated Spurious Emissions 21
5. Carrier Frequency Separation

8.4.1 Radiated Emission	22
8.4.2 Conducted Spurious Emissions	23
9. Transmitter AC Power Line Conducted Emission	
9.1 Test Setup	29
9.2 Limit	
9.3 Test Procedures	
9.4. Test Results	
10. Antenna Requirement	
10.1 Procedure	
10.2 Conclusion	
APPENDIX I	33
APPENDIX II	

1.General Information

1.1 Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

- IC Test site No. : 5740A			
www.dtnc.net			
Telephone : +82-31-321-2664			
FAX	:	+ 82-31-321-1664	

1.2 Details of Applicant

Applicant	:	Asterisk Inc.
Address(FCC)	:	5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201, Osaka, Japan 532-0011
Address(IC)	:	5-6-16 Nishinakajima, Shin-Osaka Dainichi Bldg 201, Yodogawa-ku, Osaka 532- 0011, Japan
Contact person(FCC/IC)	:	Naoki Kumamoto

1.3 Description of EUT

EUT	COMBO Reader
Model Name	ASR-X23XD
Add Model Name	ASR-A230D, ASR-0230D
Serial Number	Identical prototype
Hardware version	1.0
Software version	1.0
Power Supply	DC 3.70 V
Frequency Range	917.10 ~ 926.90 MHz
Modulation Technique	ASK
Number of Channels	50(Channel Spacing: 200kHz)
Antenna Type	Internal Antenna (Max. PK -2.91 dBi)

1.4 Declaration by the manufacturer

- N/A

1.5 Test conditions

Ambient Condition			
 Temperature 	+22 °C ~ +27 °C		
 Relative Humidity 	43 % ~ 46 %		

1.6 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	19/06/26	20/06/26	MY46471251
Spectrum Analyzer	Agilent Technologies	N9020A	19/03/11	20/03/11	MY48010133
DC Power Supply	Agilent Technologies	66332A	19/06/25	20/06/25	MY43001173
Multimeter	FLUKE	17B	18/12/18	19/12/18	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	18/12/19	19/12/19	255571
Signal Generator	ANRITSU	MG3695C	18/12/10	19/12/10	173501
Thermohygrometer	BODYCOM	BJ5478	18/12/27	19/12/27	120612-1
Thermohygrometer	BODYCOM	BJ5478	18/12/27	19/12/27	120612-2
HYGROMETER	TESTO	608-H1	19/01/31	20/01/31	34862883
LOOP ANTENNA	ETS	6502	19/05/23	20/05/23	3471
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Horn Antenna	ETS-Lindgren	3117	18/05/10	20/05/10	00140394
PreAmplifier	tsj	8447D	18/12/18	19/12/18	2944A07774
PreAmplifier	tsj	8449B	19/06/27	20/06/27	3008A02108
Attenuator	SMAJK	SMAJK-50-10	19/06/27	20/06/27	2-50-10
Band Pass Filter	Wainwright Instruments	WRCA810/970-0.2/40- 6SSK	18/12/19	19/12/19	1
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	19/06/26	20/06/26	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	19/06/24	20/06/24	1
EMI Test Receiver	Rohde Schwarz	ESCI7	19/01/30	20/01/30	100910
LISN	SCHWARZBECK	NNLK 8121	19/03/19	20/03/19	06183
PULSE LIMITER	ROHDE&SCHWARZ	ESH3-Z2	19/09/17	20/09/17	101333
Cable	Raidiall	TESTPRO3	19/01/16	20/01/16	M-01
Cable	HUBER+SUHNER	SUCOFLEX 104	19/01/16	20/01/16	M-03
Cable	Junkosha	MWX315	18/11/19	19/11/19	M-05
Cable	Junkosha	MWX221	18/11/19	19/11/19	M-06
Cable	DT&C	Cable	19/01/15	20/01/15	RF-82
Network Analyzer	Agilent Technologies	E5071C	19/06/24	20/06/24	MY46106970
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	18/12/19	19/12/19	1338004 1306053
Test Software	tsj	Radiated Emission Measurement	N/A	N/A	Version 2.00.0177
Test Software	tsj	Noise Terminal Emission Measurement	N/A	N/A	Version 2.00.0170

Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017 Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

1.7 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 902-928 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= 20 dB BW, whichever is greater.		с
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 50 hops, if 20 dB BW < 250kHz >= 25 hops, if 20 dB BW >= 250kHz		С
	20 dB Bandwidth	< 500 kHz		С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt , if CHs >= 50 =< 0.25 W, if CHs >= 25, < 50 For IC if CHs >= 50 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, if CHs >= 25, < 50 =< 0.25 W For Conducted Power. =< 1 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		с
RSS Gen(6.6)	Occupied Bandwidth (99 %)	N/A		С
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits	Radiated	C ^{Note3}
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	с
15.203 RSS-Gen(8.3)	Antenna Requirements	FCC 15.203	-	с
Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.				

Note 3: This test item was performed in each axis and the worst case data was reported.

1.8 Conclusion of worst-case and operation mode

The field strength of spurious emission was measured in three orthogonal EUT positions(X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function: Enable

	TX Frequency (MHz)	RX Frequency (MHz)
Hopping Band	917.10 ~ 926.90 MHz	917.10 ~ 926.90 MHz

- Hopping Function: Disable

Channel	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	917.10	917.10
Middle Channel	921.90	921.90
Highest Channel	926.90	926.90

2. Test Methodology

Generally the tests were performed according to the ANSI C63.10-2013.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

Conducted Emissions

The power-line conducted emission tests were performed with ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

The radiated tests were performed with ANSI C63.10-2013.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

Operation test setup for EUT

- Software: RED4S Utility_v1.3.1_T3
- Power setting: 25 dBm

3. Maximum Peak Output Power Measurement

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

 §15.247(b)(2), For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

IC Requirements

1. RSS-247(5.4)(a), For FHSS operating in the band 902-928 MHz, the maximum peak conducted output power shall not exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

3.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The peak output power of the fundamental frequency was measured with the spectrum analyzer using;

Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge 20 \text{ dB BW}$ $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold

3.4 Test Results

Tested Channel	Frame Average	Output Power	Peak Output Power			
rested Channel	dBm	mW	dBm	mW		
Lowest	17.52	56.49	25.12	325.087		
Middle	17.48	55.98	24.83	304.089		
Highest	17.50	56.23	24.87	306.902		

Note 1: The frame average output power was tested using an average power meter for reference only.

Note 1: See next pages for actual measured spectrum plots.

Peak Output Power

Lowest Channel

Peak Output Power

Middle Channel

Dt&C

Peak Output Power

Highest Channel

4. 20dBc BW & Occupied BW

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.3 Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW shall be in the range of 1% to 5% of the 20 dB bandwidth and VBW ≥ 3 x RBW, Span = between two times and five times the 20 dB bandwidth.


4.4 Test Results

Frequency (MHz)	Tested Channel	20dB BW (kHz)	Occupied BW (kHz)
917.10	Lowest	81.02	81.22
921.90	Middle	81.91	82.17
926.90	Highest	81.59	81.68

Note 1: See next pages for actual measured spectrum plots.

Occupied BW

Lowest Channel

11:20:27 AM Oct 22, 2019 Radio Std: None Frequency SENSE:PUESE ALIGNAR Center Freq: 921.900000 MHz Trig: Free Run Avg|Hold:>50/50 #Atten: 40 dB #IFGain:Low Radio Device: BTS Ref Offset 9.68 dB Ref 40.00 dBm **Center Freq** 921.900000 MHz A.M. www.mar WMm الهمام n.A Center 921.9 MHz #Res BW 1 kHz Span 200 kHz Sweep 191.2 ms CF Step 20.000 kHz #VBW 3 kHz Man Auto Total Power 30.6 dBm Occupied Bandwidth 82.166 kHz Freq Offset -1.056 kHz 0 Hz 99.00 % **Transmit Freq Error OBW Power** 81.91 kHz x dB Bandwidth x dB -20.00 dB STATUS

Occupied BW

Middle Channel

Occupied BW

Highest Channel

5. Carrier Frequency Separation

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit : \geq 25 kHz or \geq 20 dB BW whichever is greater.

5.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

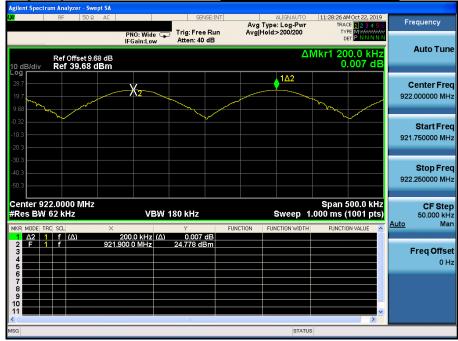
The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Detector function = peak


Sweep = auto Trace = max hold

5.4 Test Results

Hopping Mode	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (kHz)		
Enable	921.900	922.100	200		

Carrier Frequency Separation

Hopping mode : Enable

6. Number of Hopping Frequencies

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

Limit: >= 50 hops

6.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while

EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 902 ~ 928 MHz were examined.

The spectrum analyzer is set to :

Span = 20 MHzStart Frequency = 911.90 MHz,Stop Frequency = 931.90 MHzRBW = To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Detector function = peak

Sweep = auto Trace = max hold

6.4 Test Results

Hopping mode	Test Result (Total Hops)
Enable	50

Carrier Frequency Separation

Hopping mode : Enable

RF	50 Ω AC	SEN			1:48 AM Oct 22, 2019	-
	PNO: I IFGain	Fast Trig: Free	Run	: Log-Pwr	TRACE 123456 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 3	fset 9.68 dB 9.68 dBm				917.10 MHz 24.91 dBm	Auto Tur
9.68				2		Center Fre 921.900000 Mi
0.3 0.3						Start Fre 911.900000 Mi
0.3 0.3 0.3	urwayaran Aria			http://www.com/erv	Juny Margaratic Margaratic	Stop Fr 931.900000 Mi
enter 921.90 M Res BW 62 kHz		VBW 180 kHz		Sp Sweep 5.000		CF Ste 2.000000 M
KR MODE TRC SCL	× 917.10 MI		Sm .	NCTION WIDTH F		l <u>uto</u> M
2 N 1 f 3 4 5 6	926.90 MI	Hz 24.83 dE	!m		=	Freq Offs 0
7 7						
0					~	

7. Time of Occupancy (Dwell Time)

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

7.3 Test Procedure

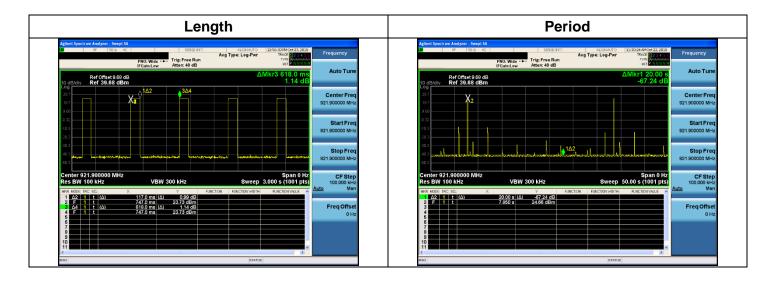
The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency = 921.9 MHz

```
Span = zero
```

RBW = 100 kHz (RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)


VBW ≥ RBW

Detector function = peak

Trace = max hold

7.4 Test Results

Channel Frequency	Length	Number	Dwell Time	
(MHz)	(ms)		(ms)	
921.9	117.0	1	117.0	

8. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

8.1 Test Setup

Refer to the APPENDIX I.

8.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

* Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

8.3 Test Procedures

8.3.1 Test Procedures for Radiated Spurious Emissions

- The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- NOTE 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- NOTE 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- NOTE 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz for Average detection (AV) at frequency above 1 GHz.

8.3.2 Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

```
Frequency range : 9 kHz ~ 30 MHz
RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001
```

Frequency range : 30 MHz ~ 10 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

8.4 Test Results

8.4.1 Radiated Emission

9kHz ~ 10GHz Data

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2751.169	Н	Z	PK	49.25	2.18	N/A	51.43	74.00	22.57
2751.307	Н	Z	AV	45.94	2.18	N/A	48.12	54.00	5.88
3668.280	Н	Y	PK	46.22	2.70	N/A	48.92	74.00	25.08
3668.483	Н	Y	AV	37.57	2.70	N/A	40.27	54.00	13.73

Middle Channel

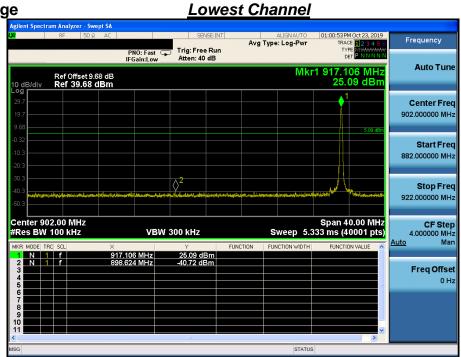
Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2765.701	Н	Z	PK	48.14	2.14	N/A	50.28	74.00	23.72
2765.703	Н	Z	AV	42.89	2.14	N/A	45.03	54.00	8.97
3687.674	Н	Y	PK	47.28	2.73	N/A	50.01	74.00	23.99
3687.594	Н	Y	AV	40.62	2.73	N/A	43.35	54.00	10.65

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode			D.C.F. (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2780.575	Н	Z	PK	49.62	2.09	N/A	51.71	74.00	22.29
2780.747	Н	Z	AV	45.92	2.09	N/A	48.01	54.00	5.99
3707.774	Н	Y	PK	45.95	2.76	N/A	48.71	74.00	25.29
3707.596	Н	Y	AV	39.06	2.76	N/A	41.82	54.00	12.18

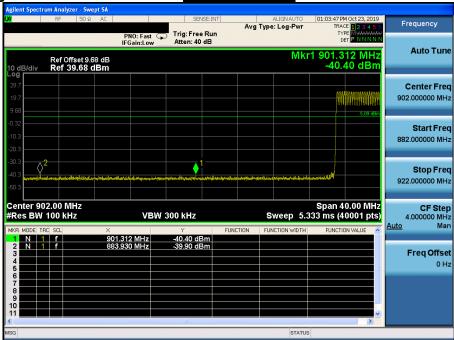
Note.

1. No other spurious and harmonic emissions were reported greater than listed emissions above table.


2. Above listed point data is the worst case data.

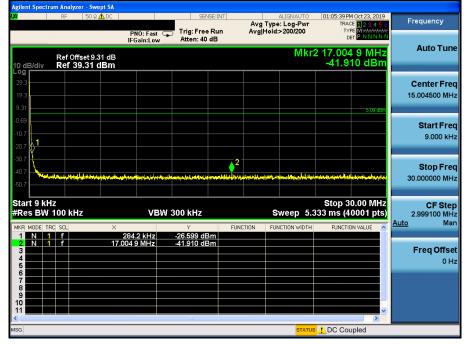
3. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCF = Duty Cycle Correction Factor


8.4.2 Conducted Spurious Emissions

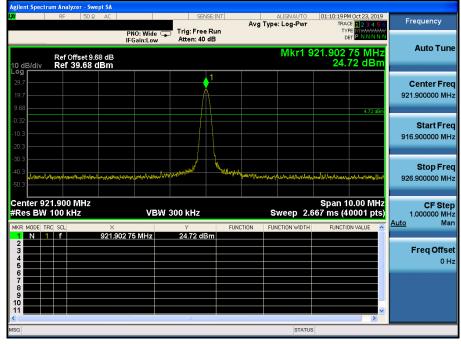
Low Band-edge

Low Band-edge


Hopping mode

Conducted Spurious Emissions

Lowest Channel



	RF	50 Ω	AC			SEI	VSE:INT			ALIGNAUTO		M Oct 23, 2019		
				PNO: Fast	Ģ	Trig: Free Atten: 40			Avg Ty	pe: Log-Pwr	TRA TY			requency
) dB/div		ffset 10.7 1 0.76 d		IFGall:LU	M	Access 40				М		.32 MHz 96 dBm		Auto Tun
29 0.8 0.8 0.8	 ↓											5.09 dBm		Center Fre 5000000 GH
24								3				5.08 dbm	3	Start Fre 0.000000 M⊦
9.2 9.2 9.2													10.00	Stop Fre 0000000 G⊦
tart 30 N Res BW	1.0 MI	Iz		VE	SW 3	.0 MHz				Sweep 18	.67 ms (4		99 Auto	CF Ste 7.000000 MH Ma
KR MODE TR	f		× 92 3.16	0.32 MHz 7 56 GHz		Y 25.96 dl -25.16 dl	Зm	UNCTIO	IN F	FUNCTION WIDTH	FUNCT	ON VALUE		
3 N 1 4	f		5.95	0 19 GHz		-25.92 di	3m					=		Freq Offs 0 H
6 7 8 9														
0												~		
1														

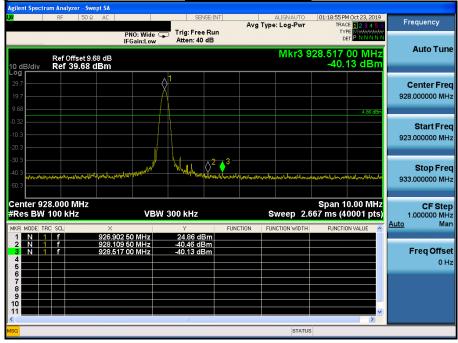
Dt&C

Reference for limit

Middle Channel

Conducted Spurious Emissions

Middle Channel


gnem spect	rum Analyzer RF	- Swept SA 50 Ω 🖪 DC								
	RF	50 S 🕂 DC			SE:INT	Avg Type	LIGNAUTO	TRAC	Oct 23, 2019 E 1 2 3 4 5 6	Frequency
0 dB/div	Ref Offse Ref 39.3	t 9.31 dB 3 1 dBm	PNO: Fast IFGain:Low	Atten: 40				Mkr1 28	1.9 kHz 6 dBm	Auto Tur
og 29.3 19.3 9.31									4.72 dBm	Center Fre 15.004500 Mi
10.7 20.7									-4.7.2. (ID)	Start Fre 9.000 kł
80.7 10.7	hterakler a Place (her i jal	a judijka Milandhan jug	udiothanilathainen	k.aasahidha walaasa kunoo soko ta	Kyrichanezow (AMPROMA	hallan yer sariadif ^a n	aliter and a state of the	engesantelesente	2 halyoolaathaanna	Stop Fre 30.000000 Mi
tart 9 kH Res BW	100 kHz	×	VB	W 300 kHz Y	FUNCI		weep 5.3	Stop 30 333 ms (40 FUNCTIO		CF St 2.999100 M <u>Auto</u> M
1 N 7 2 N 7 3 4 5 5 6		27.1	281.9 kHz 147 1 MHz	-25.26 dB -40.78 dB	m m					Freq Offs 0
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9										
i <mark>G</mark>							STATUS	LDC Cou	pled	

Agilent Spectr											
L <mark>XI</mark>	RF	50 Ω A	AC			SE:INT	Avg Ty	ALIGNAUTO pe: Log-Pwr	TRAC	4 Oct 23, 2019 E 1 2 3 4 5 6 E M WWWWWW	Frequency
				: Fast 🖵 in:Low	Trig: Free Atten: 40				DI		
10 dB/div		set 10.76 0 .76 dB						MI		07 MHz 88 dBm	Auto Tune
Log 30.8	<u>1</u>										Center Freq
20.8											5.015000000 GHz
10.8 0.760										4.72 dBm	
-9.24											Start Freq 30.000000 MHz
-19.2				<mark>3</mark>						<mark>2</mark>	30.000000 MHz
-29.2											Stop Freq
-39.2 -49.2											10.00000000 GHz
Start 30 N									Oten 40	.000 GHz	
#Res BW		z		VBW 3	3.0 MHz			Sweep 18			CF Step 997.000000 MHz
MKR MODE TF	C SCL		× 922.07 N	41.1-	Y 25.88 dE		ICTION F	UNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2 N 1			9.461 37 (3.151 11 (GHz	-24.97 dE -25.00 dE	m					FreqOffset
4			0.101 11 0		-20.00 aL						0 Hz
6											
8											
10										~	
< NSG					1111			STATUS	3	>	

High Band-edge

🛈 Dt&C

Highest Channel

High Band-edge Hopping mode ent S/ 01:2 Frequency Avg Type: Log-Pwr PNO: Wide Trig: Free Run IFGain:Low Atten: 40 dB TYPE DE1 Auto Tune Mkr1 928.694 50 MH: -41.73 dBn Ref Offset 9.68 dB Ref 39.68 dBm Center Freq 928.000000 MHz Start Freq 923.000000 MHz $\diamond^2 \phi$ Stop Freq Mohlin 933.000000 MHz Center 928.000 MHz #Res BW 100 kHz Span 10.00 MHz Sweep 2.667 ms (40001 pts) CF Step 1.000000 MHz Man VBW 300 kHz Auto 928.694 50 MHz 928.228 50 MHz -41.73 dBm -41.40 dBm N 1 f N 1 f Freq Offset 0 Hz

Conducted Spurious Emissions

Highest Channel

Agilent Spectrum Analyzer - Swept SA			
🕅 RF 50 Ω 🧥 DC	SENSE:INT		IBACE D 2 4 5 6 Frequency
	PNO: Fast 🕠 Trig: Free Run	Avg Type: Log-Pwr	TRACE 123456 TYPE MWWWW DET P.N.N.N.N.N
	IFGain:Low Atten: 40 dB		
		Mkr	1 281.9 kHz Auto Tune
Ref Offset 9.31 dB 10 dB/div Ref 39.31 dBm			-24.51 dBm
Log			
29.3			Center Fred
19.3			15.004500 MHz
9.31			4.86 dBm
-0.69			
			Start Fred
-10.7			9.000 kHz
-20.7			
-30.7			
-40.7	والمعادية والمعادية والمعادية والمعادية والمعادية المعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية		Stop Fred
-50.7			30.000000 MHz
Start 9 kHz			op 30.00 MHz CF Step
#Res BW 100 kHz	VBW 300 kHz	Sweep 5.333 n	ns (40001 pts) 2.999100 MHz
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	UNCTION VALUE A Auto Mar
1 N 1 f	281.9 kHz -24.51 dBm		
2 N 1 f 2.3	78 3 MHz -41.53 dBm		Freq Offse
4			0 Hz
5			
7			
8			
10			
11			×
		STATUS 🟌 D	
MSG			Coupled

Agilent Spectr	um Analy	zer - Swep	t SA											
LXI	RF	50 Ω	AC		_	SEN	SE:INT	0	ALIGN			4 Oct 23, 2019		Frequency
				PNO: Fast IFGain:Low		「rig: Free Atten: 40		Avg	Type: Log	g-Pwr	TY	E 12345 E M UMME P NNNN		
10 dB/div		ffset 10.7 10.76 dl								Mk		56 MHz 77 dBm		Auto Tune
Log 30.8 20.8 10.8												4.86 dBn	5	Center Freq .015000000 GHz
0.760 -9.24 -19.2				<mark>2</mark>				3						Start Freq 30.000000 MHz
-29.2 -39.2 -49.2													10	Stop Freq .000000000 GHz
Start 30 N #Res BW		Hz		VB	W 3.0	MHz			Swee	p 18.	Stop 10 67 ms (4	.000 GHz 0001 pts		CF Step 997.000000 MHz
MKR MODE TF	f			5.56 MHz		Ƴ 25.77 dE	m	JNCTION	FUNCTION	I WIDTH	FUNCTIO	IN VALUE	Aut	<u>o</u> Man
2 N 1 3 N 1 4	f		3.14 5.99	4 63 GHz 4 30 GHz		23.80 dE 25.92 dE	m m							Freq Offset 0 Hz
6 7 8 9														
												×		
MSG										STATUS				

9. Transmitter AC Power Line Conducted Emission

9.1 Test Setup

See test photo graphs for the actual connections between EUT and support equipment.

9.2 Limit

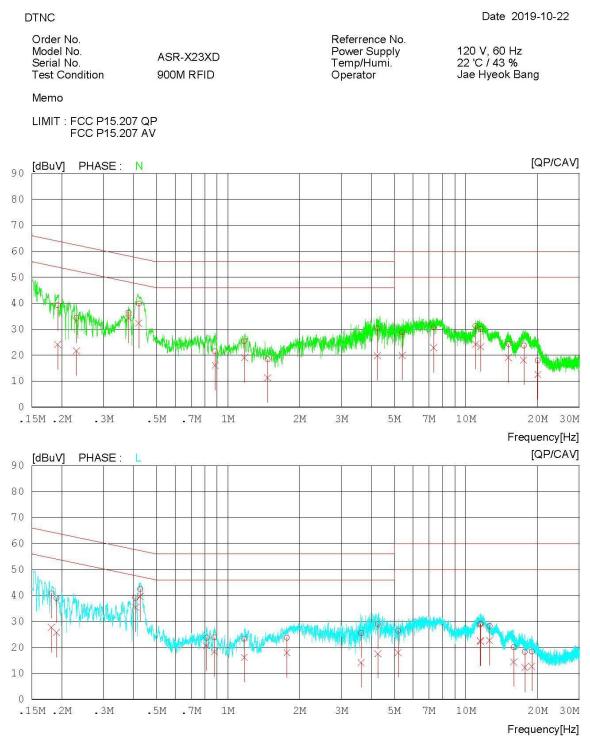
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

9.3 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

9.4. Test Results

AC Line Conducted Emissions (Graph)

Results of Conducted Emission

AC Line Conducted Emissions (List)

Results of Conducted Emission

Referrence No.

Power Supply Temp/Humi. Operator Date 2019-10-22

120 V, 60 Hz 22 'C / 43 %J ae Hyeok Bang

Order No.	
Model No.	ASR-X23XD
Serial No.	
Test Condition	900M RFID

Memo

DTNC

LIMIT : FCC P15.207 QP FCC P15.207 AV

N) FREQ [MHz]	READING QP CAV [dBuV] [dBuV	C.FACTOR] [dB]	QP CAV	~	CAV	MARGIN QP CAV [dBuV][dBu'	PHASE V]
1 2 3 4 5 6 7 8 9 10 112 13 14 5 6 7 8 9 10 112 13 14 5 16 7 17 18 9 20 22 22 22 4	[MHz] 0.19255 0.23100 0.38316 0.42233 0.88384 1.17360 1.47060 4.25300 5.39880 7.32080 0.98900 11.54040 15.11040 15.11040 15.11040 17.52960 20.07800 0.18160 0.19050 0.40900 0.42782 0.42790 0.81351 0.87699	QP CAV [dBuV] [dBuV 29.23 14.18 24.38 11.75 26.43 24.37 29.90 22.36 11.47 6.11 15.39 9.09 8.37 1.32 20.25 9.72 18.54 9.74 20.41 12.63 20.95 13.89 19.64 12.87 13.18 7.58 7.36 1.97 30.81 17.70 29.05 15.91 29.07 25.45 32.52 29.71 32.48 29.64 13.79 10.67 13.82 8.36 13.39 6.20	[dB] 9.94 9.94 9.95 9.95 9.97 9.99 9.99 10.13 10.18 10.24 10.37 10.39 10.49 10.53 10.55 9.94 9.95 9.95 9.95	QP CAV	QP [dBuV] 63.93 62.41 58.21 57.40 56.00 56.00 56.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 57.29 57.29 57.29 57.29 57.29 57.29 56.00 56.00 56.00 56.00	CAV] [dBuV 53.93 52.41 48.21 47.40 46.00 46.00 46.00 50.00 50.00 50.00 50.00	QP CAV	
24 25 26 27 28 29 30 31 32 33	3.63000 4.26860 5.19460 11.48240 11.54100	15.42 3.98	10.02 10.09 10.13 10.16 10.38 10.38 10.41 10.47 10.50 10.52	25.5114.07 28.9117.67 26.4118.02 28.8422.47 29.2122.37 28.2622.67 20.0614.37 18.2912.25 18.3012.77	56.00 56.00 60.00 60.00 60.00 60.00 60.00 60.00	46.00 46.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	30.4931.93 27.0928.33 33.5931.98 31.1627.53 30.7927.63 31.7427.33 39.9435.63 41.7137.75 41.7037.23	
00								0,000

10. Antenna Requirement

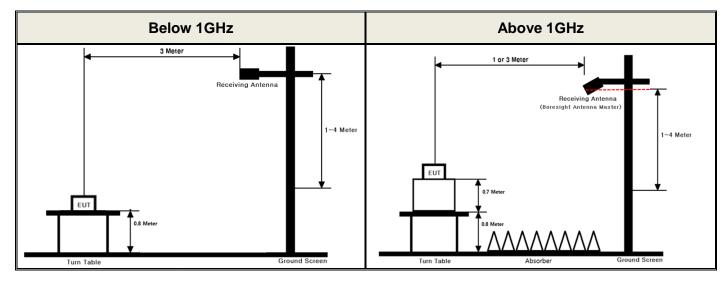
10.1 Procedure

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

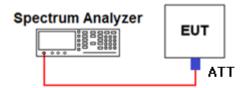
10.2 Conclusion

: Comply

The antenna is permanently attached. (Refer to Internal Photo file.) Therefore this EUT complies with the requirement of §15.203.


Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (MHz)	Path Loss (dB)	Frequency (MHz)	Path Loss (dB)
30	9.31	1000	10.09
500	9.61	5500	10.76
902.75 & 914.75 & 927.25	9.68	10000	10.76
-	-	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Attenuator

APPENDIX II

Unwanted Emissions (Radiated) Test Plot

Lowest & Z & Hor

Detector Mode : AV

