

TEST REPORT

FCC ID: NMTSMS002

Product: Remote control

Model No.: SMS606-R

Additional Model: N/A

Trade Mark: N/A

Report No.: TCT171208E013

Issued Date: November 22, 2017

Issued for:

IDT Technology Limited

Block C, 9/F, Kaiser Estate, Phase 1, 41 Man Yue Street, Hung Hom, Kowloon,

Hongkong,china

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China


TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1.	Test Certification					3
2.	Test Result Summary	(0)		(0)		4
3.	EUT Description					
4.	Genera Information					
	4.1. TEST ENVIRONMENT AND MODE					
	4.2. DESCRIPTION OF SUPPORT UNITS					6
5.	Facilities and Accreditation	s		<u>(,c)</u>		7
	5.1. FACILITIES					7
	5.2. LOCATION					7
	5.3. MEASUREMENT UNCERTAINTY		<u>(C)</u>		<u>(O)</u>	7
6.	Test Results and Measurem	ent Data				8
	6.1. ANTENNA REQUIREMENT					8
	6.2. CONDUCTED EMISSION	(0)		<u>(O)</u>		9
	6.3. RADIATED EMISSION MEASUREMENT					13
	6.4. 20DB OCCUPIED BANDWIDTH					
7.	Appendix A: Photographs o	of Test Set	:up		<u>(C)</u>	25
8.	Appendix B: Photographs o					

1. Test Certification

Product:	Remote control
Model No.:	SMS606-R
Additional Model:	N/A
Trade Mark:	N/A (S) (S)
Applicant:	IDT Technology Limited
Address:	Block C, 9/F, Kaiser Estate, Phase 1, 41 Man Yue Street, Hung Hom, Kowloon, Hongkong, china
Manufacturer:	Shenzhen Zhong ke Heng Wei Electronic Technology Co., Ltd.
Address:	Taihe Road, Pingshan Town, Longgang District, Shenzhen, 44
Date of Test:	November 01, 2017 to November 20, 2017
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.249

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Garen

Date: Nov. 22, 2017

Reviewed By:

Joe Zhou

Joe Zhou

Date: Nov. 22, 2017

Date: Nov. 22, 2017

Tomsin

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§2.1053 §15.249 (a) (d)/ §15.209	PASS
Band Edge	§2.1053 §15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§2.1049 §15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Remote control
Model No.:	SMS606-R
Additional Model:	N/A
Trade Mark:	N/A
Operation Frequency:	2420MHz - 2478MHz
Number of Channel:	5
Modulation Technology:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	-6.93dBi
Power Supply:	Li-Polymer Battery: JT602530P Voltage: 3.7V Capacity: 400mAh Limited Charge Voltage: 4.2V

Operation Frequency Each of Channel

Channel	Eroguopov
Channel	Frequency
1	2420MHz
2	2435MHz
3	2450MHz
4	2465MHz
5	2478MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2420MHz
The middle channel	2450MHz
The Highest channel	2478MHz

4. Genera Information

4.1. Test Environment and Mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Equipment Mfr/Brand		Series No.	Note
1	Adapter	lephone	CSGN-LP5V1000-3C-W	1	/
2	USB port	1m USB cable, unshielded	/	/	/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 of 33

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2.Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

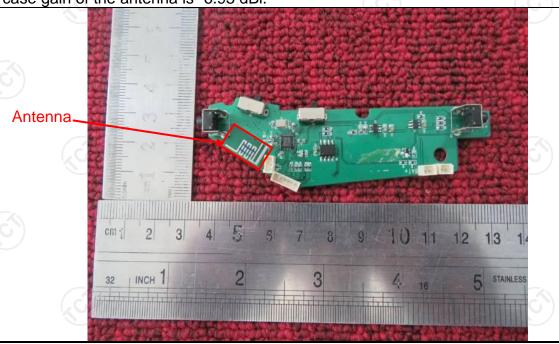
5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Item	MU
Conducted Emission	±2.56dB
RF power, conducted	±0.12dB
Spurious emissions, conducted	±0.11dB
All emissions, radiated(<1GHz)	±3.92dB
All emissions, radiated(>1GHz)	±4.28dB
Temperature	±0.1°C
Humidity	±1.0%
	Conducted Emission RF power, conducted Spurious emissions, conducted All emissions, radiated(<1GHz) All emissions, radiated(>1GHz) Temperature

6. Test Results and Measurement Data

6.1. Antenna Requirement


Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

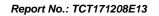
E.U.T Antenna:

The EUT antenna is an integral antenna which permanently attached, and the best case gain of the antenna is -6.93 dBi.

6.2.Conducted Emission

6.2.1. Test Specification

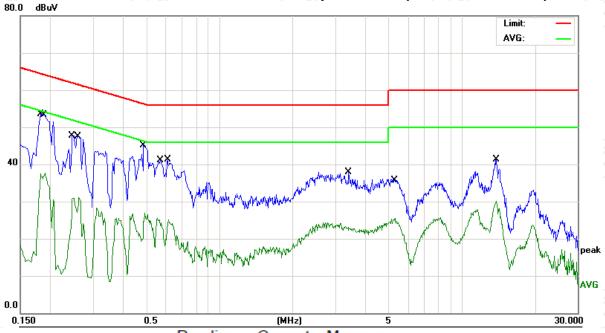
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (compared to the compared to the compare	dBuV) Average 56 to 46* 46 50		
Test Setup:	E.U.T Test table/Insulation plan	80cm LISN Filte	er — AC power		
To at Manda	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	Network			
Test Mode: Test Procedure:	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization	h modulation ulators are conne e impedance stab ovides a 50ohm neasuring equipme ces are also conne ISN that provides e with 50ohm term diagram of the line are checke nce. In order to fine e positions of equi s must be change	pilization network of 1/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum and the maximum ipment and all of ged according to		



6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Calibration Due				
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018	
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018	
Coax cable (9KHz-30MHz)	тст	TCT CE-05 N/A Se		Sep. 27, 2018	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

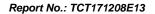
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.2.3. Test data

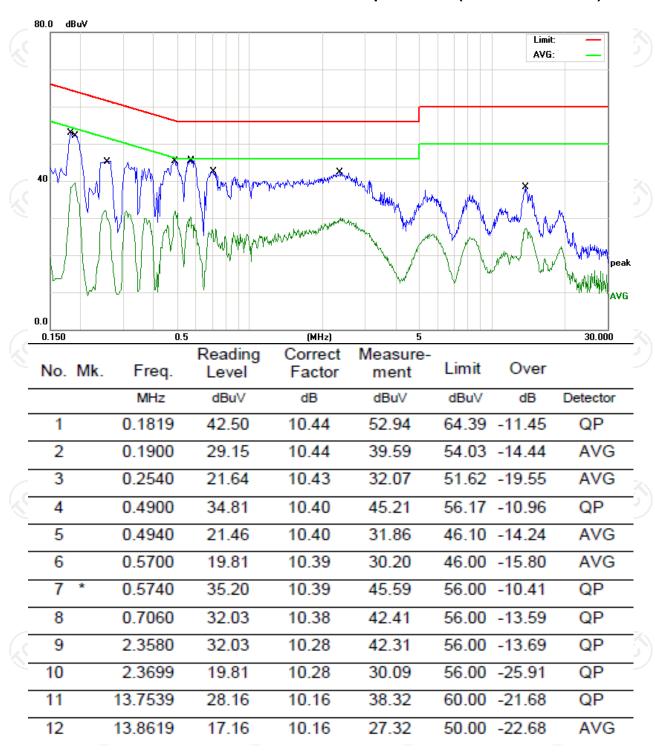
Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
	1	*	0.1819	43.11	10.44	53.55	64.39	-10.84	QP
-	2		0.1900	27.17	10.44	37.61	54.03	-16.42	AVG
_	3		0.2460	37.28	10.43	47.71	61.89	-14.18	QP
•)-	4		0.2620	20.72	10.43	31.15	51.36	-20.21	AVG
	5		0.4860	34.62	10.40	45.02	56.24	-11.22	QP
	6		0.4900	16.41	10.40	26.81	46.17	-19.36	AVG
	7		0.5660	14.68	10.39	25.07	46.00	-20.93	AVG
	8		0.6100	30.88	10.39	41.27	56.00	-14.73	QP
-	9		3.4020	27.63	10.26	37.89	56.00	-18.11	QP
\	10		5.2940	15.30	10.23	25.53	50.00	-24.47	AVG
)-	11		13.8860	31.21	10.16	41.37	60.00	-18.63	QP
_	12		13.8860	19.96	10.16	30.12	50.00	-19.88	AVG


Notes:

^{1 .} An initial pre-scan was performed on the line and neutral lines with peak detector.

^{2.} Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.


^{3.} Final Level = Receiver Read level + LISN Factor + Cable Loss

^{4.} If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

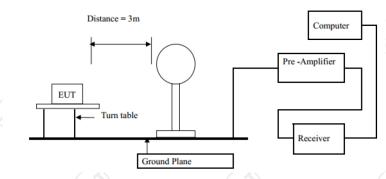
Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

6.3. Radiated Emission Measurement

6.3.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.209/ Part 2 J Section 2.1053					
Test Method:	ANSI C63.10:2013					
Frequency Range:	9 kHz to 25 GHz					
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal 8	& Vertical		$(C_{\mathcal{O}})$	ŔĊ	
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peak		30kHz	Quasi-peak Value	
	30MHz-1GHz Above 1GHz	Quasi-peak Peak	120kHz 1MHz	300kHz 3MHz	Quasi-peak Value Peak Value	
		Peak	1MHz	10Hz	Average Value	
Limit(Field strength of the	Freque	ency	Limit (dBu\	//m @3m)	Remark	
fundamental signal):	2400MHz-24	183 5MHz	94.	00	Average Value	
rundamentai signai).	2400WII 12 2	100.0WI 12	114.00		Peak Value	
	Freque	ency	Limit (dBuV/m @3m)		Remark	
	0.009-0.490		2400/F(KHz)		Quasi-peak Value	
	0.490-1.705		24000/F(KHz)		Quasi-peak Value	
	1.705-30		30		Quasi-peak Value	
Limit/Churiaua Emissiana).	30MHz-88MHz		40.0		Quasi-peak Value	
Limit(Spurious Emissions):	88MHz-216MHz		43.5		Quasi-peak Value	
	216MHz-960MHz		46.0		Quasi-peak Value	
	960MHz-1GHz		54.0		Quasi-peak Value	
	Above 1GHz		54.0		Average Value	
			74.0		Peak Value	
Limit (band edge) :	bands, exce least 50 dB general rac whichever is	ept for har below the diated em s the lesse	monics, so level of the lission liner attenua	shall be a he funda nits in S tion.	cified frequency attenuated by at mental or to the Section 15.209,	
Test Procedure:	meters a below 1 1GHz. determing 2. The Elementer on the to meters a second control of the control of the anteres a second control of the con	above the IGHz, 1.5 The table he the posure was ence-received by of a varence the eabove the	ground a m above was ro ition of the set 3 n ving anter iable-heig t is varied ground to	at a 3 me the greated 3 e highest neters anna, which the determined from or determined from the determined from the determined from or determined from or determined from the determined fr	away from the ch was mounted	

Test setup:

- vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

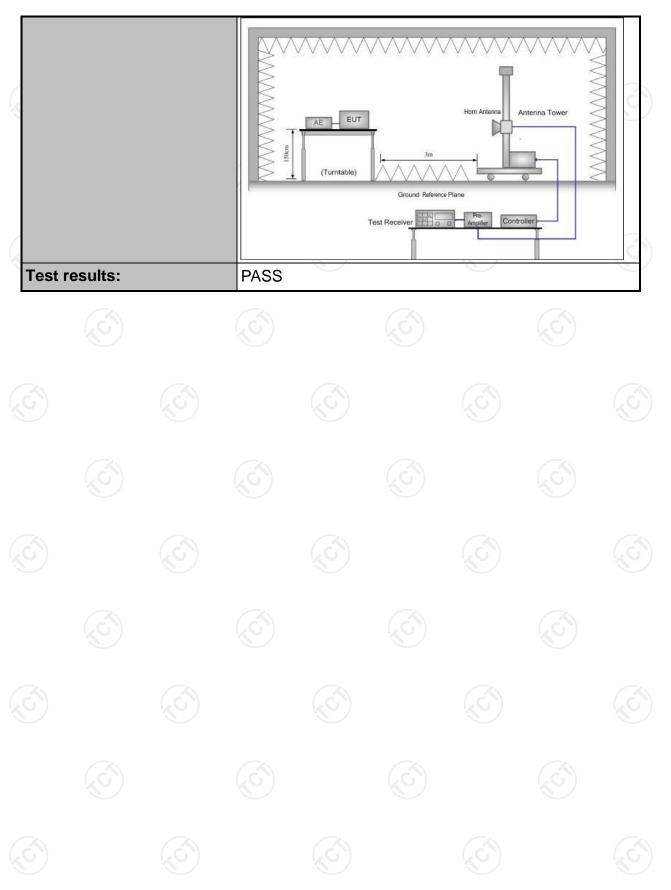
For radiated emissions below 30MHz

30MHz to 1GHz

Antenna Tower

Search
Antenna

RF Test
Receiver


Tum
Table

Ground Plane

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018			
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018			
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018			
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018			
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018			
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018			
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018			
Antenna Mast	Keleto	CC-A-4M	N/A	N/A			
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018			
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018			
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018			
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

Field Strength of Fundamental

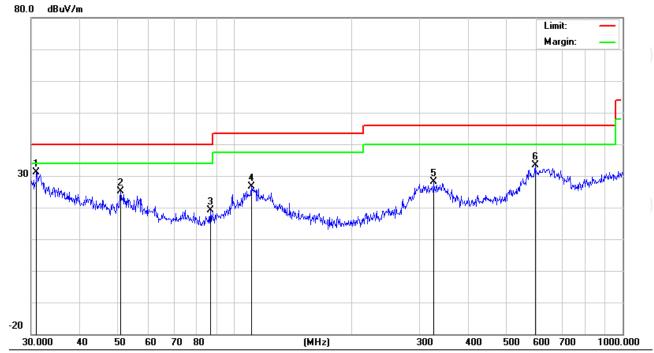
Frequency (MHz)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Limits PK/AV (dBuV/m)	Margin (dB)
2420	95.14	Н	114	-18.86
2420	90.40	H C	94	-3.6
2450	93.08	Н	114	-20.92
2450	91.04	Н	94	-2.96
2478	94.89	(C)H	114	-19.11
2478	92.23	Н	94	-1.77
2420	95.68	V	114	-18.32
2420	91.25	V	94	-2.75
2450	93.24	V	114	-20.76
2450	92.59	V	94	-1.41
2478	93.74	V	114	-20.26
2478	90.15	V	94	-3.85

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)		
(3)	,			
	CI			
(,G) -	(6) (6)	-(,c^)		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

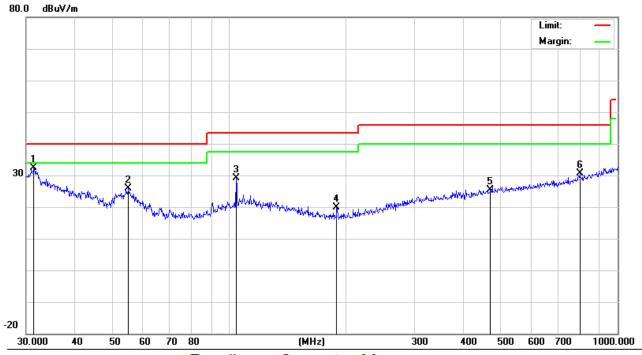

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Page 17 of 33

Frequency Range (30MHz-1GHz)

Horizontal:

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
	1	*	30.9619	26.80	4.43	31.23	40.00	-8.77	QP
	2		50.9420	30.20	-5.13	25.07	40.00	-14.93	QP
	3		86.8068	25.57	-6.32	19.25	40.00	-20.75	QP
	4		110.5687	28.67	-1.92	26.75	43.50	-16.75	QP
_	5	(326.7395	30.24	-2.05	28.19	46.00	-17.81	QP
_	6	ļ	595.1329	32.62	0.88	33.50	46.00	-12.50	QP



Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1	*	31.3992	28.06	4.26	32.32	40.00	-7.68	QP
2		55.0274	31.56	-5.62	25.94	40.00	-14.06	QP
3		104.1701	32.22	-3.01	29.21	43.50	-14.29	QP
4		189.0743	27.10	-7.18	19.92	43.50	-23.58	QP
5		470.5232	25.41	0.09	25.50	46.00	-20.50	QP
6		798.9797	26.51	4.08	30.59	46.00	-15.41	QP

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (low channel) was submitted only.

Page 19 of 33

Above 1GHz

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
(C)		(C)	_ow Channel	-2420MHz		((0))	
4840	57.82	-1.29	56.53	74	-17.47	Ŧ	PK
4840	40.87	-1.29	39.58	54	-14.42	Н	AV
7260	47.69	6.51	54.20	74	-19.80	Н	PK
7260	31.35	6.51	37.86	54	-16.14	Н	AV
4840	58.71	-1.29	57.42	74	-16.58	V	PK
4840	40.65	-1.29	39.36	54	-14.64	(CV)	AV
7260	44.47	6.51	50.98	74	-23.02	V	PK
7260	31.56	6.51	38.07	54	-15.93	V	AV
	(.ci)	M	iddle Channe	el-2450MHz	(.ci)		(.c.)
4900	61.91	-0.98	60.93	74	-13.07	Н	PK
4900	43.43	-0.98	42.45	54	-11.55	Н	AV
7350	42.75	6.83	49.58	74	-24.42	H	PK
7350	30.12	6.83	36.95	54	-17.05	(AH)	AV
4900	56.91	-0.98	55.93	74	-18.07	V	PK
4900	43.80	-0.98	42.82	54	-11.18	V	AV
7350	44.92	6.83	51.75	74	-22.25	V	PK
7350	33.08	6.83	39.91	54	-14.09	V	AV
		H	ligh Channe	-2478MHz			
4956	57.24	-0.8	56.44	74	-17.56	H	PK
4956	42.58	-0.8	41.78	54	-12.22	Н	AV
7434	45.80	6.94	52.74	74	-21.26	Н	PK
7434	29.20	6.94	36.14	54	-17.86	Н	AV
4956	59.08	-0.8	58.28	74	-15.72	V	PK
4956	44.33	-0.8	43.53	54	-10.47	V	AV
7434	46.33	6.94	53.27	74	-20.73	V	PK
7434	31.35	6.94	38.29	54	-15.71	V	AV

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Band Edge Requirement

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
Low Channel-2420MHz							•
2390	66.08	-8.73	57.35	74	-16.65	Н	PK
2390	48.06	-8.73	39.33	54	-14.67	Н	AV
2390	68.11	-8.73	59.38	74	-14.62	V	PK
2390	46.92	-8.73	38.19	54	-15.81	V	AV
		Н	igh Channel-	2478MHz			_
2483.5	68.85	-8.17	60.68	74	-13.32	Ĥ	PK
2483.5	46.10	-8.17	37.93	54	-16.07	Н	AV
2483.5	67.30	-8.17	59.13	74	-14.87	V	PK
2483.5	47.60	-8.17	39.43	54	-14.57	V	AV

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

6.4.20dB Occupied Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)/ Part 2 J Section 2.1049
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

6.4.2. Test Instruments

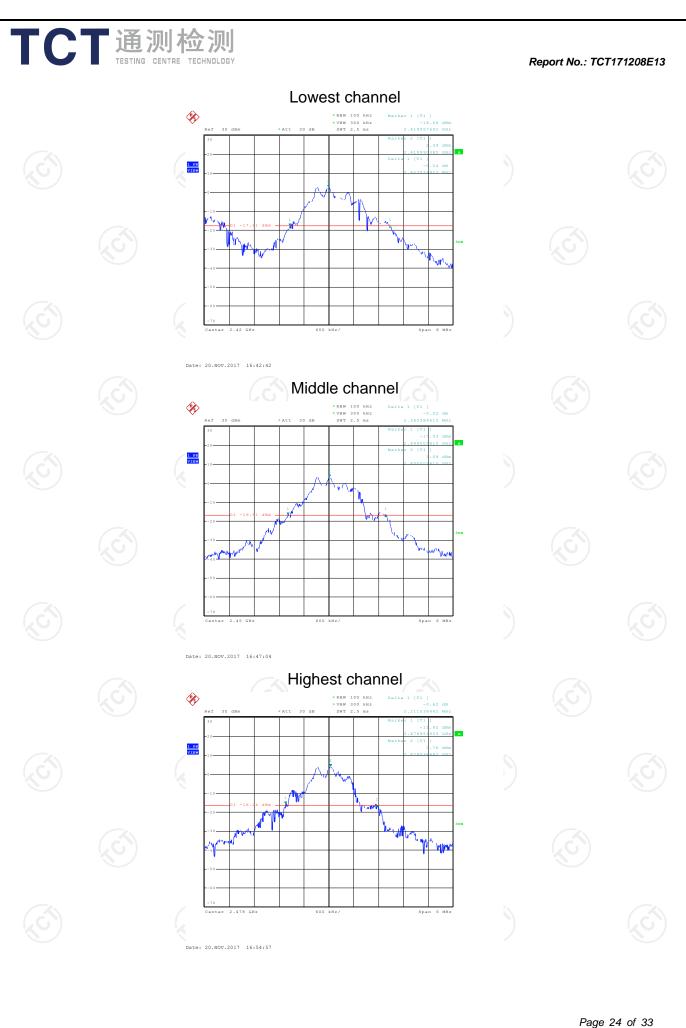
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSU	200054	Oct. 13, 2018	

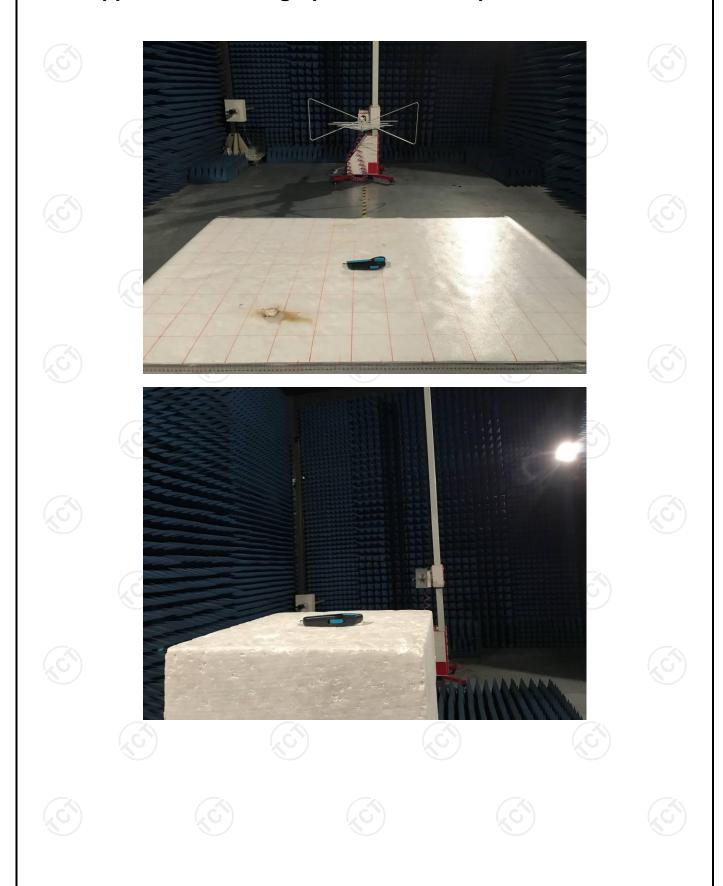
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

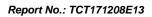
6.4.3. Test data

Test Channel	20dB Occupy Bandwidth (kHz)	Conclusion
Lowest	2423	PASS
Middle	2365	PASS
Highest	2212	PASS

Test plots as follows:



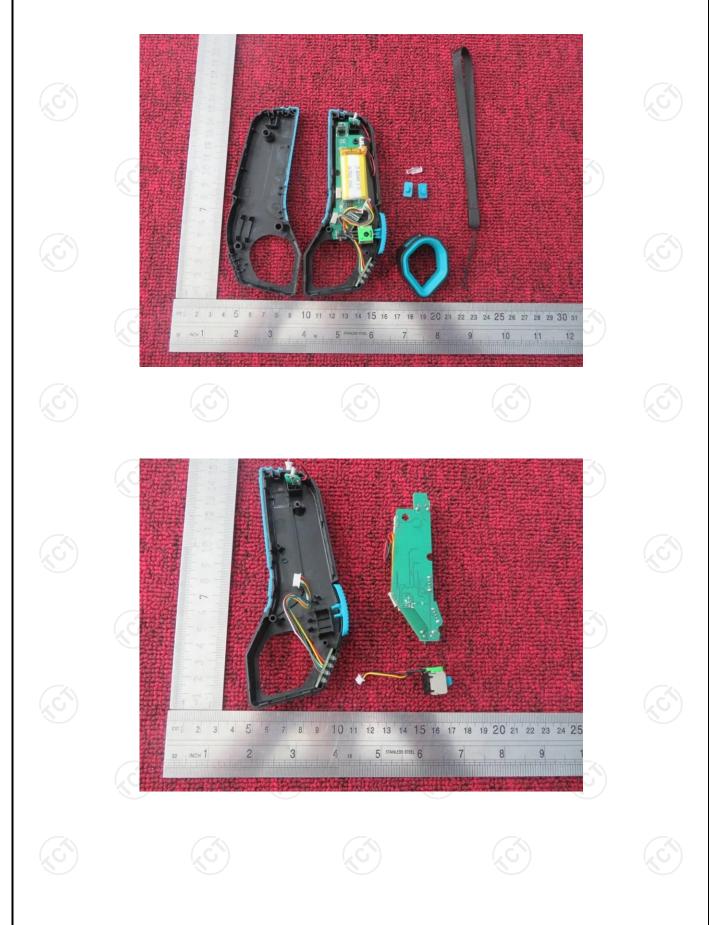


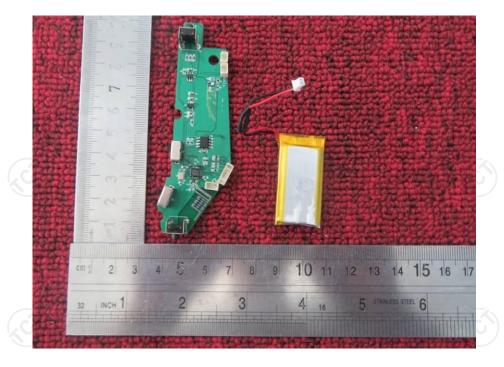


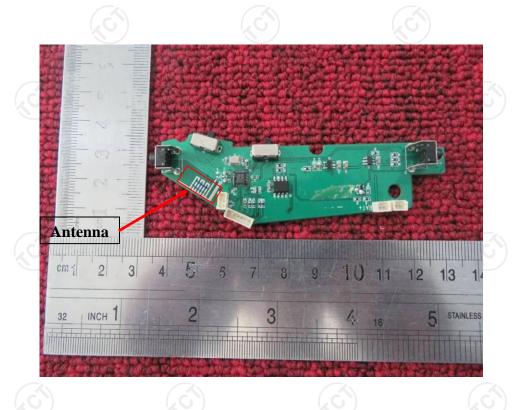
7. Appendix A: Photographs of Test Setup

8. Appendix B: Photographs of EUT

Page 27 of 33







*****END OF REPORT****