

TEST REPORT

Applicant Name: Address: Report Number: FCC ID: IC: YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. No.666 Hu'an Rd,Huli District Xiamen City, Fujian, P.R. China 2401W50954E-RFB T2C-ROOMPANELE2 10741A-ROOMPANELE2

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type:	Room Scheduling Panel
Model No.:	RoomPanel E2
Multiple Model(s) No.:	N/A
Trade Mark:	Yealink
Date Received:	2024/08/08
Issue Date:	2024/09/25

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Gala Lin

Gala Liu RF Engineer

Approved By:

Janas Wang

Nancy Wang RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF010

Page 1 of 93

Version 3.0

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
OBJECTIVE	-
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications	
EUT Exercise Software	
DUTY CYCLE	
Support Equipment List and Details External I/O Cable	
EXTERNAL I/O CABLE Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	13
FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION	15
APPLICABLE STANDARD	15
Result	16
RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVAL	
APPLICABLE STANDARD	
Result	17
§15.203 & RSS-GEN §6.8 ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
§15.207 (A) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS	21
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
FACTOR & OVER LIMIT CALCULATION	
TEST DATA	
§15.205, §15.209, §15.247(D) & RSS-GEN § 8.10 & RSS-247 § 5.5 SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure Factor & Over Limit/Margin Calculation	
TEST DATA	

TR-EM-RF010

Bay Area Compliance Laboratories Corp. (Shenzhen)

§15.247 (A)(2) & RSS-GEN§6.7 & RSS-247 § 5.2 (A) 99% OCCUPIED BANDWIDTH & 6 DB E BANDWIDTH	
Applicable Standard Test Procedure	
TEST DATA	
§15.247(B)(3) & RSS-247 § 5.4(D) MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure Test Data	
§15.247(D) & RSS-247 § 5.5 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
§15.247(E) & RSS-247 § 5.2 (B) POWER SPECTRAL DENSITY	
Applicable Standard Test Procedure	
TEST PROCEDURE	
EUT PHOTOGRAPHS	
TEST SETUP PHOTOGRAPHS	59
APPENDIX – BLE	60
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Appendix D: Maximum power spectral density	
APPENDIX D. MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX F: DUTY CYCLE	
APPENDIX – 2.4G WI-FI	70
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Appendix D: Maximum power spectral density	
APPENDIX E: BAND EDGE MEASUREMENTS	
Appendix F: Duty Cycle	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	2401W50954E-RFB	Original Report	2024/09/25

TR-EM-RF010

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	RoomPanel E2	
FVIN	RoomPanel E2	
Product	Room Scheduling Panel	
Tested Model	RoomPanel E2	
Multiple Model(s)	N/A	
Frequency Range	BLE: 2402-2480MHz Wi-Fi: 2412-2462MHz	
Maximum Conducted Peak Output Power	BLE: 5.71dBm Wi-Fi: 23.85dBm	
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM	
Antenna Specification [#]	2.52dBi (provided by the applicant)	
Voltage Range	DC 12V from adapter or DC 48V from POE	
Sample serial number	2POY-5 for Conducted and Radiated Emissions Test 2POY-1 for RF Conducted Test (Assigned by BACL, Shenzhen)	
Sample/EUT Status	Good condition	
Adapter Information	Model: YLPS121250C1-US Input: 100-240V~50/60Hz 0.5A Output: 12V, 1.25A	
	ter or POE, the worst case power supply was selected to test for AC line elow 1GHz according to DSS report test result.	

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty
Occupied	Channel B	andwidth	±5%
RF	Frequenc	сy	213.55 Hz(k=2, 95% level of confidence)
RF output	power, co	onducted	0.72 dB(k=2, 95% level of confidence)
Unwanted I	Emission,	conducted	1.75 dB(k=2, 95% level of confidence)
AC Power Lines Cond	lucted	9 kHz~150 KHz	3.94dB(k=2, 95% level of confidence)
Emissions		150 kHz ~30MHz	3.84dB(k=2, 95% level of confidence)
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)
	30MHz~200MHz (Horizontal)		4.48dB(k=2, 95% level of confidence)
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)
		1GHz - 6GHz	5.35dB(k=2, 95% level of confidence)
		6GHz - 18GHz	5.44dB(k=2, 95% level of confidence)
	18GHz - 40GHz		5.16dB(k=2, 95% level of confidence)
Temperature		e	±1°C
Humidity			±1%
Supply voltages		ges	$\pm 0.4\%$

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For Wi-Fi mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

For 802.11b, 802.11g, 802.11n-HT20, EUT was tested with Channel 1, 6 and 11.

For BLE 1M mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"Authentication Tool.exe v $2.0.11.0^{\#}$ " exercise software was used.

The device was tested with the worst case was performed as below:

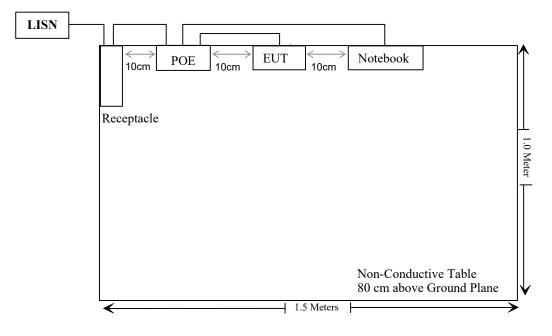
Mode	Data vata	Power Level [#]			
Niode	Data rate	Low Channel	Middle Channel	High Channel	
802.11b	1Mbps	16	16	16	
802.11g	6Mbps	16	16	16	
802.11n-HT20	MCS0	16	16	16	
BLE	1Mbps	Default Power	Default Power	Default Power	

The software and power level was provided by the applicant.

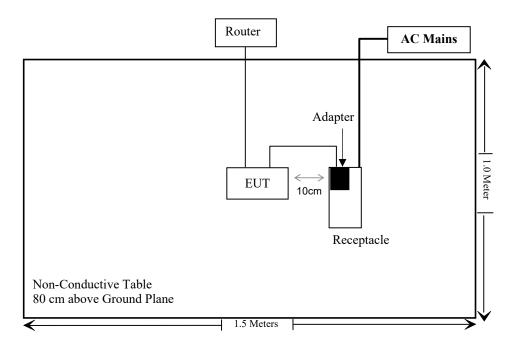
Duty cycle

Please refer to the Appendix.

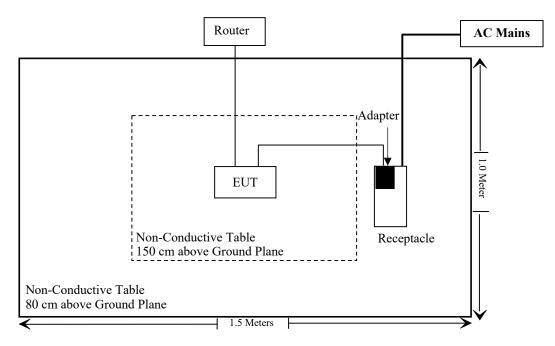
Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Receptacle	Unknown	Unknown
DELL	Notebook	Latitude E6410	11429208685
Grandstream	Router	GWN7664	20VXSV2M7262C104
TP-LINK	POE	TL-POE2412G	Т240050-2-РоЕ

External I/O Cable


Cable Description	Length (m)	From Port	То
Un-shielding Un-Detachable AC Cable	1.5	Receptacle	LISN/AC Mains
Un-shielding Detachable AC Cable	1.0	Receptacle	POE
Un-shielding Detachable RJ45 Cable	1.0	POE	EUT
Un-shielding Detachable RJ45 Cable	2.0	POE	Notebook
Un-shielding Un-Detachable DC Cable	2.0	Adapter	EUT
Un-shielding Detachable RJ45 Cable	8.0	EUT	Router

Block Diagram of Test Setup


For Conducted Emissions:

For Radiated Emissions below 1GHz

For Radiated Emissions above1GHz

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§1.1307 (b) & §2.1091	/	MPE-Based Exemption	Compliant
/	RSS-102 § 2.5.2	Exemption Limits for Routine Evaluation – RF Exposure Evaluation	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Co	onducted Emissi	on Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20
Audix	EMI Test software	E3	191218(V9)	NCR	NCR
	R	adiated Emissio	n Test		
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13
Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20
Unknown	Cable	PNG214	1354	2024/05/21	2025/05/20
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17
Audix	EMI Test software	E3	191218(V9)	NCR	NCR

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: 2401W50954E-RFB

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
Tonscend	RF control Unit	JS0806-2	19D8060154	2023/09/06	2024/09/05
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15
MARCONI	10dB Attenuator	6534/3	2942	2024/06/27	2025/06/26

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (B) & §2.1091- MPE-BASED EXEMPTION

Applicable Standard

According to subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power (ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation		
RF Source frequency (MHz)	Threshold ERP (watts)	
0.3-1.34	1,920 R ² .	
1.34-30	3,450 R ² /f ² .	
30-300	3.83 R ² .	
300-1,500	0.0128 R ² f.	
1,500-100,000	19.2R ² .	

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \leq 1$$

Result

Mode	Frequency (MHz)	Tune up conducted power [#]	Antenn	na Gain [#]	ER	P	Evaluation Distance	ERP Limit
	· · · ·	(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(m)	(mW)
BT	2402-2480	8.0	2.52	0.37	8.37	6.87	0.2	768
BLE	2402-2480	6.0	2.52	0.37	6.37	4.34	0.2	768
2.4G Wi-Fi	2412-2462	24.0	2.52	0.37	24.37	273.53	0.2	768
5.2G Wi-Fi	5180-5240	17.0	3.73	1.58	18.58	72.11	0.2	768
5.3G Wi-Fi	5260-5320	16.5	3.73	1.58	18.08	64.27	0.2	768
5.6G Wi-Fi	5500-5700	15.0	3.73	1.58	16.58	45.50	0.2	768
5.8G Wi-Fi	5745-5825	15.0	3.73	1.58	16.58	45.50	0.2	768

Note: 1. The tune up conducted power and antenna gain was declared by the applicant.

2. The BT, 2.4G Wi-Fi and 5G Wi-Fi cannot transmit at same time.

3. 0dBd=2.15dBi

NFC:

	Frequency	Frequency Maximum E-Field M		ERP		Evaluation	ERP
Mode	(MHz)	(dBuV/m@3m)	(dBm)	(dBm)	(mW)	Distance (m)	Limit (mW)
NFC	13.56	67.73	-27.47	-29.62	0.0011	0.2	751

Note: EIRP = E-Field -95.2 @3m, ERP = EIRP-2.15

Simultaneous transmitting consideration (worst case):

The ratio= $\text{ERP}_{2.4\text{G Wi-Fi}}$ /limit + ERP_{NFC} /limit = 273.53/768+ 0.0011/751 = 0.356 < 1.0

So simultaneous exposure is compliant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

RSS-102 § 2.5.2 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Applicable Standard

According to RSS-102 § (2.5.2):

2.5.2 Exemption Limits for Routine Evaluation — RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is
 equal to or less than 22.48/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is
 equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Result

For worst case:

Mode	Frequency	Maximum tune-up conducted power [#]	Antenna Gain [#]	Maximun EI	n tune-up RP	Evaluation Distance	Limit
	(MHz)	(dBm)	(dBi)	(dBm)	(mW)	(cm)	(mW)
BT	2402-2480	8.0	2.52	10.52	11.27	20	2676
BLE	2402-2480	6.0	2.52	8.52	7.11	20	2676
2.4G Wi-Fi	2412-2462	24.0	2.52	26.52	448.75	20	2684
5.2G Wi-Fi	5180-5240	17.0	3.73	20.73	118.30	20	4525
5.3G Wi-Fi	5260-5320	16.5	3.73	20.23	105.44	20	4573
5.6G Wi-Fi	5500-5700	15.0	3.73	18.73	74.64	20	4714
5.8G Wi-Fi	5745-5825	15.0	3.73	18.73	74.64	20	4857

Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. The BT, 2.4G Wi-Fi and 5G Wi-Fi cannot transmit at same time.

NFC:

	Frequency	Maximum E-Field	Maximun	n EIRP	Evaluation	Limit
Mode	(MHz)	(dBuV/m@3m)	(dBm)	(mW)	Distance (m)	(mW)
NFC	13.56	67.73	-27.47	0.0018	0.2	1000

Note: EIRP = E-Field -95.2 @3m

To maintain compliance with the IC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: The RF Exposure evaluation can be exempted.

§15.203 & RSS-Gen §6.8 ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain[#] is 2.52dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain [#]	Impedance	Frequency Range
FPC	2.52dBi	50Ω	2.4~2.5GHz

Result: Compliant.

§15.207 (a) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS

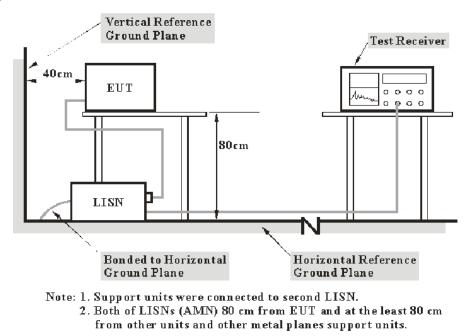
Applicable Standard

FCC§15.207 (a) & RSS-GEN §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits			
Frequency range	Conducted limit (dBµV)		
(MHz)	Quasi-Peak	Average	
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹	
0.5 - 5	56	46	
5 - 30	60	50	


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 & RSS-247/RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

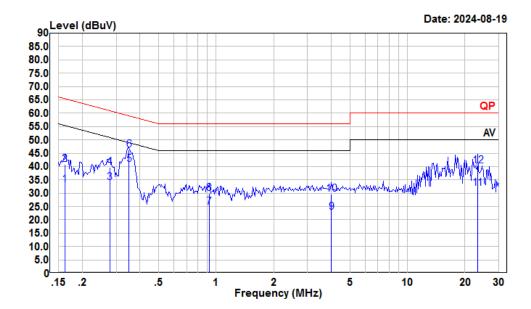
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

Test Data

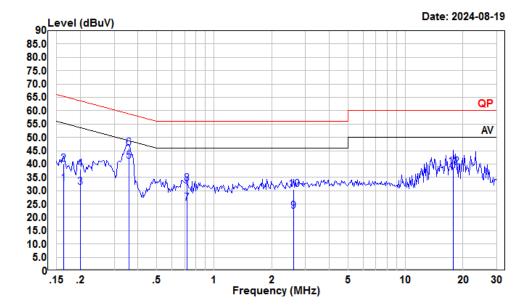
Environmental Conditions


Temperature:	26 °C
Relative Humidity:	71 %
ATM Pressure:	101 kPa

The testing was performed by Macy Shi on 2024-08-19.

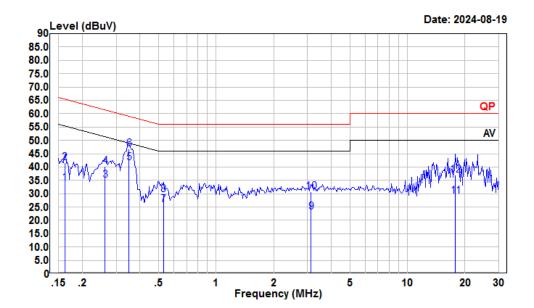
EUT operation mode: Transmitting (Worst case is PoE Power Supply)

BLE: (Maximum output power mode, Low Channel)


AC 120V/60 Hz, Line

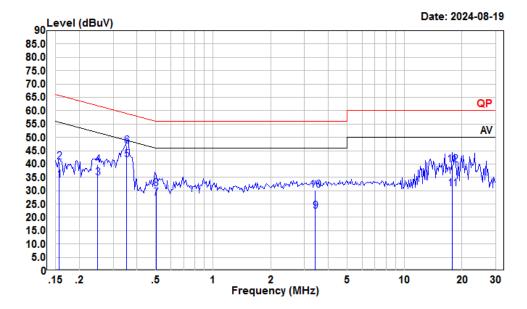
Condition:	Line
Project :	2401W50954E-RF
tester :	Macy.shi
Note :	BLE

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.162	12.31	33.29	10.87	10.11	55.38	-22.09	Average
2	0.162	19.92	40.90	10.87	10.11	65.38	-24.48	QP
3	0.277	13.26	34.05	10.69	10.10	50.90	-16.85	Average
4	0.277	18.92	39.71	10.69	10.10	60.90	-21.19	QP
5	0.350	20.04	40.78	10.62	10.12	48.96	-8.18	Average
6	0.350	25.45	46.19	10.62	10.12	58.96	-12.77	QP
7	0.918	4.11	24.63	10.42	10.10	46.00	-21.37	Average
8	0.918	9.46	29.98	10.42	10.10	56.00	-26.02	QP
9	4.006	2.43	22.94	10.30	10.21	46.00	-23.06	Average
10	4.006	9.04	29.55	10.30	10.21	56.00	-26.45	QP
11	23.263	10.93	31.86	10.75	10.18	50.00	-18.14	Average
12	23.263	19.29	40.22	10.75	10.18	60.00	-19.78	QP


AC 120V/60 Hz, Neutral

Neutral
2401W50954E-RF
Macy.shi
BLE

	_	Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.163	12.08	32.73	10.54	10.11	55.30	-22.57	Average
2	0.163	19.30	39.95	10.54	10.11	65.30	-25.35	QP
3	0.200	10.92	31.41	10.40	10.09	53.62	-22.21	Average
4	0.200	17.56	38.05	10.40	10.09	63.62	-25.57	QP
5	0.358	20.43	41.14	10.59	10.12	48.78	-7.64	Average
6	0.358	25.22	45.93	10.59	10.12	58.78	-12.85	QP
7	0.720	4.50	25.36	10.72	10.14	46.00	-20.64	Average
8	0.720	11.70	32.56	10.72	10.14	56.00	-23.44	QP
9	2.594	1.73	22.30	10.40	10.17	46.00	-23.70	Average
10	2.594	9.79	30.36	10.40	10.17	56.00	-25.64	QP
11	17.849	15.74	36.67	10.74	10.19	50.00	-13.33	Average
12	17.849	17.87	38.80	10.74	10.19	60.00	-21.20	QP


2.4G Wi-Fi: (Maximum output power mode, 802.11g Low Channel) AC 120V/60 Hz, Line

Condition:	Line
Project :	2401W50954E-RF
tester :	Macy.shi
Note :	2.4G WIFI

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.162	13.12	34.10	10.87	10.11	55.38	-21.28	Average
2	0.162	20.66	41.64	10.87	10.11	65.38	-23.74	QP
3	0.263	14.20	35.00	10.71	10.09	51.34	-16.34	Average
4	0.263	19.55	40.35	10.71	10.09	61.34	-20.99	QP
5	0.350	20.97	41.71	10.62	10.12	48.96	-7.25	Average
6	0.350	26.08	46.82	10.62	10.12	58.96	-12.14	QP
7	0.529	5.10	25.73	10.50	10.13	46.00	-20.27	Average
8	0.529	9.15	29.78	10.50	10.13	56.00	-26.22	QP
9	3.140	2.61	23.19	10.40	10.18	46.00	-22.81	Average
10	3.140	10.13	30.71	10.40	10.18	56.00	-25.29	QP
11	17.849	8.01	28.98	10.78	10.19	50.00	-21.02	Average
12	17.849	16.06	37.03	10.78	10.19	60.00	-22.97	QP

AC 120V/60 Hz, Neutral

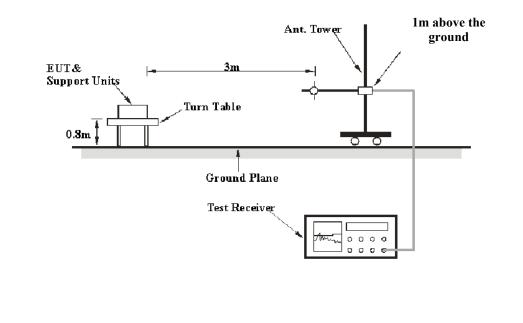
Condition:	Neutral
Project :	2401W50954E-RF
tester :	Macy.shi
Note :	2.4G WIFI

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
				dB	dB			
	MHz	dBuV	dBuV	aB	aB	dBuV	dB	
1	0.156	13.19	33.88	10.57	10.12	55.65	-21.77	Average
2	0.156	20.23	40.92	10.57	10.12	65.65	-24.73	QP
3	0.249	14.18	34.73	10.47	10.08	51.78	-17.05	Average
4	0.249	19.06	39.61	10.47	10.08	61.78	-22.17	QP
5	0.354	21.00	41.71	10.59	10.12	48.87	-7.16	Average
6	0.354	25.94	46.65	10.59	10.12	58.87	-12.22	QP
7	0.502	6.25	27.09	10.70	10.14	46.00	-18.91	Average
8	0.502	9.91	30.75	10.70	10.14	56.00	-25.25	QP
9	3.417	1.73	22.32	10.40	10.19	46.00	-23.68	Average
10	3.417	9.69	30.28	10.40	10.19	56.00	-25.72	QP
11	17.849	9.76	30.69	10.74	10.19	50.00	-19.31	Average
12	17.849	18.88	39.81	10.74	10.19	60.00	-20.19	QP

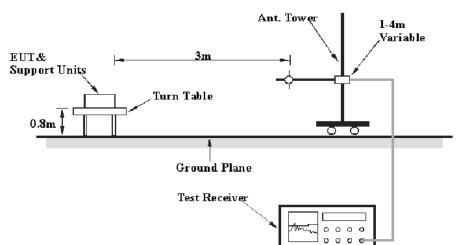
§15.205, §15.209, §15.247(d) & RSS-GEN § 8.10 & RSS-247 § 5.5 SPURIOUS EMISSIONS

Applicable Standard

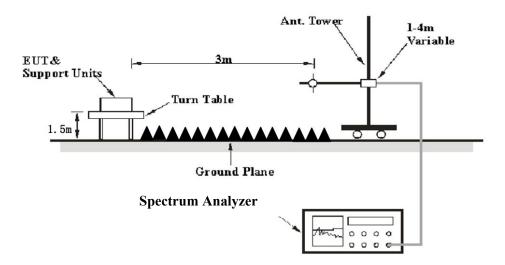
FCC §15.247 (d); §15.209; §15.205;


According to RSS-GEN § 8.10 & RSS-247 § 5.5

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in table 5 and table 6.


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247 & RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
0 1 11 7 150 1 11 7	/	/	200 Hz	QP
9 kHz – 150 kHz	300 Hz	1 kHz	/	PK
150 kHz – 30 MHz	/	/	9 kHz	QP
130 kmz - 30 wmz	10 kHz	30 kHz	/	PK
30 MHz – 1000 MHz	/	/	120 kHz	QP
50 WITZ – 1000 WITZ	100 kHz	300 kHz	/	РК

1-25GHz:

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
417	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

For 9k-30MHz, if the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

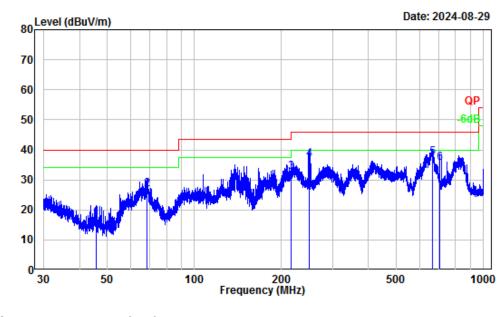
Environmental Conditions

Temperature:	22~25 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-08-29 for below 1GHz and Zenos Qiao on 2024-08-27 and 2024-08-28 for above 1GHz.

EUT operation mode: Transmitting (Worst case is Adapter Power Supply)

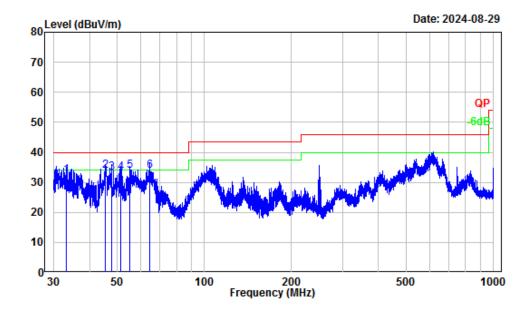
Note: Pre-scan in the X, Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.


9 kHz-30MHz: (Maximum output power mode, 802.11g Low Channel)

The amplitude of spurious emissions attenuated more than 20 dB below the limit was not recorded.

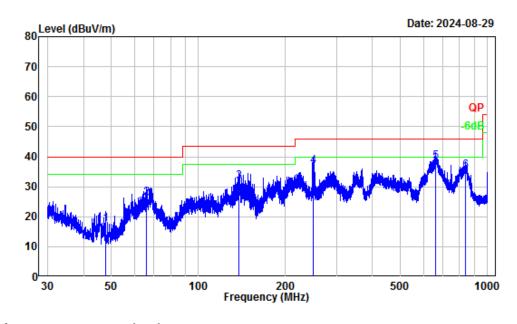
30MHz-1GHz:

BLE: (Maximum output power mode, Low Channel)


Horizontal

Site :	Chamber A
Condition :	3m Horizontal
Project Number:	2401W50954E-RF
Test Mode :	BLE Transmitting
Tester :	Anson Su

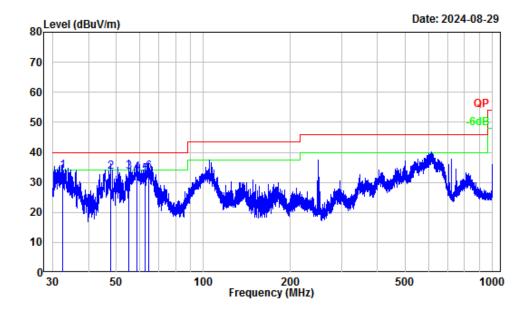
	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	45.69	-16.28	33.77	17.49	40.00	-22.51	QP
2	68.30	-17.88	44.80	26.92	40.00	-13.08	QP
3	216.02	-14.20	46.89	32.69	46.00	-13.31	QP
4		-13.09	50.07	36.98	46.00	-9.02	QP
5	666.97	-3.86	41.17	37.31	46.00	-8.69	QP
6		-3.44	38.95	35.51	46.00	-10.49	QP



Site :	Chamber A
Condition :	3m Vertical
Project Number:	2401W50954E-RF
Test Mode :	BLE Transmitting
Tester :	Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	33.31	-7.80	40.00	32.20	40.00	-7.80	QP
2	45.28	-16.05	49.88	33.83	40.00	-6.17	QP
3	47.78	-17.25	50.59	33.34	40.00	-6.66	QP
4	51.21	-18.14	51.24	33.10	40.00	-6.90	QP
5	55.32	-18.32	52.20	33.88	40.00	-6.12	QP
6	64.77	-18.00	51.70	33.70	40.00	-6.30	QP

2.4G Wi-Fi: (Maximum output power mode, 802.11g Low Channel)


Horizontal

Site :	Chamber A
Condition :	3m Horizontal
Project Number:	2401W50954E-RF
Test Mode :	2.4G WIFI Transmitting
Tester :	Anson Su

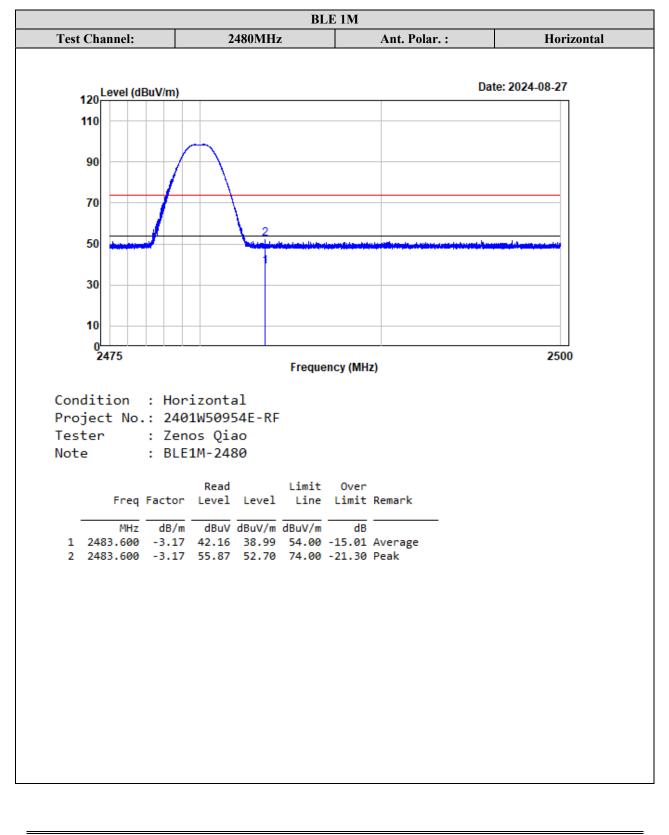
			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m				dB	
1		-17.26		-	-		OP
2							-
	66.24						-
3	138.39	-11.73	43.33	31.60	43.50	-11.90	QP
4	249.97	-13.09	49.81	36.72	46.00	-9.28	QP
5	662.89	-3.92	42.33	38.41	46.00	-7.59	QP
6	836.98	-1.83	37.15	35.32	46.00	-10.68	QP

Site :	Chamber A
Condition :	3m Vertical
Project Number:	2401W50954E-RF
Test Mode :	2.4G WIFI Transmitting
Tester :	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	32.48	-7.31	40.98	33.67	40.00	-6.33	QP
2	47.78	-17.25	50.87	33.62	40.00	-6.38	QP
3	55.29	-18.32	51.96	33.64	40.00	-6.36	QP
4	58.74	-18.22	51.52	33.30	40.00	-6.70	QP
5	62.79	-18.11	50.69	32.58	40.00	-7.42	QP
6	64.77	-18.00	51.36	33.36	40.00	-6.64	QP

1-25 GHz:

Frequency	Receiver		Polar	Factor	Corrected	Limit	Margin			
(MHz)	Reading (dBµV)	PK/AV	(H/V)	(dB/m)	Amplitude (dBµV/m)	$(dB\mu V/m)$	(dB)			
BLE 1M										
Low Channel 2402MHz										
2380.81	55.45	РК	Н	-2.93	52.52	74	-21.48			
2380.81	41.72	AV	Н	-2.93	38.79	54	-15.21			
2378.28	55.21	РК	V	-2.93	52.28	74	-21.72			
2378.28	41.58	AV	V	-2.93	38.65	54	-15.35			
4804.00	49.90	РК	Н	2.42	52.32	74	-21.68			
4804.00	42.77	AV	Н	2.42	45.19	54	-8.81			
4804.00	51.04	РК	V	2.42	53.46	74	-20.54			
4804.00	43.68	AV	V	2.42	46.10	54	-7.90			
		Mid	dle Channel 2440M	[Hz						
4880.00	51.49	РК	Н	2.58	54.07	74	-19.93			
4880.00	45.08	AV	Н	2.58	47.66	54	-6.34			
4880.00	52.53	РК	V	2.58	55.11	74	-18.89			
4880.00	45.86	AV	V	2.58	48.44	54	-5.56			
		Hig	gh Channel 2480MI	Hz						
2483.60	55.87	РК	Н	-3.17	52.70	74	-21.30			
2483.60	42.16	AV	Н	-3.17	38.99	54	-15.01			
2483.79	55.64	РК	V	-3.17	52.47	74	-21.53			
2483.79	41.98	AV	V	-3.17	38.81	54	-15.19			
4960.00	49.76	РК	Н	2.68	52.44	74	-21.56			
4960.00	42.25	AV	Н	2.68	44.93	54	-9.07			
4960.00	50.87	РК	V	2.68	53.55	74	-20.45			
4960.00	43.12	AV	V	2.68	45.80	54	-8.20			


Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit The other spurious emission which is in the noise floor level was not recorded.

Report No.: 2401W50954E-RFB

Test plots for worst Band Edge Measurements (Radiated):

Test Channel:

120 Level (dBuV/m)

110 90 70 50 al. سيناب 30 10 0 2475 2500 Frequency (MHz) Condition : Vertical Project No.: 2401W50954E-RF Tester : Zenos Qiao Note : BLE1M-2480 Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 2483.790 -3.17 41.98 38.81 54.00 -15.19 Average 2 2483.790 -3.17 55.64 52.47 74.00 -21.53 Peak

BLE 1M

Ant. Polar. :

2480MHz

Report No.: 2401W50954E-RFB

Date: 2024-08-27

Vertical

2.4G Wi-Fi

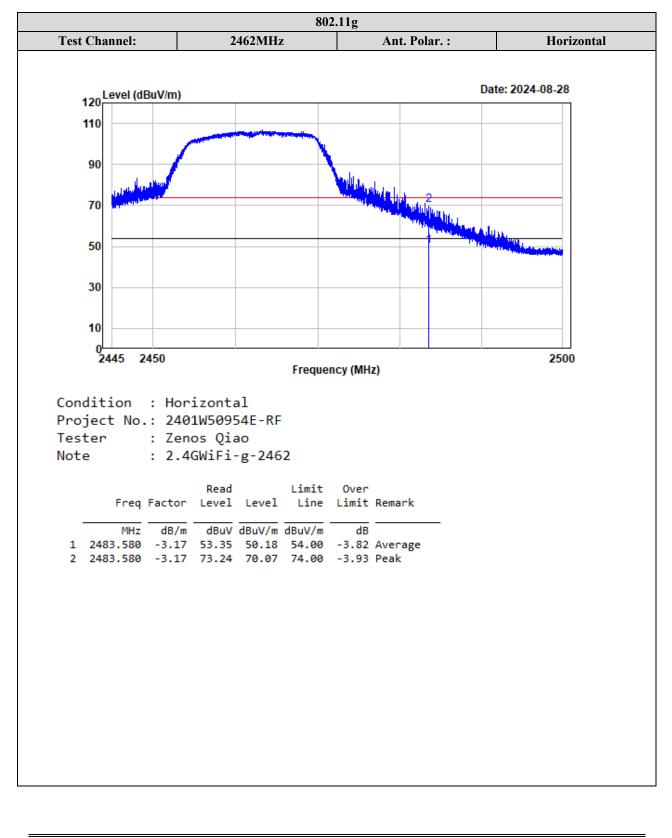
Frequency	Receiver		Polar	Factor	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/AV	(H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			802.11b				
		Lo	w Channel 2412MH	Ηz			
2389.40	55.78	РК	Н	-2.93	52.85	74	-21.15
2389.40	41.69	AV	Н	-2.93	38.76	54	-15.24
2389.24	55.37	PK	V	-2.93	52.44	74	-21.56
2389.24	41.42	AV	V	-2.93	38.49	54	-15.51
4824.00	49.45	PK	Н	2.45	51.90	74	-22.10
4824.00	42.04	AV	Н	2.45	44.49	54	-9.51
4824.00	50.66	PK	V	2.45	53.11	74	-20.89
4824.00	42.87	AV	V	2.45	45.32	54	-8.68
		Mid	dle Channel 2437M	IHz			
4874.00	50.22	PK	Н	2.56	52.78	74	-21.22
4874.00	43.19	AV	Н	2.56	45.75	54	-8.25
4874.00	51.47	PK	V	2.56	54.03	74	-19.97
4874.00	44.06	AV	V	2.56	46.62	54	-7.38
		Hi	gh Channel 2462MI	Hz			
2483.54	56.37	РК	Н	-3.17	53.20	74	-20.80
2483.54	44.08	AV	Н	-3.17	40.91	54	-13.09
2483.67	55.95	РК	V	-3.17	52.78	74	-21.22
2483.67	43.56	AV	V	-3.17	40.39	54	-13.61
4924.00	49.42	РК	Н	2.63	52.05	74	-21.95
4924.00	40.51	AV	Н	2.63	43.14	54	-10.86
4924.00	49.95	РК	V	2.63	52.58	74	-21.42
4924.00	40.88	AV	V	2.63	43.51	54	-10.49

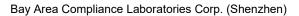
Report No.: 2401W50954E-RFB

Frequency	Recei	iver	Polar	Factor	Corrected	Limit	Margin			
(MHz)	Reading (dBµV)	PK/AV	(H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)			
802.11g										
Low Channel 2412MHz										
2389.71	68.79	РК	Н	-2.93	65.86	74	-8.14			
2389.71	49.86	AV	Н	-2.93	46.93	54	-7.07			
2389.94	67.27	PK	V	-2.93	64.34	74	-9.66			
2389.94	49.05	AV	V	-2.93	46.12	54	-7.88			
4824.00	49.17	РК	Н	2.45	51.62	74	-22.38			
4824.00	35.64	AV	Н	2.45	38.09	54	-15.91			
4824.00	50.33	РК	V	2.45	52.78	74	-21.22			
4824.00	36.50	AV	V	2.45	38.95	54	-15.05			
		Mid	dle Channel 2437M	ÍHz						
4874.00	50.63	РК	Н	2.56	53.19	74	-20.81			
4874.00	36.14	AV	Н	2.56	38.70	54	-15.30			
4874.00	51.75	РК	V	2.56	54.31	74	-19.69			
4874.00	37.09	AV	V	2.56	39.65	54	-14.35			
		Hig	gh Channel 2462MI	Hz						
2483.58	73.24	РК	Н	-3.17	70.07	74	-3.93			
2483.58	53.35	AV	Н	-3.17	50.18	54	-3.82			
2483.87	71.73	РК	V	-3.17	68.56	74	-5.44			
2483.87	52.68	AV	V	-3.17	49.51	54	-4.49			
4924.00	48.85	РК	Н	2.63	51.48	74	-22.52			
4924.00	35.01	AV	Н	2.63	37.64	54	-16.36			
4924.00	49.78	РК	V	2.63	52.41	74	-21.59			
4924.00	35.87	AV	V	2.63	38.50	54	-15.50			

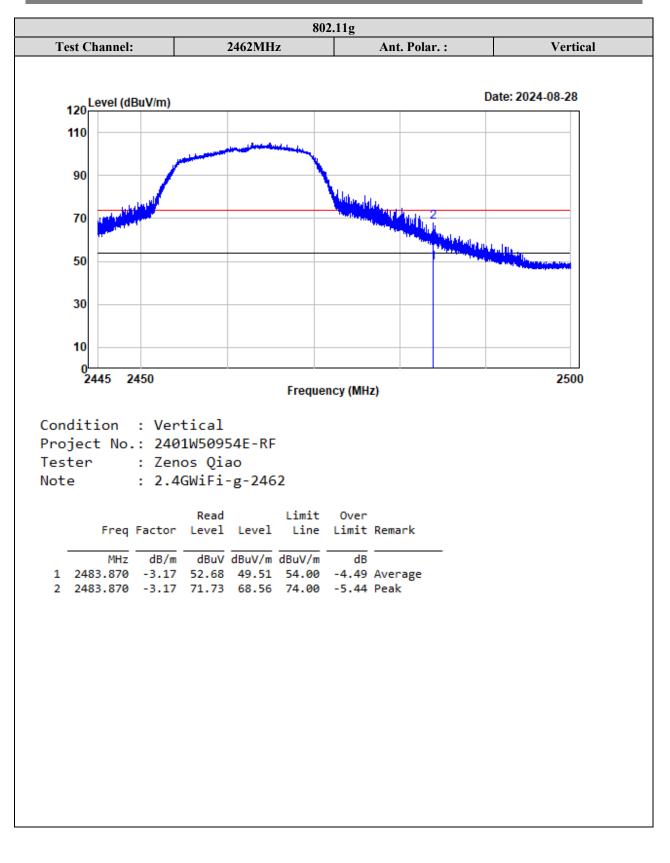
Report No.: 2401W50954E-RFB

E	Receiver		Dili	F irster	Corrected	T ••/	Maria			
Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
			802.11n20							
Low Channel 2412MHz										
2389.67	67.84	РК	Н	-2.93	64.91	74	-9.09			
2389.67	47.93	AV	Н	-2.93	45.00	54	-9.00			
2389.36	66.32	РК	V	-2.93	63.39	74	-10.61			
2389.36	47.15	AV	V	-2.93	44.22	54	-9.78			
4824.00	48.78	РК	Н	2.45	51.23	74	-22.77			
4824.00	34.92	AV	Н	2.45	37.37	54	-16.63			
4824.00	49.46	PK	V	2.45	51.91	74	-22.09			
4824.00	35.69	AV	V	2.45	38.14	54	-15.86			
		Mid	dle Channel 2437M	Hz						
4874.00	48.84	РК	Н	2.56	51.40	74	-22.60			
4874.00	35.59	AV	Н	2.56	38.15	54	-15.85			
4874.00	49.68	РК	V	2.56	52.24	74	-21.76			
4874.00	36.27	AV	V	2.56	38.83	54	-15.17			
		Hig	gh Channel 2462MH	Ηz						
2483.99	73.16	PK	Н	-3.17	69.99	74	-4.01			
2483.99	52.62	AV	Н	-3.17	49.45	54	-4.55			
2483.85	71.49	РК	V	-3.17	68.32	74	-5.68			
2483.85	51.81	AV	V	-3.17	48.64	54	-5.36			
4924.00	48.52	РК	Н	2.63	51.15	74	-22.85			
4924.00	34.76	AV	Н	2.63	37.39	54	-16.61			
4924.00	49.25	РК	V	2.63	51.88	74	-22.12			
4924.00	35.48	AV	V	2.63	38.11	54	-15.89			

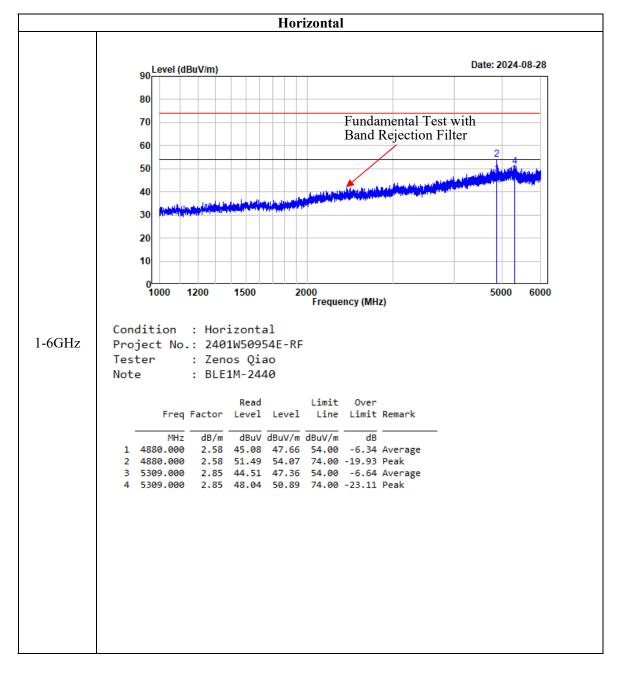

Note:

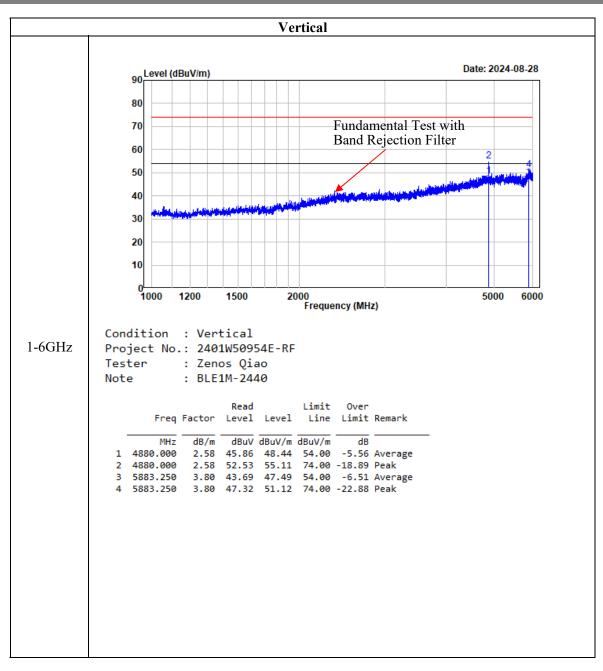

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected. Amplitude - Limit

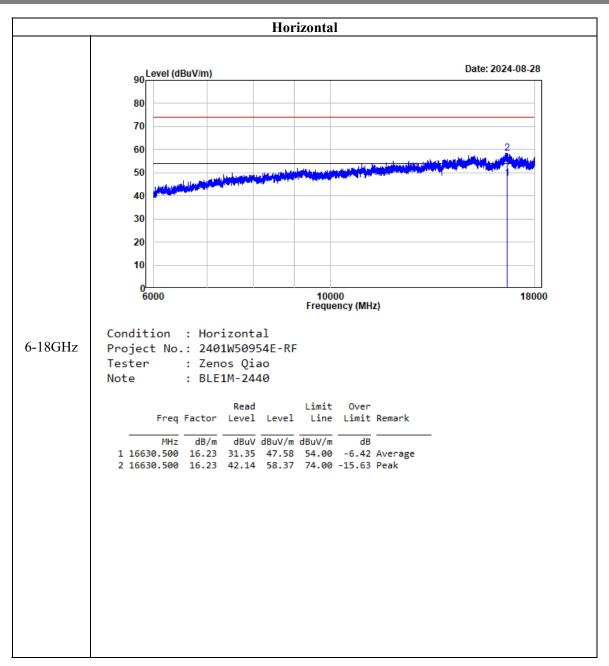
The other spurious emission which is in the noise floor level was not recorded.

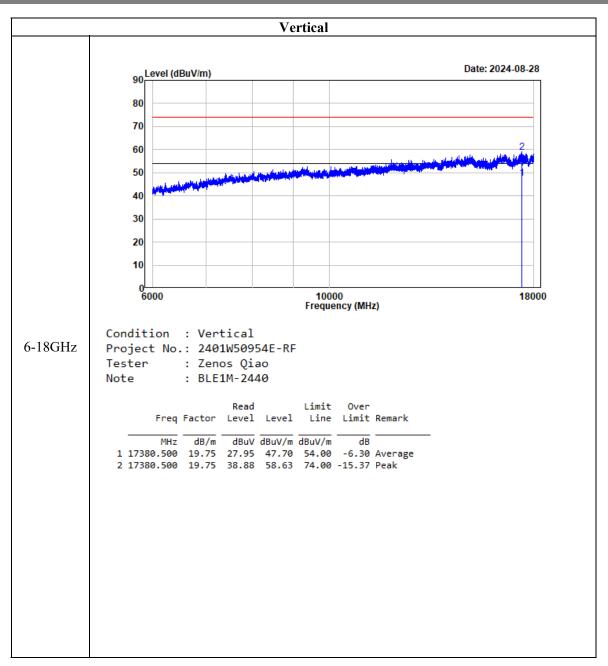

Report No.: 2401W50954E-RFB

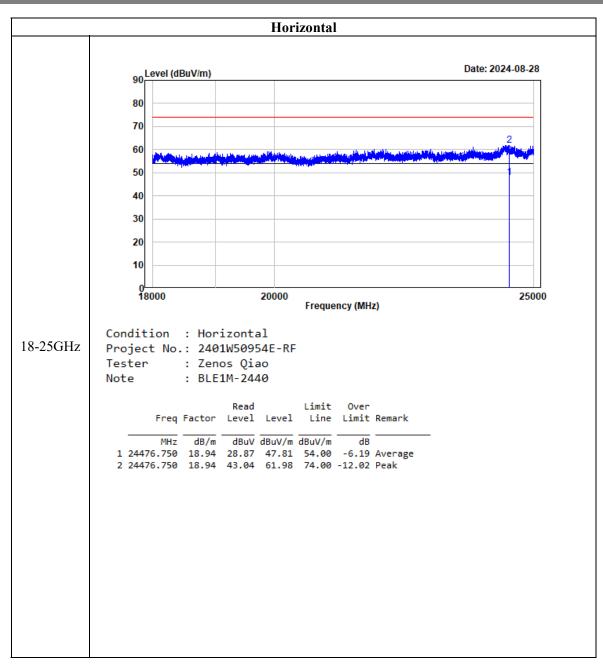
Test plots for worst Band Edge Measurements (Radiated):



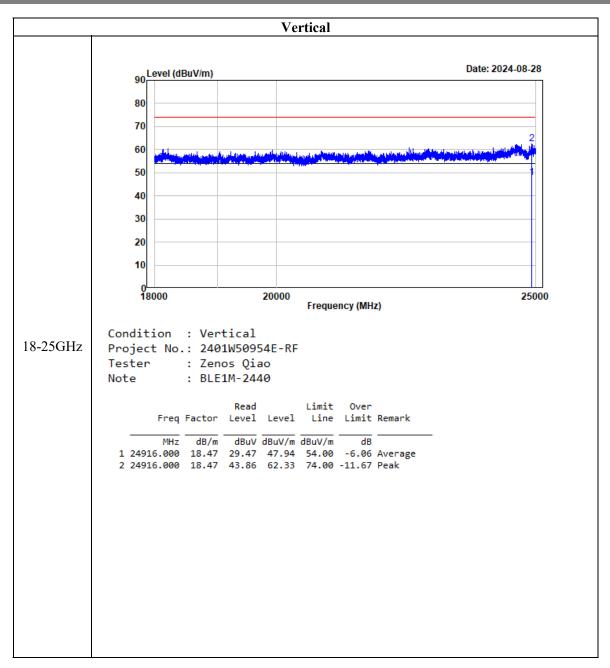



Listed with the worst harmonic margin test plot:


Report No.: 2401W50954E-RFB



Report No.: 2401W50954E-RFB



Report No.: 2401W50954E-RFB

Report No.: 2401W50954E-RFB

§15.247 (a)(2) & RSS-Gen§6.7 & RSS-247 § 5.2 (a) 99% OCCUPIED BANDWIDTH & 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "6 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 and Clause 6.9.3& RSS-Gen§6.7

6 dB Emission Bandwidth

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

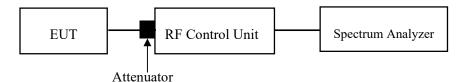
99% Occupied Bandwidth

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW (Note: for RSS-GEN rules, VBW shall not be smaller than three times the RBW value. Video averaging is not permitted), unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.


d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	47 %
ATM Pressure:	101 kPa

The testing was performed by Tom Tan on 2024-08-15.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

§15.247(b)(3) & RSS-247 § 5.4(d) MAXIMUM CONDUCTED OUTPUT POWER

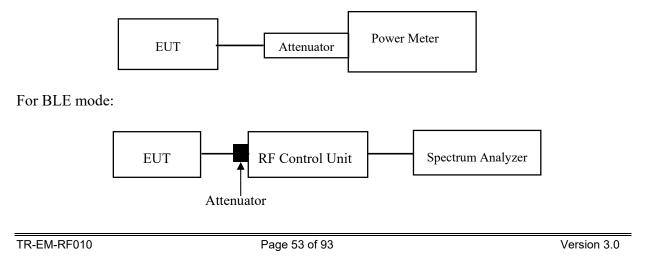
Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure


Test Method: ANSI C63.10-2013 Clause 11.9.1.1 for BLE and Clause 11.9.1.3 & 11.9.2.3.2 for Wi-Fi

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.

3. Add a correction factor to the display.

For Wi-Fi mode:

Test Data

Environmental Conditions

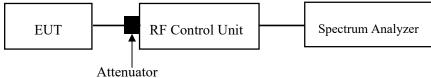
Temperature:	25 °C
Relative Humidity:	47 %
ATM Pressure:	101 kPa

The testing was performed by Tom Tan on 2024-08-15.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

§15.247(d) & RSS-247 § 5.5 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	47 %
ATM Pressure:	101 kPa

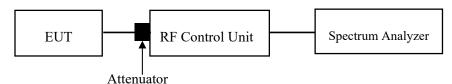
The testing was performed by Tom Tan on 2024-08-15.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

§15.247(e) & RSS-247 § 5.2 (b) POWER SPECTRAL DENSITY

Applicable Standard


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	47 %
ATM Pressure:	101 kPa

The testing was performed by Tom Tan on 2024-08-15.

EUT operation mode: Transmitting

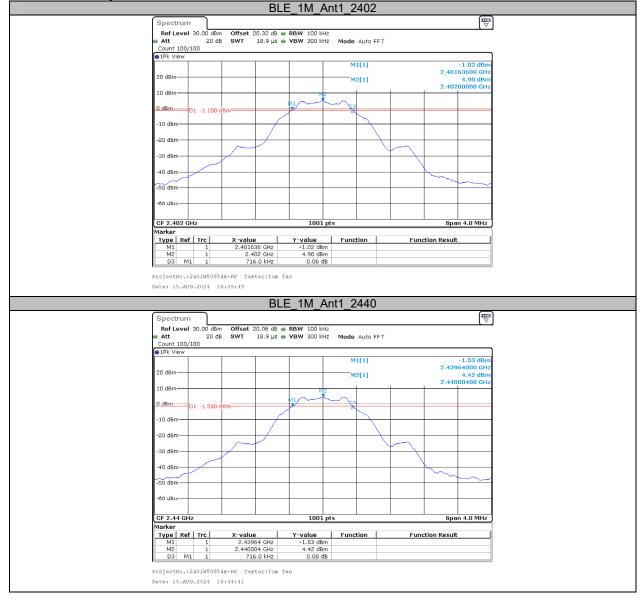
Test Result: Compliant. Please refer to the Appendix.

EUT PHOTOGRAPHS

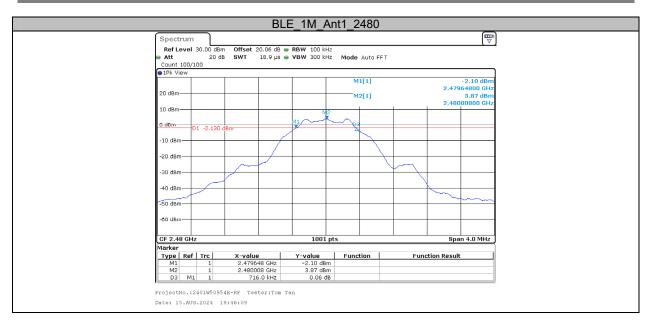
Please refer to the attachment 2401W50954E-RF External photo and 2401W50954E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401W50954E-RFB Test Setup photo.


APPENDIX – BLE

Appendix A: DTS Bandwidth


Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.716	2401.636	2402.000	0.5	PASS
BLE_1M	Ant1	2440	0.716	2439.640	2440.004	0.5	PASS
		2480	0.716	2479.648	2480.008	0.5	PASS

Test Graphs

Report No.: 2401W50954E-RFB

Appendix B: Occupied Channel Bandwidth

Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.055	2401.4805	2402.5355		
BLE_1M	Ant1	2440	1.055	2439.4845	2440.5395		
_		2480	1.055	2479.4885	2480.5435		

Test Graphs

Report No.: 2401W50954E-RFB

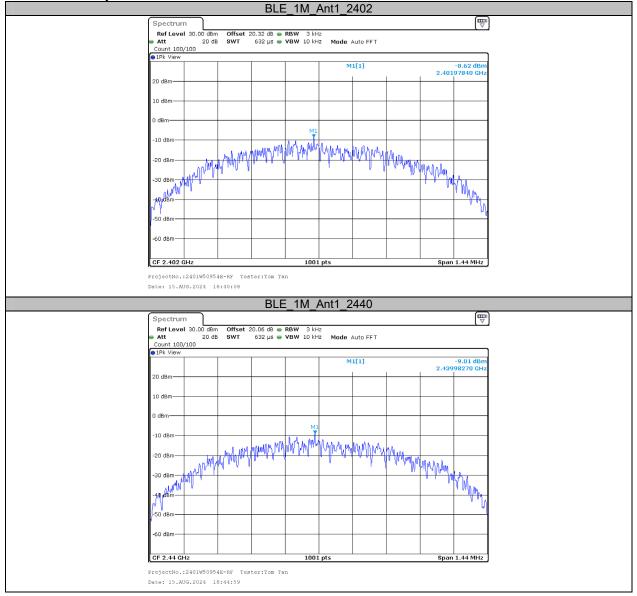
Appendix C: Maximum conducted output power

Test Result

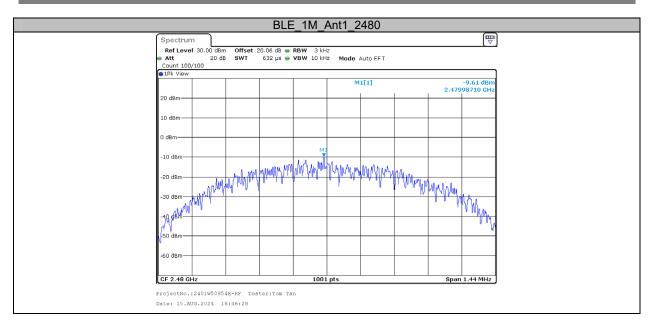
Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
BLE_1M Ant1		2402	5.71	≤30	8.23	≤36	PASS
	2440	5.32	≤30	7.84	≤36	PASS	
		2480	4.70	≤30	7.22	≤36	PASS

Test Graphs Peak

Report No.: 2401W50954E-RFB

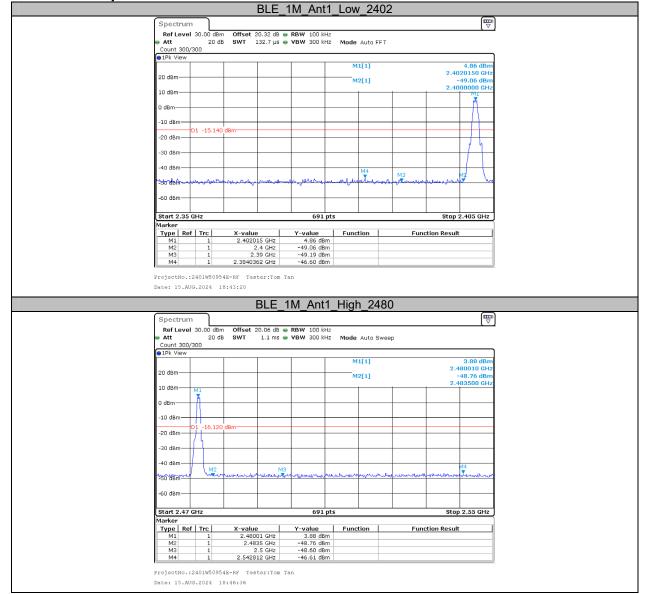


Appendix D: Maximum power spectral density


Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-8.62	≤8.00	PASS
BLE_1M	Ant1	2440	-9.01	≤8.00	PASS
		2480	-9.61	≤8.00	PASS

Test Graphs



Report No.: 2401W50954E-RFB

Appendix E: Band edge measurements

Test Graphs

Report No.: 2401W50954E-RFB

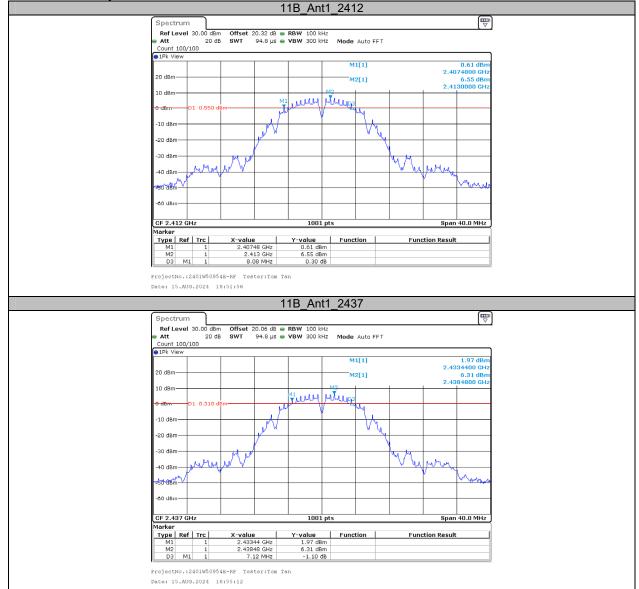
Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	1/T[Hz]	VBW Setting [Hz]
BLE_1M	Ant1	2440	0.39	0.63	61.90	2564	3000

Test Graphs

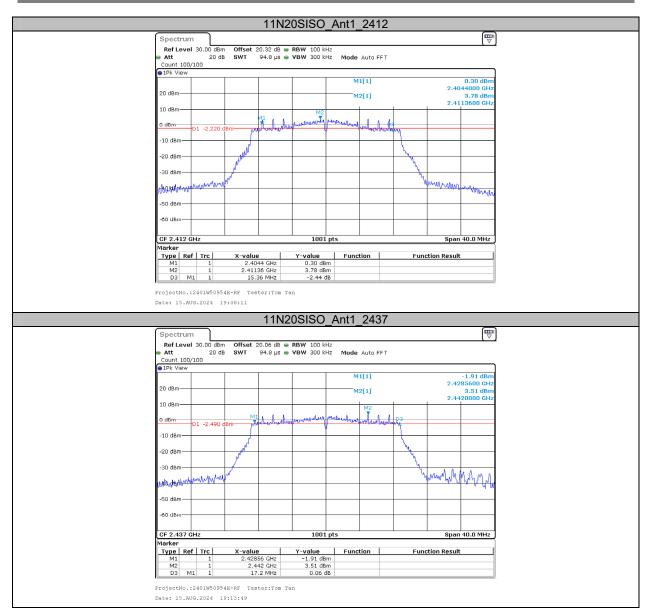
		BLE	E_1M_A	nt1_2	440						
Spectrum											
Ref Level 30.00	dBm Offset	20.06 dB 🦷	RBW 10 MH	z						<u> </u>	
Att 2	0 dB 😑 SWT		VBW 10 MH								
SGL Count 1/1	TRG: V	ID									
⊖1Pk Clrw											
20 dBm-					[1]					5.02 dBm 88000 ms	
20 0011				D1	[1]					0.20 dB 90.00 µs	
10 dBm						-+-		+	- And		
	-							┥┍─		D1D2	
-0-dBm	6UU dBm									TT	
-10 dBm											
-20 dBm											
1630 dB/p 100	we had	ad 44	- w w	- Up	- Low	КМ	4466	- onf	hul	we h	
-40 dBm						_			_		
-50 dBm											
-60 dBm								+			
						- 1					
CF 2.44 GHz		1	1001 p	its				-		1.0 ms/	
Marker											
Type Ref Trc			Y-value	Funct	ion		Fur	nction Re	esult	1	
M1 1		5.88 ms	5.02 dBm								
D1 M1 1 D2 M1 1		90.0 µs	0.20 dB								
		30.0 µs	0.09 dB	1							

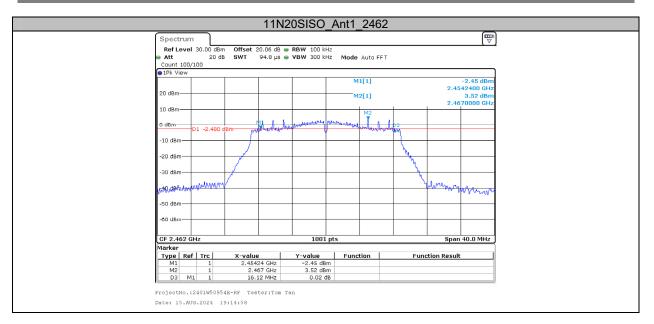

APPENDIX – 2.4G Wi-Fi

Appendix A: DTS Bandwidth


Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	8.08	0.5	PASS
11B	Ant1	2437	7.12	0.5	PASS
		2462	7.12	0.5	PASS
	Ant1	2412	15.16	0.5	PASS
11G		2437	16.32	0.5	PASS
		2462	15.48	0.5	PASS
11N20SISO	Ant1	2412	15.36	0.5	PASS
		2437	17.20	0.5	PASS
		2462	16.12	0.5	PASS


Test Graphs



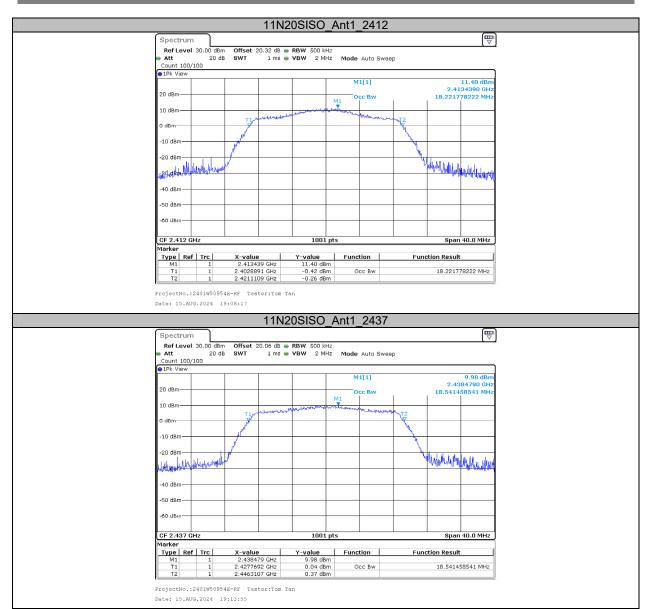
Report No.: 2401W50954E-RFB

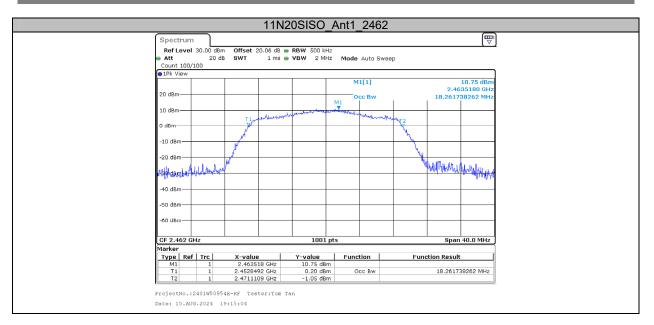
Report No.: 2401W50954E-RFB


Appendix B: Occupied Channel Bandwidth

Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2412	11.828		
11B	Ant1	2437	11.868		
		2462	11.948		
		2412	17.383		
11G	Ant1	2437	17.622		
		2462	17.343		
		2412	18.222		
11N20SISO	Ant1	2437	18.541		
		2462	18.262		

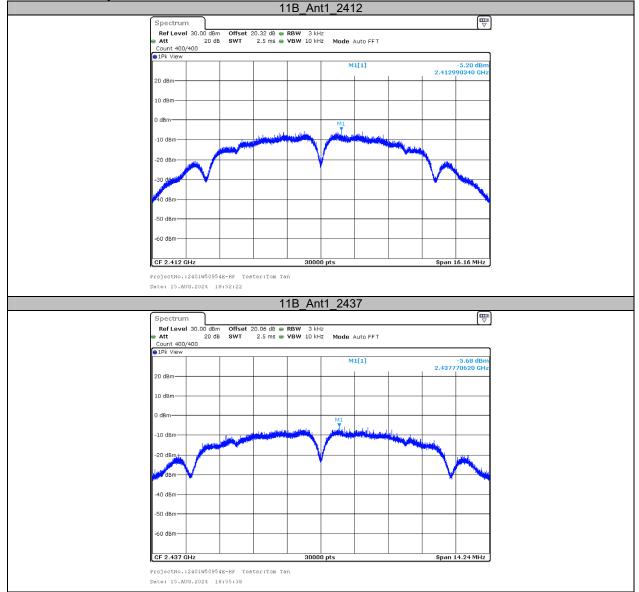

TR-EM-RF010


Test Graphs

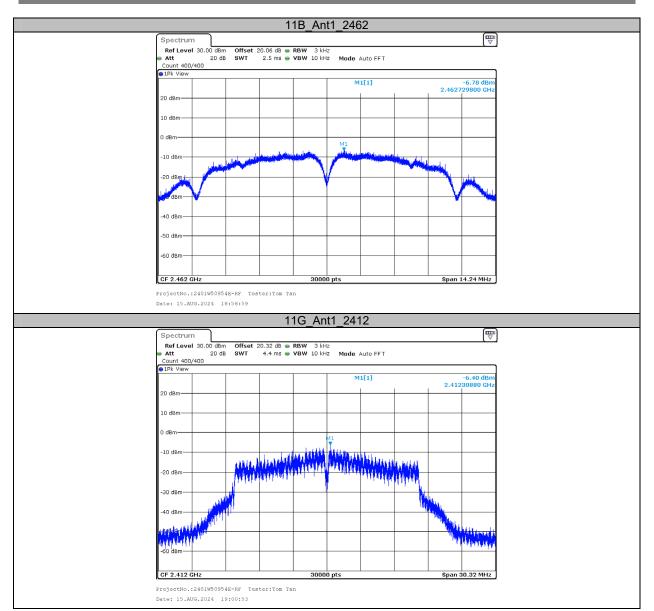
Appendix C: Maximum conducted output power

Test Result

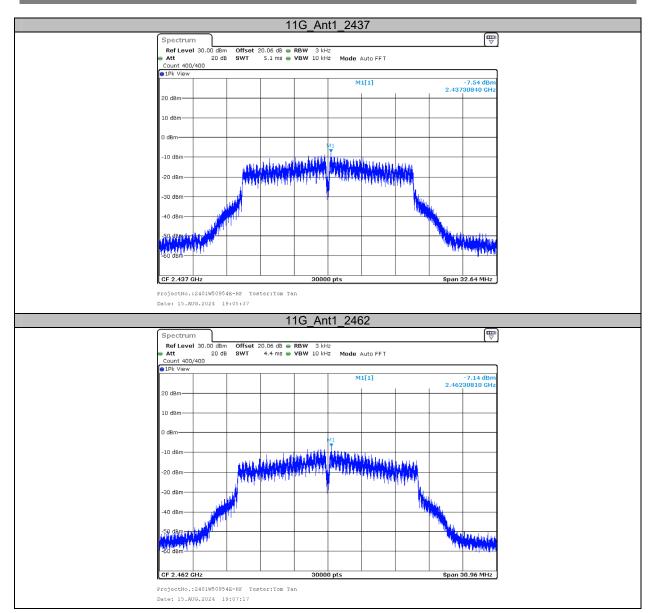
Test Mode	Antenna	Channel	Peak Result [dBm]	Average Result [dBm]	Limit [dBm]	EIRP[dBm]	EIRP Limit [dBm]	Verdict
		2412	18.31	15.25	≤30.00	20.83	≤36.00	PASS
11B	Ant1	2437	17.96	15.03	≤30.00	20.48	≤36.00	PASS
		2462	17.79	14.82	≤30.00	20.31	≤36.00	PASS
		2412	23.85	16.09	≤30.00	26.37	≤36.00	PASS
11G	11G Ant1	2437	23.40	15.70	≤30.00	25.92	≤36.00	PASS
		2462	23.47	15.79	≤30.00	25.99	≤36.00	PASS
		2412	23.22	15.53	≤30.00	25.74	≤36.00	PASS
11N20SISO	Ant1	2437	22.95	15.29	≤30.00	25.47	≤36.00	PASS
		2462	22.98	15.38	≤30.00	25.50	≤36.00	PASS

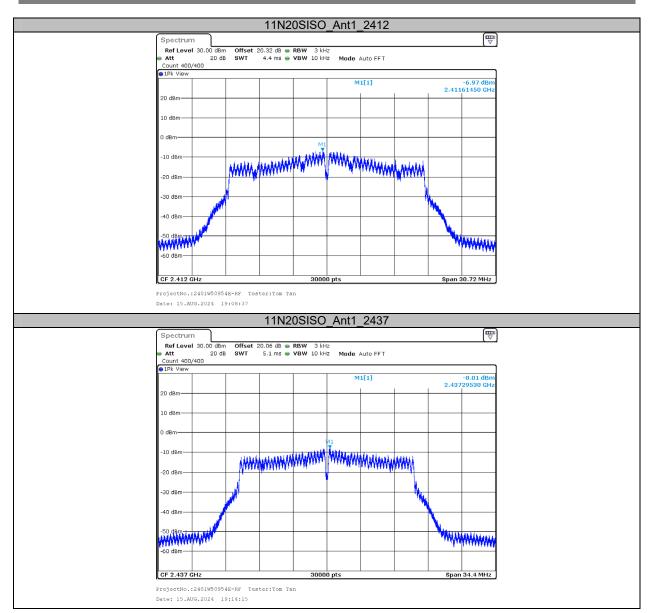

Appendix D: Maximum power spectral density

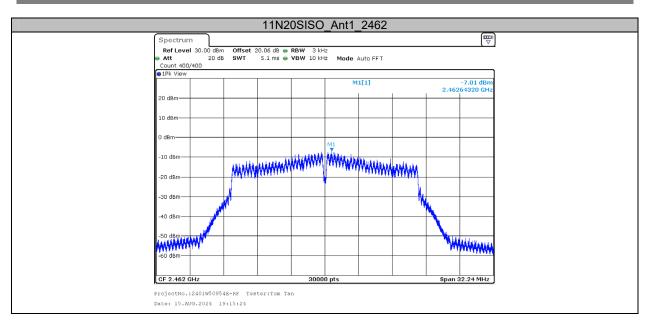
Test Result


Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-5.20	≤8.00	PASS
11B	Ant1	2437	-5.68	≤8.00	PASS
		2462	-6.78	≤8.00	PASS
		2412	-6.40	≤8.00	PASS
11G	Ant1	2437	-7.54	≤8.00	PASS
		2462	-7.14	≤8.00	PASS
		2412	-6.97	≤8.00	PASS
11N20SISO	Ant1	2437	-8.01	≤8.00	PASS
		2462	-7.01	≤8.00	PASS

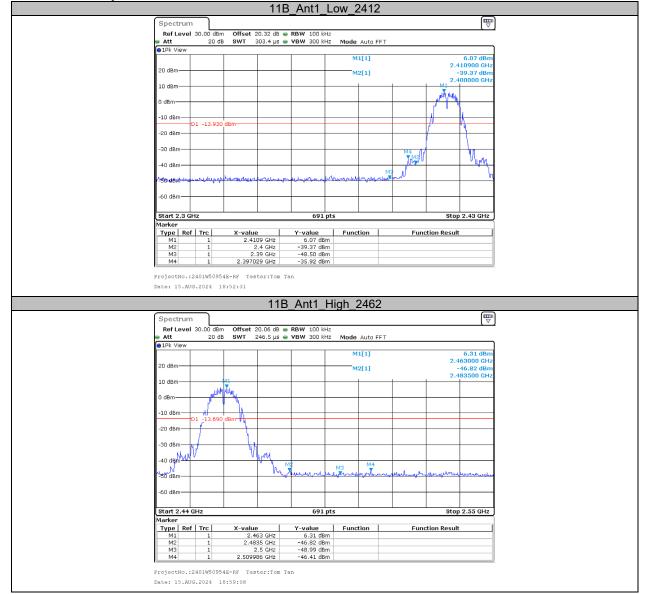
TR-EM-RF010

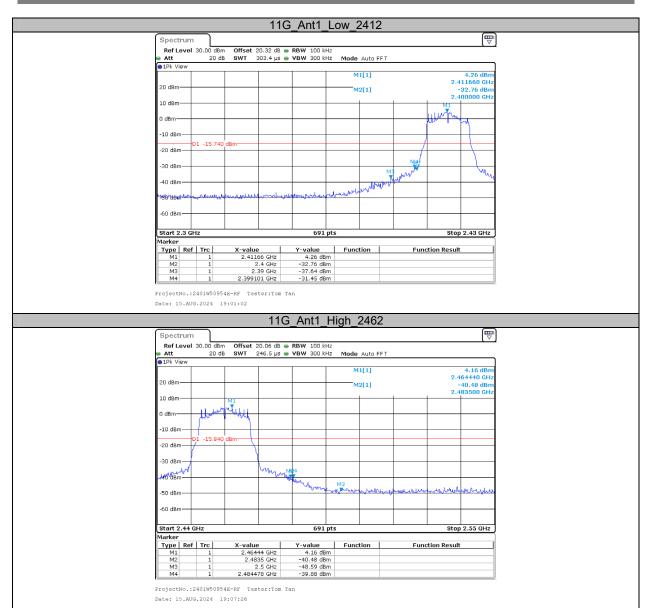

Test Graphs




Report No.: 2401W50954E-RFB

Report No.: 2401W50954E-RFB



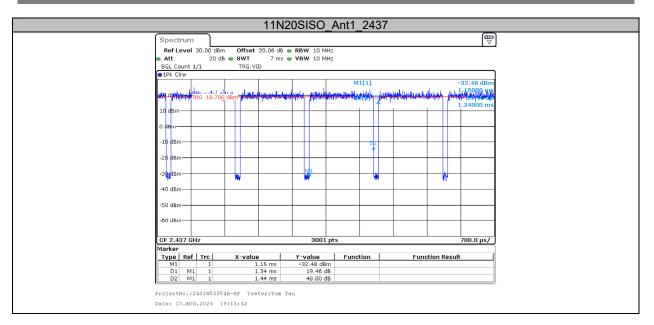


Appendix E: Band edge measurements

Test Graphs

Appendix F: Duty Cycle

Test Result


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T [Hz]	VBW Setting [HZ]
11B	Ant1	2437	8.41	8.51	98.82	/	/
11G	Ant1	2437	1.39	1.49	93.29	719	1000
11N20SISO	Ant1	2437	1.34	1.44	93.06	746	1000

Test Graphs

11B_Ant1_2437	
Spectrum	
Ref Level 30.00 dBm Offset 20.06 dB	
Att 20 dB SWT 30 ms VBW 10 MHz	
SGL Count 1/1 TRG: VID SGL Count 1/1 TRG: VID	
M1[1] 17.65 dBm	
20 dBm M1 11.43000 ms 0.01 dB	
8.41000 ms	
10 dBm- rks 11.800 dBm-	
0 d8m	
-10 dBm	
-20 dBm	
-30 dBm	
-40 dBm	
-50 dBm	
-60 dBm	
CF 2.437 GHz 3001 pts 3.0 ms/	
Marker	
Type Ref Trc X-value Y-value Function Function Result M1 1 11.43 ms 17.65 dBm	
D1 M1 1 8.41 ms -0.01 d8 D2 M1 1 8.51 ms 0.05 d8	
D2 M1 1 8.51ms 0.05 dB	
11G_Ant1_2437	
Spectrum 🕎	
Ref Level 30.00 dBm Offset 20.06 dB RBW 10 MHz ● Att 20 dB SWT 10 ms ● VBW 10 MHz	
SG Count 1/1 TRGVID	
●1Pk Clrw	
M1[1] 14.90 dBm	
TRG 17.900 dBm T ANTINA TANTA TANTA TANTA TANKA TANA TANA TAN	
10 dBm	
0.480	
0 dBm	
0 dBm	
-10 dBm	
-10 dBm	
-10 dBm	
-10 dBm -20 dBm -30 dBm -40 dBm	
-10 dBm -20 dBm -30 dBm -40 dBm -50	
-10 dBm -20 dBm -30 dBm -40 dBm	
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -6 dBm -7 dBm -7 dBm -7 dBm -7	
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -10	
-10 dBm -20 dBm -30 dBm -40 dBm -50	
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -50 dBm -60 dBm -70 dBm -10	
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -10	
-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -40 dBm -40 dBm -50 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 uBm -60 uBm -60 uBm -70 dBm -70	

TR-EM-RF010

Report No.: 2401W50954E-RFB

***** END OF REPORT *****

TR-EM-RF010