

TEST REPORT

Report Number: 30507211 Project Number: 3050721 December 18, 2003

Testing performed on the Unlicensed Transceiver FCC ID: HZB-S58-S60 IC ID: 1856A-S58S60

to FCC Part 15, Subparts C & B RSS-210

for **Proxim Corporation**

A2LA Certificate Number: 1755-01

Test Performed by: Intertek Testing Services 1365 Adams Court Menlo Park, CA 94025 Test Authorized by:
Proxim Corporation
935 Stewart Drive
Sunnyvale, California 94085

Prepared by: Date: December 18, 2003

Bruce Gordon

Reviewed by: Date: December 22, 2003

David Chernomordik, EMC Technical Manager

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

TABLE OF CONTENTS

1.0	Sum	mary of Tests	3
2.0	Conc	eral Description	4
2.0	2.1	Product Description	
	2.2	Related Submittal(s) Grants	
	2.3	Test Methodology	
	2.4	Test Facility	
3.0	Syste	em Test Configuration	9
	3.1	Support Equipment and description	
	3.2	Block Diagram of Test Setup	
	3.3	Justification	
	3.4	Software Exercise Program	10
	3.5	Mode of operation during test.	
	3.6	Modifications required for Compliance	10
	3.7	Additions, deviations and exclusions from standards	10
4.0	Meas	surement Results	11
	4.1	Conducted Output Power at Antenna Terminals	11
	4.2	6 dB RF Bandwidth	12
	4.6	Transmitter Radiated Emissions	36
	4.7	Radiated Emissions from Digital Section of Transceiver	42
	4.8	Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation)	47
	4.9	AC Line Conducted Emission	48
5.0	List	of Test Equipment	51
6.0	Docu	ment History	52
Anne	ndix A	– Out-of-band conducted emissions plots	53

1.0 Summary of Tests

FCC ID: HZB-S58-B60 IC ID: 1856A-S58S60

TEST	REFERENCE	REFERENCE	RESULTS
	FCC	IC	
Output power	15.247(b)	6.2.2(o)(b)	Complies
6 dB Bandwidth	15.247(a)(2)		Complies
Power Density	15.247(d)	6.2.2(o)(b)	Complies
Out-of-band Antenna	15.247(c)	6.2.2(o)(b)	Complies
Conducted Emission			
Out-of-band Radiated	15.247(c)	6.2.2(o)(b)	Not Applicable. The EUT
Emission (except emissions			passed out-of-band antenna
in restricted bands)			conducted emission
Radiated Emission in	15.209, 15.205	6.3	Complies
Restricted Bands			
AC Line-conducted Emission	15.207	6.6	Complies
Radiated Emission from	15.109	ICES-003	Complies
Digital Part			
Radiated Emission from	15.109	7 (category II)	Not Applicable. The operating
Receiver L.O.			frequency is above 960 MHz
RF Exposure Requirement	2.1091	14, RSS-102	Complies, see exhibit "RF
			Exposure"
Antenna Requirement	15.203	5.5	Not Applicable; professional
_			installation is required

A pre-production version of the EUT was received on October 28, 2003 in good operating condition. As declared by the Applicant, it is identical to the production units.

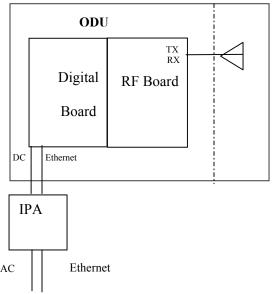
Date of Test: October 29 – December 18, 2003

2.0 General Description

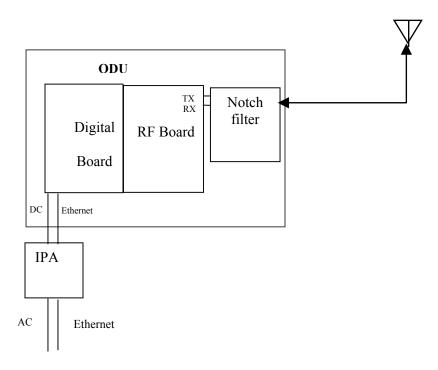
2.1 Product Description

The Equipment under Test (EUT), FCC ID: HZB-S58-S60 is a product family that includes the following models:

Model	Description
40100-252C	Tsunami Multipoint 20MB Subscriber Unit, Ext Ant
40100-452C	Tsunami Multipoint 40MB Subscriber Unit, Ext Ant
40100-652C	Tsunami Multipoint 60MB Subscriber Unit, Ext Ant
40100-28MC	Tsunami QuickBridge 20MB, Master, Ext Ant
40100-68MC	Tsunami QuickBridge 60MB, Master, Ext Ant
40100-28SC	Tsunami QuickBridge 20MB, Slave, Ext Ant
40100-68SC	Tsunami QuickBridge 60MB, Slave, Ext Ant
40100-29MC	Tsunami QuickBridge Il 20, Master, Ext Ant
40100-29SC	Tsunami QuickBridge ll 20, Slave, Ext Ant
40100-47MC	Tsunami QuickBridge Il 40, Master, Ext Ant
40100-47SC	Tsunami QuickBridge Il 40, Slave, Ext Ant
40100-69MC	Tsunami QuickBridge Il 60, Master, Ext Ant
40100-69SC	Tsunami QuickBridge ll 60, Slave, Ext Ant
40100-28M	Tsunami QuickBridge 20, Master
40100-28S	Tsunami QuickBridge 20, Slave
40100-68M	Tsunami QuickBridge 60, Master
40100-68S	Tsunami QuickBridge 60, Slave
40100-47M	Tsunami QuickBridge II 40, Master
40100-47S	Tsunami QuickBridge II 40, Slave
40100-49M	Tsunami QuickBridge II 40 with 2xT1/E1, Master
40100-49S	Tsunami QuickBridge II 40 with 2xT1/E1, Slave
40100-69M	Tsunami QuickBridge II 60, Master


The HZB-S58-S60 platform consists of two major components: an outdoor unit (ODU) and an indoor power adapter (IPA). It supports three modulation modes: QPSK ½, QPSK ¾, and 16QAM. Corresponding to each different modulation mode, the product is capable of data communication with data rate of 20Mbps, 30Mbps, 40Mbps and 60Mbps. The table above lists all product models Proxim markets or plans to market.

With regards to antenna connection, the product family can be divided into two groups, one with integrated antenna (integrated) and one using external antenna (connectorized).


The internal PCB design for all the models is identical. The firmware of the subscriber units is different from that of the QuickBridge units. A subscriber unit is used in a point-to-point network communicating to its base station located in a fixed central location, while two QuickBridge units are used in a point-to-point link communicating under a master-slave relationship. A connectorized unit is identical to integrated unit internally, except the connectorized unit has a notch filter hardware in between the RF output of the RF board and the radio antenna port. See the diagram below.

Antenna Integrated Unit

Connectorized Unit

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60 File: 30507211

Overview of the EUT, FCC ID: HZB-S58-S60

Applicant name & address	Proxim Corporation 935 Stewart Drive, Sunnyvale, CA 94085 USA	
Manufacturer	Proxim Corporation	
FCC Identifier	HZB-S58-S60	
Use of Product	Fixed Wireless Ethernet Access	
Type of Transmission	TDD	
Type of Modulation	QAM16, QPSK 3/4, QPSK 1/2	
Rated RF Output	20 dBm (peak)	
Frequency Range	5740 – 5810 MHz	
Number of Channel(s)	6 channels maximum	
Antenna Requirement	The EUT requires professional installation.	

As declared by the Applicant, the antennas listed in the following table may be used with the Connectorized **SU.** Therefore, the antennas marked with "X" have been chosen for testing.

Antenna Type	Manufacturer	Model Number	Mid-band Gain (dBi)	Notes	Used
Omni	Telex	5830AN	7.5	Vertical	X
	MTI	MT-482009/N	9		
	MTI	MT-483003/N	12		X
Foot Flat Panel	Gabriel	DFPD1-52	23.5		
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RFS	MA0528-23AN	23		
	Andrew	FPA5250D12-N	23.6		
2 Foot Flat Panel	Gabriel	DFPD2-52	28		X
2 TOOL T IAL T AIRCI	RFS	MA0528-28AN	28		1
	Andrew	FPA5250D24-N	28.5		
	MTI	MT-20004	28		
	RSI	A57A24-U	26.5		
2 Foot Parabolic	Gabriel	SSP2-52B	28.5		
2 FOOT FAIAUUIIC	Gabriel	SSD2-52A	28.4	Dual Pol	
	Gabriel	HSSP2-52	28.1	High Performance	1
_	YDI		28.3	rigii refformance	1
	Radio Waves	A5.8-2'-RW SP2-5.2	28.3	Linear or Circular	
	Radio Waves		28.1	Dual Pol	
		SPD2-5.2 P2F-52	29.4	Duai Poi	
	Andrew	PX2F-52 PX2F-52	29.4	Decal Del	
	Andrew			Dual Pol	
	RFS	SPF2-52A	27.9		
NE (D. 1.1)	RSI	P-57C24		T : C: 1	
3 Foot Parabolic	Radio Waves	SP3-5.8	31.4	Linear or Circular	
	Radio Waves	SPD3-5.8	31.1	Dual Pol	
	Radio Waves	SP3-5.2	31.4	Linear or Circular	
	Radio Waves	SPD3-5.2	31.1	Dual Pol	
	RFS	SPF3-52A	31.4		
	YDI	A5.8-3'-RW	31.4		
	Andrew	P3F-52	33.4		
	Andrew	PX3F-52	33.4	Dual Pol	
4 Foot Parabolic	Gabriel	SSP4-52A	34.2		
	Gabriel	SSD4-52	34.1		
	Gabriel	HSSP4-52	33.9		
	Radio Waves	SP4-5.2	34.6		
	Radio Waves	SPD4-5.2	34.4		
	RSI	P-57B48	34.7		
Foot Parabolic	Gabriel	SSP6-52A	37.5		
	Gabriel	SSD6-52	37.4		
	Gabriel	HSSP6-52	37.2		
	Radio Waves	SP6-5.2	37.7		
	Radio Waves	SPD6-5.2	37.5		
	RSI	P-57A72	38.2		
Foot Parabolic	Gabriel	SSP8-52	39.8		
	Gabriel	SSD8-52	39.7		X
	Gabriel	HSSP8-52	39.6		
	Gabriel	DRFB8-55ASE	40.7		
	RSI	P-57A96	40.8		

Notes:

All Proxim radios require professional installation.

Antennas with gain less than 7.5 dBi are not allowed

Antennas of other make may be used with the HZB-S58-S60 device, but must be of the same type, dimensions and gain as those listed.

2.2 Related Submittal(s) Grants

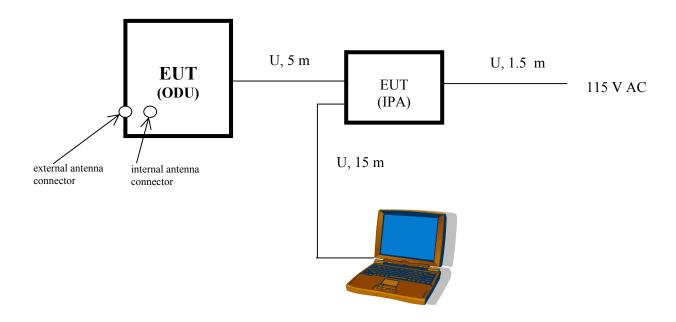
None.

2.3 Test Methodology

Both conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. All other measurements were made in accordance with the procedures in parts 2 and 15 of CFR 47.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC and A2LA accredited.



3.0 System Test Configuration

3.1 Support Equipment and description

Laptop computer: Hewlett Packard Omnibook 4150

3.2 Block Diagram of Test Setup

S = Shielded	F = With Ferrite
U = Unshielded	$\mathbf{m} = \mathbf{Meter}$

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60
File: 30507211 Page 9 of 96

3.3 Justification

For emission testing, the Equipment Under Test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

Care was taken to ensure proper power supply voltages during testing.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology.

3.5 Mode of operation during test

Transmitting signal on different channels with different types of modulation.

3.6 Modifications required for Compliance

Intertek installed no modifications during compliance testing in order to bring the product into compliance.

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

4.0 Measurement Results

4.1 Conducted Output Power at Antenna Terminals FCC Rule: 15.247(b)

Requirements

For Point-to-point systems operating in the 5725 - 5850 MHz band, maximum allowed transmitter output is 1 watt.

Procedure

The antenna port of the EUT was connected to the input of a peak power meter. Power was read directly from the power meter.

Test Results

Frequency	Modulation	Output Peak Power	Output Peak Power
MHz		(measured from integrated SU	(measured from connectorized SU
		RF output)	antenna connector)
		dBm	dBm
	QAM16	19.9	20.5
5740	QPSK 3/4	20.3	20.8
	QPSK 1/2	20.3	20.8
	QAM16	19.8	20.2
5782	QPSK 3/4	19.9	20.3
	QPSK 1/2	19.9	20.3
	QAM16	19.3	19.6
5810	QPSK 3/4	19.4	19.9
	QPSK 1/2	19.6	19.9

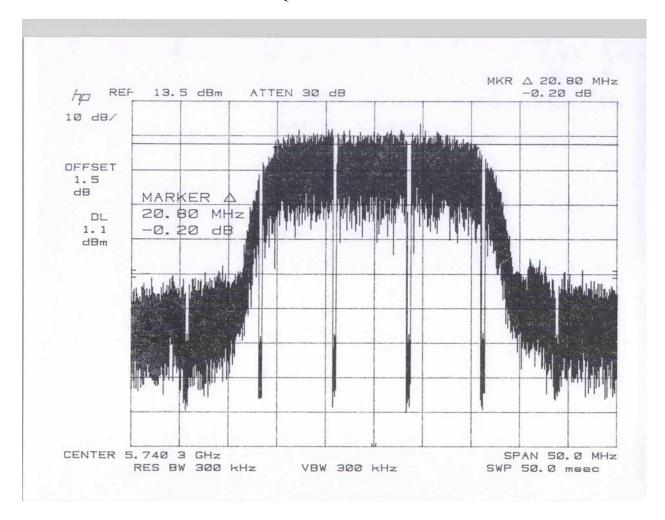
4.2 6 dB RF Bandwidth FCC Rule: 15.247(a)(2)

Requirements

The minimum 6-dB bandwidth shall be at least 500 kHz

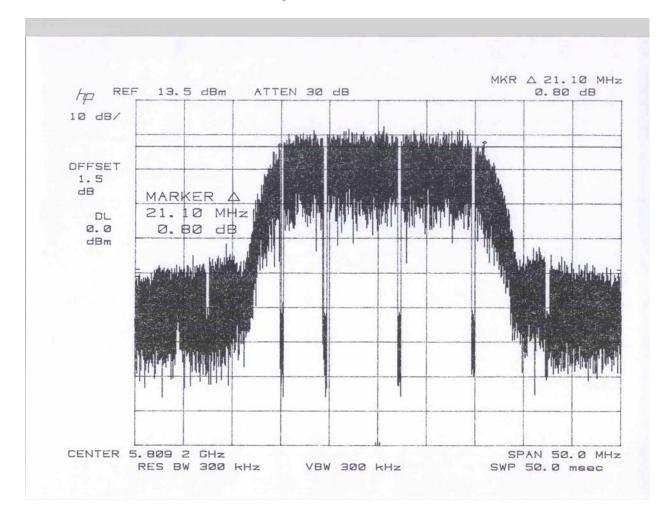
Procedure

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6-dB bandwidth was determined from where the channel output spectrum intersected the display line.

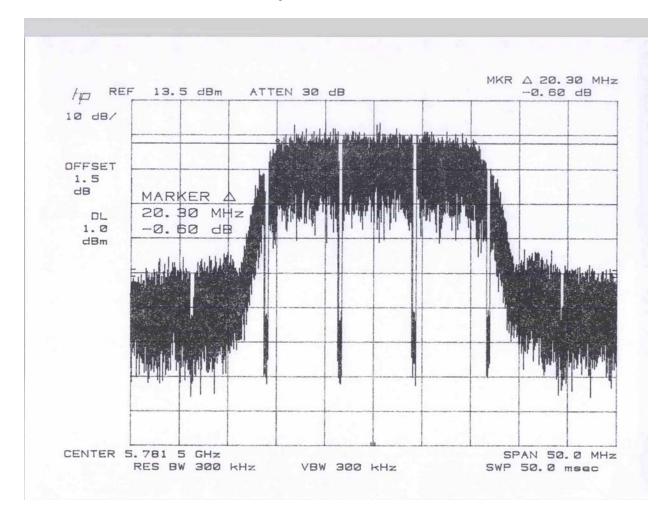

Test Result

Frequency Modulation 6-dB Bandwidth (measured from integrated SU RF output)		6-dB Bandwidth (measured from connectorized SU antenna connector)	
		MHz	MHz
5740	QAM16	20.6	20.8
	QAM16	20.5	20.3
5782	QPSK 3/4	20.7	20.9
	QPSK 1/2	20.6	21.8
5810	QAM16	20.5	21.1

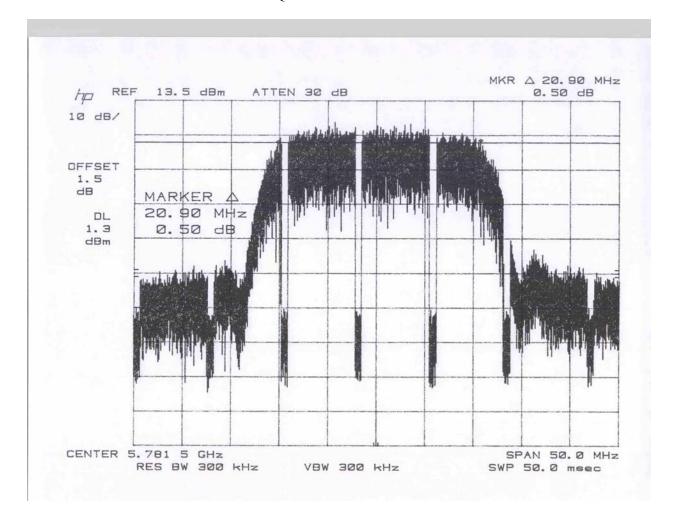
On the plots 2.1-2.5 the 6-dB bandwidth is presented for QAM16 modulation, transmission frequencies of 5710 MHz, 5782 MHz and 5810 MHz, and QPSK $\frac{3}{4}$ and QPSK $\frac{1}{2}$ modulations for the frequency 5782 MHz. The configurations are with an external antenna connector and with no external antenna connector. The Emission designator is defined as 21M8G7D.



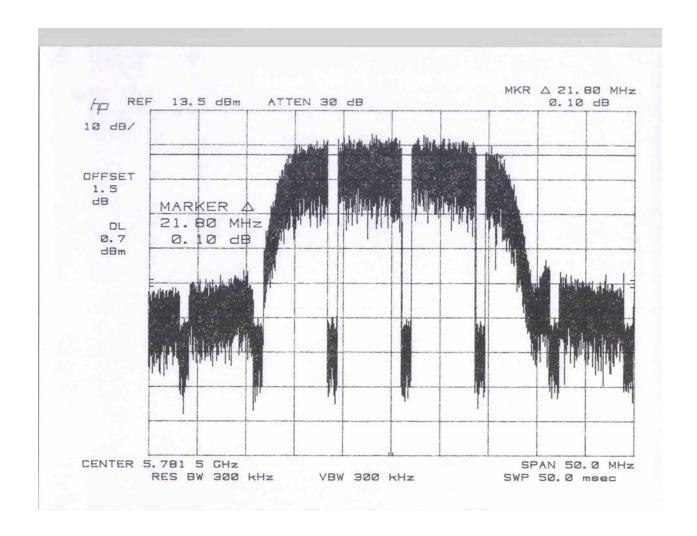
Plot 2.1 Low Channel with QAM16 modulation and an antenna connector



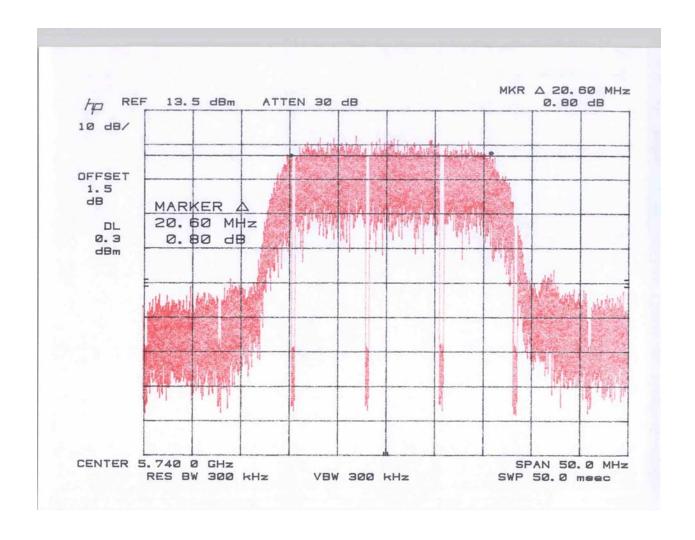
Plot 2.2 Hi Channel with QAM16 modulation and an antenna connector



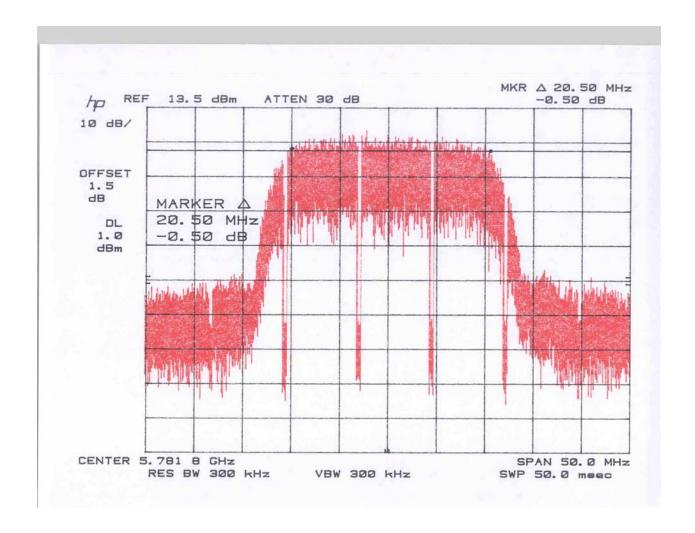
Plot 2.3 Middle Channel QAM 16 modulation and an antenna connector



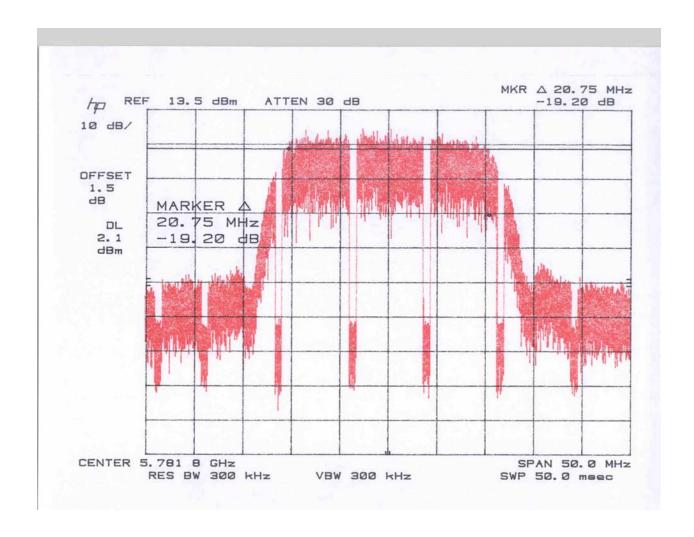
Plot 2.4 Middle Channel QPSK 3/4 modulation and an antenna connector



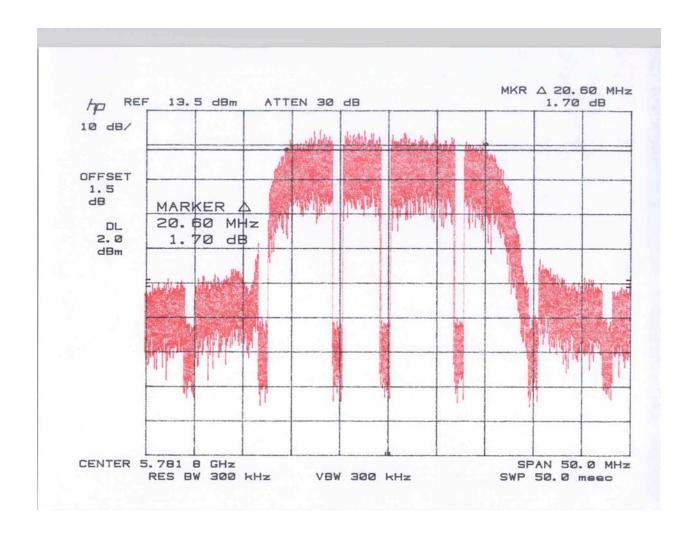
Plot 2.5 Middle Channel QPSK ½ modulation and an antenna connector



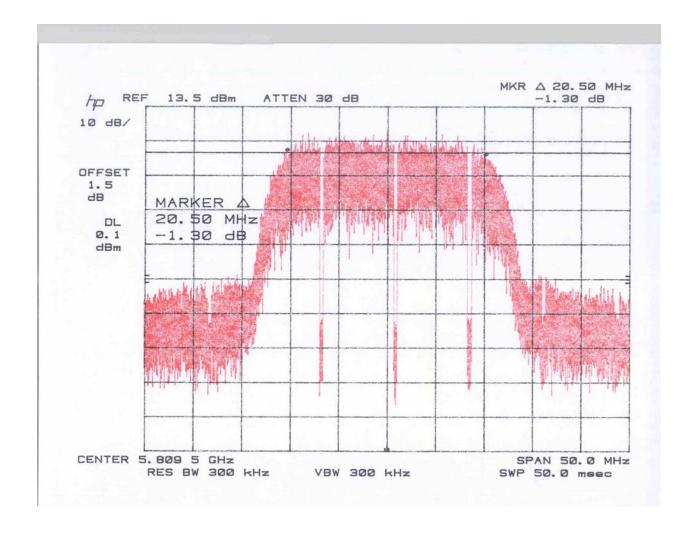
Plot 2.6 Low Channel with QAM16 modulation and no antenna connector



Plot 2.7 Middle Channel with QAM16 modulation and no antenna connector



Plot 2.8 Middle Channel with QPSK 3/4 modulation and no antenna connector



Plot 2.9 Middle Channel with QPSK ½ modulation and no antenna connector

Plot 2.10 High Channel with QAM16 modulation and no antenna connector

4.3 Power Density

FCC Rule: 15.247(d)

Requirements

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

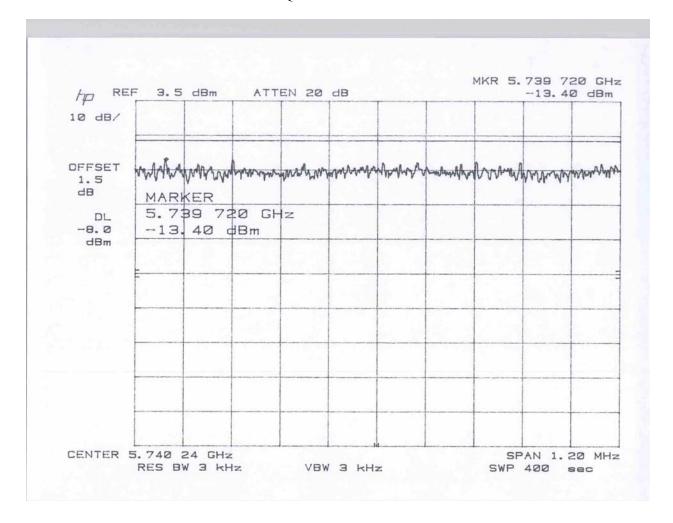
Procedure

The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output passband. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. Total SWEEP TIME is calculated as follows:

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

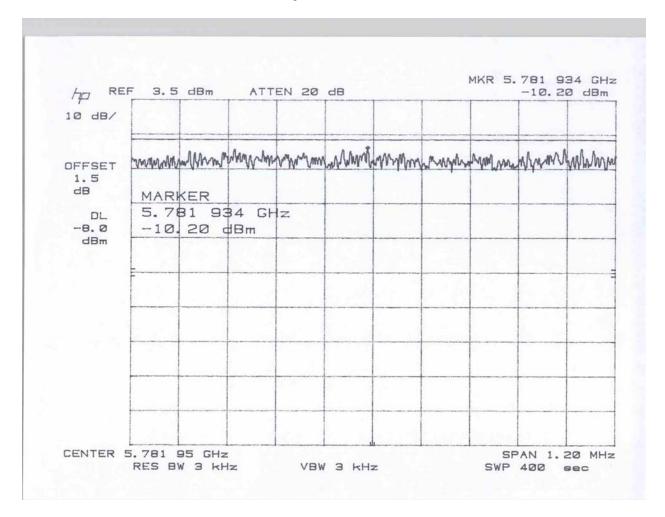
Frequency Span = 1200 kHz

Sweep Time = Frequency Span/3 kHz = 400 Seconds

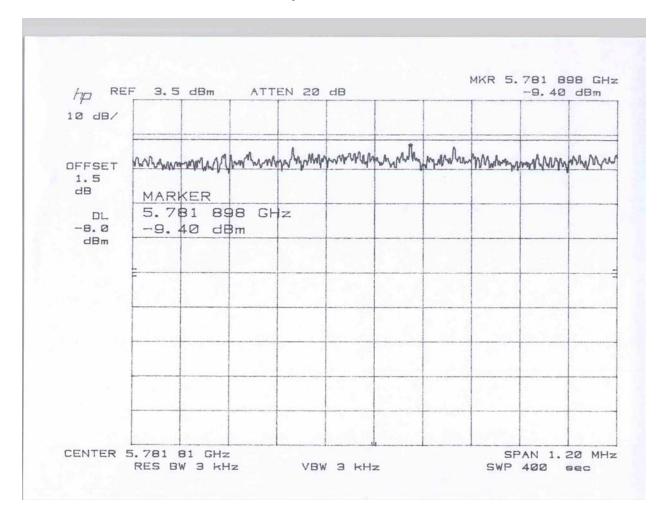

Test Result

Frequency MHz	Modulation	Power Density (measured from integrated SU RF output) dBm		Power Density (measured from connector antenna connector dBm	
		measured	plot	measured	plot
5740	QAM16	-13.6	3.6	-13.4	3.1
	QAM16	-13.2	3.7	-10.2	3.2
5775	QPSK 3/4	-9.5	3.8	-9.4	3.3
	QPSK 1/2	-10.1	3.9	-12.3	3.4
5810	QAM16	-13.2	3.10	-14.0	3.5

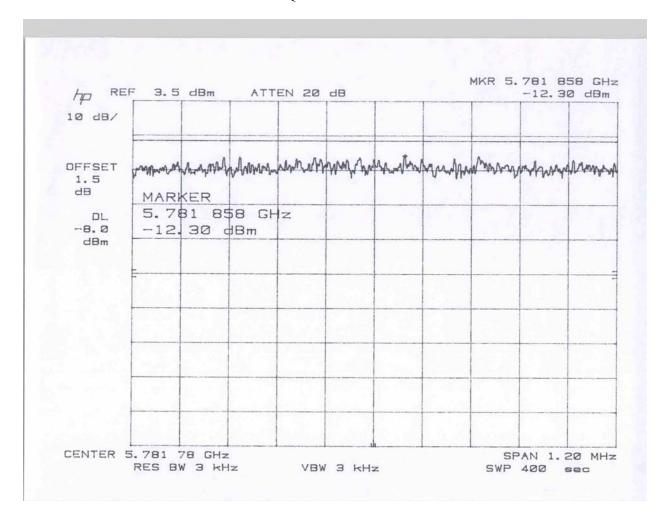
The EUT passed by 17.4 dB.



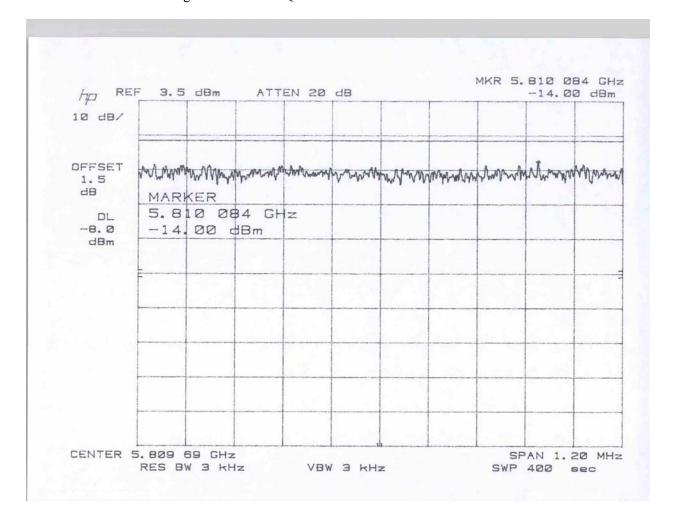
Plot 3.1 Low Channel with QAM16 modulation and an antenna connector



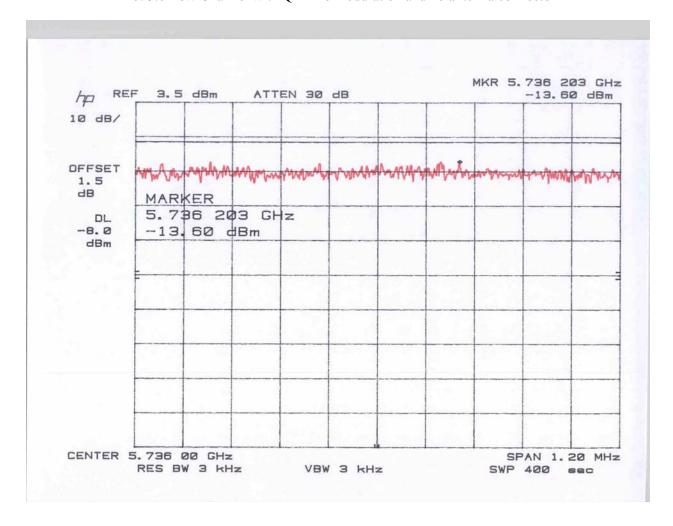
Plot 3.2 Middle Channel with QAM16 modulation and an antenna connector



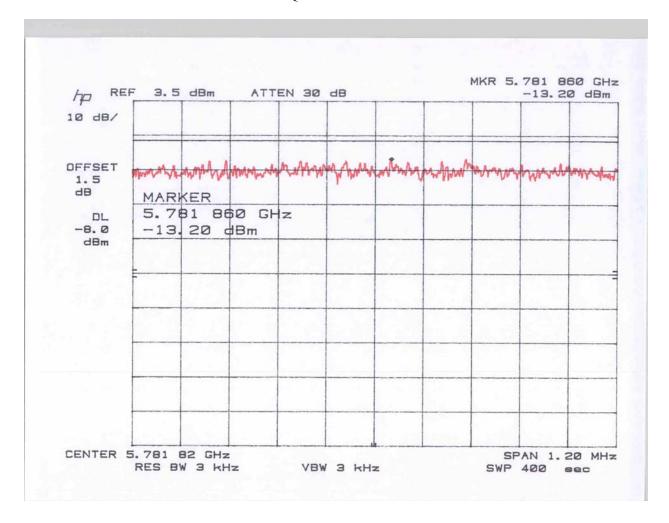
Plot 3.3 Middle Channel with QPSK 3/4 modulation and an antenna connector



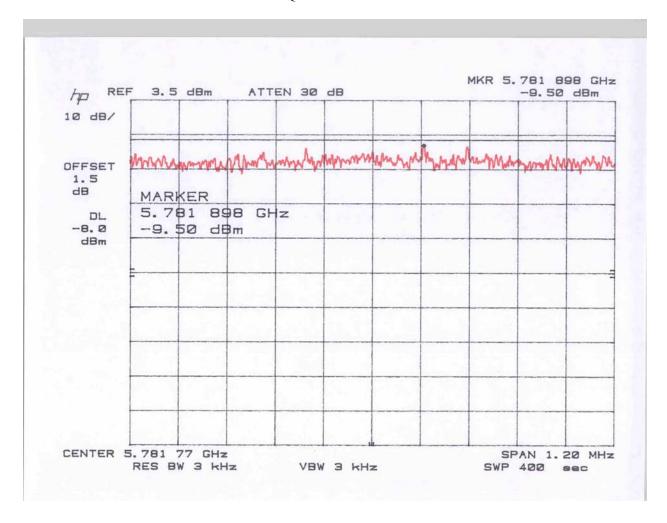
Plot 3.4 Middle Channel with QPSK ½ modulation and an antenna connector



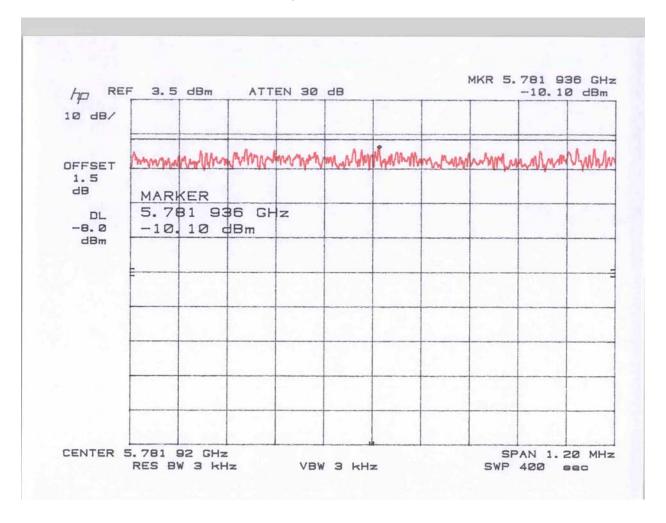
Plot 3.5 High Channel with QAM16 modulation and an antenna connector



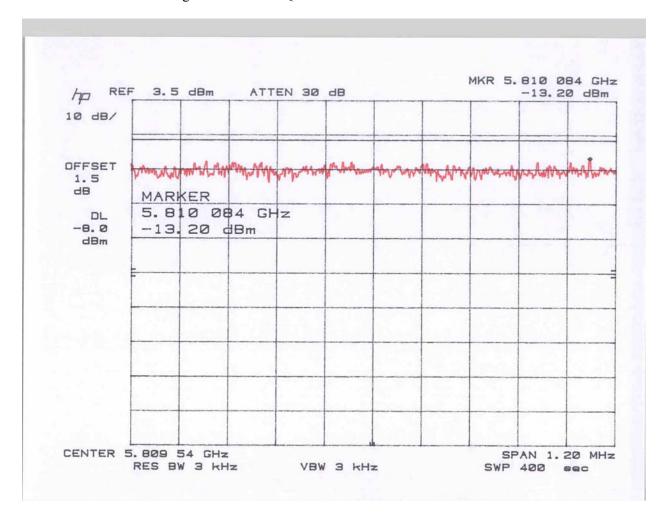
Plot 3.6 Low Channel with QAM16 modulation and no antenna connector



Plot 3.7 Middle Channel with QAM16 modulation and no antenna connector



Plot 3.8 Middle Channel with QPSK 3/4 modulation and no antenna connector



Plot 3.9 Middle Channel with QPSK ½ modulation and no antenna connector

Plot 3.10 High Channel with QAM16 modulation and no antenna connector

4.4 Out-of-Band Conducted Emissions FCC Rule: 15.247(c)

Requirements

In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

Procedure

A spectrum analyzer was connected to the antenna port of the transmitter. Analyzer Resolution Bandwidth was set to 100 kHz. For each channel investigated, the in-band and out-of-band emission measurements were performed.

The out-of-band emissions were measured from 10 MHz to 40 GHz for the configuration with an external antenna connector for QAM16 modulation. In addition, measurements on the band-edge frequencies were performed for both configuration for QPSK ³/₄ and QPSK ¹/₂ modulations.

Test Result

Refer to the following plots in Appendix A for the test result.

Plot	Point of measurement	Modulation	Description
4.1a-4.1e	connectorized SU antenna connector	QAM16	low channel, scan 30 MHz to 40 GHz
4.2a–4.2d	connectorized SU antenna connector	QAM16	middle channel, scan 30 MHz to 40 GHz
4.3a–4.3d	connectorized SU antenna connector	QAM16	high channel, scan 30 MHz to 40 GHz
4.4a–4.4b	connectorized SU antenna connector	QPSK ¾	low channel, scan 4 GHz to 5.85 GHz
4.4c-4.4d	connectorized SU antenna connector	QPSK ½	low channel, scan 4 GHz to 5.85 GHz
4.5a-4.5b	connectorized SU antenna connector	QPSK ³ / ₄	high channel, scan 5.725 GHz to 8 GHz
4.5c-4.5d	connectorized SU antenna connector	QPSK ½	high channel, scan 5.725 GHz to 8 GHz
4.6.4.61	· · · · IGIIDE	0.43/1/6	1 1 5 01 4 5 05 01
4.6a–4.6b	integrated SURF output	QAM16	low channel, scan 5 GHz to 5.85 GHz
4.6c–4.6d	integrated SU RF output	QPSK 3/4	low channel, scan 5 GHz to 5.85 GHz
4.6e-4.6f	integrated SU RF output	QPSK ½	low channel, scan 5 GHz to 5.85 GHz
4.7a-4.7b	integrated SU RF output	QAM16	high channel, scan 5.725 GHz to 10 GHz
4.7c-4.7d	integrated SU RF output	QPSK ¾	high channel, scan 5.725 GHz to 10 GHz

4.7e–4.7f integrated SU RF output QPSK ½	high channel, scan 5.725 GHz to 10 GHz
--	--

The EUT passed by more than 20 dB.

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60 File: 30507211

4.6 Transmitter Radiated Emissions FCC Rules: 15.247 (c), 15.205, 15.209

Procedure

Radiated emission measurements were performed from 30 MHz to 40,000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz - for frequencies above 1000 MHz

The EUT is placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

Field Strength Calculation

```
FS = RA + AF + CF - AG Where FS = Field Strength in dB(\mu V/m) RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB(\mu V) CF = Cable \ Attenuation \ Factor \ in \ dB AF = Antenna \ Factor \ in \ dB(1/m) AG = Amplifier \ Gain \ in \ dB
```

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

```
RA = 52.0 \; dB(\mu V) \qquad AF = 7.4 \; dB(1/m) \\ CF = 1.6 \; dB \qquad AG = 29.0 \; dB \\ FS = 52 + 7.4 + 1.6 - 29 = 32 \; dB(\mu V/m) \\ Level in \; \mu V/m = Common \; Antilogarithm \; [(32 \; dB(\mu V/m)/20] = 39.8 \; \mu V/m \\ CF = 1.6 \; dB \qquad AG = 29.0 \; dB
```

Result

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance. The EUT passed by 15.2 dB.

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60
File: 30507211 Page 36 of 96

Company:	PROXIM	N	Model #:				Standard		FCC § 15	.247(R.B.)
EUT:	SU with Interna	1 Ant. I	FCC ID:	HZB-S58-S6	50		Limits		2	
Project #:	3050721	7	Test Date: (October 29, 2	2003		Test Distance	e	1	meter
Test Mode:	Tx	I	Engineer:	AK.			Duty Relaxat	ion	0	dB
	Ante	enna Used		P	re-Amp Us	ed		Cabl	e Used	
Number:	14	8	22	10	4	13	10	0		0
								Cabl	e	
Model:	EMCO 3115	3160-9	3160-10	Miteg	None	CTT	Cable #3	A	N	lone

TX at 5740 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	44.2	Peak	Н	39.4	-26.7	-9.5	47.4	74.0	-27.6
11480	35.1	Ave.	Н	39.4	-26.7	-9.5	38.3	54.0	-15.7
22960	37.7 *	Peak	H/V	40.4	-12.8	-9.5	55.8	74.0	-18.2
22960	24.8 *	Ave.	H/V	40.4	-12.8	-9.5	42.9	54.0	-11.1

TX at 5782 MHz

F	requency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
	MHz	$dB(\mu V)$	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
	11564	44.7	Peak	Н	39.4	-26.7	-9.5	47.9	74.0	-26.1
	11564	35.6	Ave.	Н	39.4	-26.7	-9.5	38.8	54.0	-15.2
	23128	38.9 *	Peak	H/V	40.4	-12.8	-9.5	57.0	74.0	-17.0
	23128	25.2 *	Ave.	H/V	40.4	-12.8	-9.5	43.3	54.0	-10.7

TX at 5810 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11620	45.8	Peak	Η	39.4	-28.0	-9.5	47.7	74.0	-26.3
11620	36.5	Ave.	Н	39.4	-28.0	-9.5	38.4	54.0	-16.1

Notes: a) D.C.F: Distance Correction Factor

- b) Correction Factor (dB) = Cable #3 Pre-amp gain + Cable A + High-pass filter (10GHz) loss
- c) Net (dB) = Reading + Antenna Factor + Correction Factor
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.
- f) * Noise floor reading

Company:	PROXIM	N	Model #:					Standard		FCC §	15.247(R.B.)
EUT:	SU with Externa	l Ant. I	FCC ID: 📘	HZB-S58-S60				Limits		2		
Project #:	3050721	7	Γest Date: <mark>C</mark>	October 29,			Test Distance	e	1	me	eter	
Test Mode:	Tx	I	Engineer: 🛭	AK.				Duty Relaxa	tion	0	dB	}
	Antei	nna Used		Pre-Amp Used					Cabl	e Used		
Number:	14	8	22	22 10		4	13	10	0		0	
Model:	EMCO 3115	3160-9	3160-10	Miteg None		CTT	Cable #3 Cable		A	None		

OMNI Antenna, model: 5830AN

TX at 5740 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	42.5	Peak	Н	39.4	-26.7	-9.5	45.7	74.0	-28.3
11480	33.5	Ave.	Н	39.4	-26.7	-9.5	36.7	54.0	-17.3
22960	37.7 *	Peak	H/V	40.4	-12.8	-9.5	55.8	74.0	-18.2
22960	24.8 *	Ave.	H/V	40.4	-12.8	-9.5	42.9	54.0	-11.1

TX at 5782 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11564	45.8	Peak	Н	39.4	-26.7	-9.5	49.0	74.0	-25.0
11564	36.5	Ave.	Н	39.4	-26.7	-9.5	39.7	54.0	-14.3
23128	38.9 *	Peak	H/V	40.4	-12.8	-9.5	57.0	74.0	-17.0
23128	25.2 *	Ave.	H/V	40.4	-12.8	-9.5	43.3	54.0	-10.7

TX at 5810 MHz

171 00 10 1									
Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11620	47.0	Peak	Н	39.4	-28.0	-9.5	48.9	74.0	-26.3
11620	37.8	Ave.	Н	39.4	-28.0	-9.5	39.7	54.0	-14.7

Notes: a) D.C.F: Distance Correction Factor

- b) Correction Factor (dB) = Cable #3 Pre-amp gain + Cable A + High-pass filter (10 GHz) loss
- c) Net (dB) = Reading + Antenna Factor + Correction Factor
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.
- f) * Noise floor reading

Company:	PROXIM	N	Iodel #:				Standard		FCC § 15.	247(R.B.)
EUT:	SU with External	l Ant. F	CC ID:	HZB-S58-S6	50		Limits		2	
Project #:	3050721	T	`est Date: <mark>C</mark>	October 29, 2	2003		Test Distance	•	1	meter
Test Mode:	Tx	E	Ingineer: 🖊	AK.			Duty Relaxat	ion	0	dB
	Antei	nna Used		P	re-Amp Us	sed		Cable	e Used	
Number:	14	8	22	10	4	13	10	0		0
								Cable	e	
Model:	EMCO 3115	3160-9	3160-10	Miteg	None	CTT	Cable #3	A	No	one

OMNI Antenna, model: MT-483003/N

TX at 5740 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	41.7	Peak	Н	39.4	-26.7	-9.5	44.9	74.0	-29.1
11480	31.2	Ave.	Н	39.4	-26.7	-9.5	34.4	54.0	-19.6
22960	37.7 *	Peak	H/V	40.4	-12.8	-9.5	55.8	74.0	-18.2
22960	24.8 *	Ave.	H/V	40.4	-12.8	-9.5	42.9	54.0	-11.1

TX at 5782 MHz

 17									
Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11564	43.2	Peak	Н	39.4	-26.7	-9.5	46.4	74.0	-27.6
11564	33.6	Ave.	Н	39.4	-26.7	-9.5	36.8	54.0	-17.2
23128	38.9 *	Peak	H/V	40.4	-12.8	-9.5	57.0	74.0	-17.0
23128	25.2 *	Ave.	H/V	40.4	-12.8	-9.5	43.3	54.0	-10.7

TX at 5810 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11620	44.7	Peak	Н	39.4	-28.0	-9.5	46.6	74.0	-27.4
11620	35.1	Ave.	Н	39.4	-28.0	-9.5	37.0	54.0	-17.0

Notes: a) D.C.F: Distance Correction Factor

- b) Correction Factor (dB) = Cable #3 Pre-amp gain + Cable A + High-pass filter (10GHz) loss
- c) Net (dB) = Reading + Antenna Factor + Correction Factor
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.

Page 39 of 96

f) * Noise floor reading

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60 File: 30507211

Company:	PROXIM	N	Aodel #:				Standard		FCC § 15.	247(R.B.)
EUT:	SU with External	Ant. F	CCC ID: 1	HZB-S58-S6	50		Limits		2	
Project #:	3050721	T	est Date: C	october 29, 2	2003		Test Distance	,	1	meter
Test Mode:	Tx	F	Ingineer: 🖊	AK.			Duty Relaxat	ion	0	dB
	Anten	ına Used		P	re-Amp Use	d		Cable	Used	
Number:	14	8	22	10	4	13	10	0		0
								Cable	e	
Model:	EMCO 3115	3160-9	3160-10	Miteg	None	CTT	Cable #3	A	No	one

Flat Panel Antenna, model: DFPD2-52

TX at 5740 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	41.8	Peak	Н	39.4	-26.7	-9.5	45.0	74.0	-32.0
11480	31.0	Ave.	Н	39.4	-26.7	-9.5	34.2	54.0	-19.8
22960	37.7 *	Peak	H/V	40.4	-12.8	-9.5	55.8	74.0	-18.2
22960	24.8 *	Ave.	H/V	40.4	-12.8	-9.5	42.9	54.0	-11.1

TX at 5782 MHz

TA de of the limite										
Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin	
MHz	dB(µV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB	
11564	41.2	Peak	Н	39.4	-26.7	-9.5	44.4	74.0	-29.6	
11564	31.3	Ave.	Н	39.4	-26.7	-9.5	34.5	54.0	-19.5	
23128	38.9 *	Peak	H/V	40.4	-12.8	-9.5	57.0	74.0	-17.0	
23128	25.2 *	Ave.	H/V	40.4	-12.8	-9.5	43.3	54.0	-10.7	

TX at 5810 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	$dB(\mu V)$	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11620	41.7	Peak	Н	39.4	-28.0	-9.5	43.6	74.0	-26.3
11620	31.5	Ave.	Н	39.4	-28.0	-9.5	33.4	54.0	-16.1

Notes: a) D.C.F: Distance Correction Factor

- b) Correction Factor (dB) = Cable #3 Pre-amp gain + Cable A + High-pass filter (10GHz) loss
- c) Net (dB) = Reading + Antenna Factor + Correction Factor
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.
- f) * Noise floor reading

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60 File: 30507211

Company:	PROXIM	N	Aodel #:					Standard		FCC § 15	.247(R.B.)
EUT:	SU with External	Ant. F	CC ID:	HZB-S58-S	50			Limits		2	
Project #:	3050721	T	Test Date: (October 29, 2	2003			Test Distance	;	1	meter
Test Mode:	Tx	F	Ingineer:	AK.				Duty Relaxat	ion	0	dB
	Anteni	na Used		F	re-An	np Used			Cable	e Used	
Number:	14	8	22	10		4	13	10	0		0
									Cable	e	
Model:	EMCO 3115	3160-9	3160-10	Miteg	No	one	CTT	Cable #3	A	N	lone

Parabolic Antenna, model: SSD8-52

TX at 5740 MHz

Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(µV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	dB
11480	42.5	Peak	Н	39.4	-26.7	-9.5	45.7	74.0	-28.3
11480	31.9	Ave.	Н	39.4	-26.7	-9.5	35.1	54.0	-18.6
22960	37.7 *	Peak	H/V	40.4	-12.8	-9.5	55.8	74.0	-18.2
22960	24.8 *	Ave.	H/V	40.4	-12.8	-9.5	42.9	54.0	-11.1

TX at 5782 MHz

17. at 07.02 iv	11 12								
Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11564	43.6	Peak	Н	39.4	-26.7	-9.5	46.8	74.0	-27.2
11564	34.0	Ave.	Н	39.4	-26.7	-9.5	37.2	54.0	-16.8
23128	38.9 *	Peak	H/V	40.4	-12.8	-9.5	57.0	74.0	-17.0
23128	25.2 *	Ave.	H/V	40.4	-12.8	-9.5	43.3	54.0	-10.7

TX at 5810 MHz

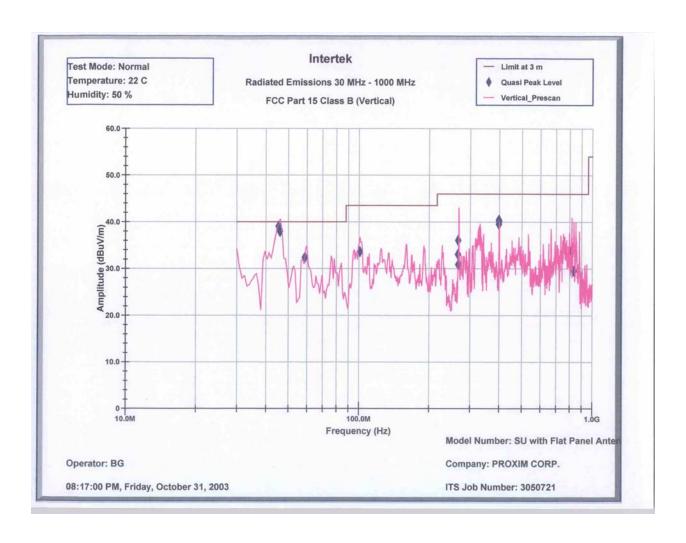
Frequency	Reading	Detector	Ant. Pol.	Ant. Factor	Correction Factor	D.C.F	Net	Limit @3m	Margin
MHz	dB(μV)	P/A/Q	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	$dB(\mu V/m)$	DB
11620	45.0	Peak	Н	39.4	-28.0	-9.5	46.9	74.0	-27.1
11620	35.5	Ave.	Н	39.4	-28.0	-9.5	37.4	54.0	-16.6

Notes: a) D.C.F: Distance Correction Factor

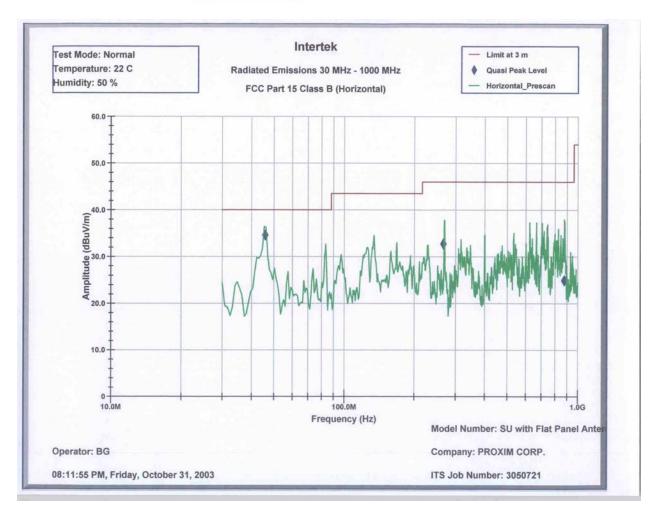
- b) Correction Factor (dB) = Cable #3 Pre-amp gain + Cable A + High-pass filter (10GHz) loss
- c) Net (dB) = Reading + Antenna Factor + Correction Factor
- d) Negative signs (-) in Margin column signify levels below the limits.
- e) All other emissions not reported are below the equipment noise floor which is at least 10 dB below the limits.
- f) * Noise floor reading

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60
File: 30507211 Page 41 of 96

4.7 Radiated Emissions from Digital Section of Transceiver FCC Rule: 15.109


Procedure

Radiated emission measurements were performed from 30 MHz to 1000 MHz. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater. See also section 4.6 for the test procedure and field strength calculation.


Result

The result is presented on the following pages. The EUT passed by 1.0 dB.

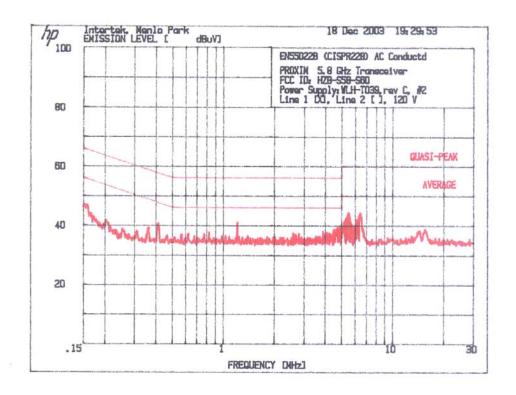
			Interte	ek				
	R	adiated Em	issions 30	MHz - 1	000 MHz			
		FCC Part 1	5 Class B	(QP-Ver	tical)			5-4 2- 1 1
Operator: BG				Mo	del Numb	er: SU wi	th Flat Pa	nel Antenna
				IT	S Job Nu	mber: 305	0721	7
08:17:00 PM, 1	Friday, Octob	per 31, 200)3	Co	mpany: P	ROXIM COR	P.	
	1	2	3	4	5	6	7	8
requency	Quasi Pk FS	Limit@3	Margin	RA	AG	CF	AF	Atten
MHz	dB(uV/m)	dB(uV/m)	dB	dB(uV)		dB	dB(1/m)	dB
45.288 MHz	39.0	40.0	-1.0	59.5	32.4	0.6	8.3	3.0
45.713 MHz	38.4	40.0	-1.6	59.1	32.4	0.6	8.0	3.0
45.913 MHz	37.9	40.0	-2.1	58.8	32.4	0.6	7.9	3.0
58.738 MHz	32.3	40.0	-7.7	55.7	32.3	0.8	5.2	3.0
100.96 MHz	33.6	43.5	-9.9	54.8	32.3	0.9	7.3	3.0
265.418 MHz	33.1	46.0	-12.9	47.8	32.2	1.5	13.0	3.0
265.758 MHz	36.1	46.0	-9.9	50.9	32.2	1.5	13.0	3.0
266.225 MHz	30.9	46.0	-15.1	45.7	32.2	1.5	12.9	3.0
397.982 MHz	39.6	46.0	-6.4	51.5	32.3	1.9	15.5	3.0
398.237 MHz	40.4	46.0	-5.6	52.3	32.3	1.9	15.5	3.0
398.715 MHz	40.2	46.0	-5.8	52.1	32.3	1.9	15.5	3.0
814.707 MHz	33.9	46.0	-12.1	39.5	32.4	2.7	21.1	3.0
332.496 MHz	29.5	46.0	-16.5	34.8	32.3	2.7	21.4	3.0
Test Mode: Norm	mal							
Temperature: 22	2 C							
Humidity: 50 %								
			Page					

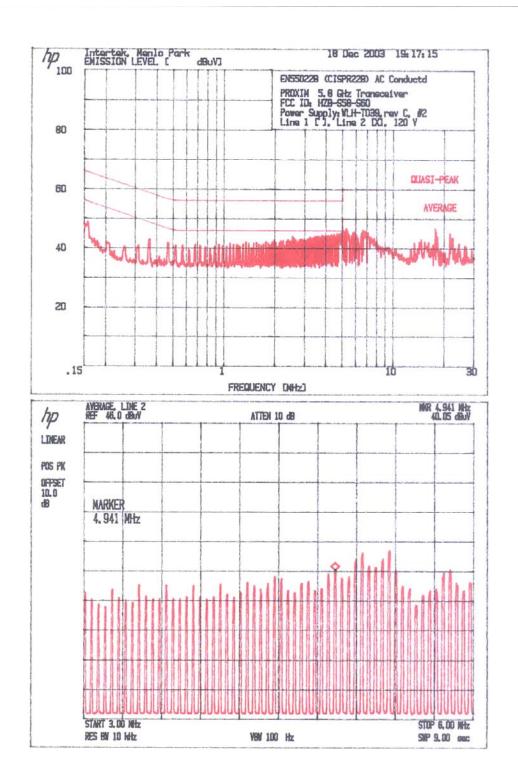
			Interte	ek				
	Ra	diated Emi:	ssions 30	MHz - 1	000 MHz			
	E	CC Part 15	Class B	(QP-Hori	zontal)			
Operator: BG						er: SU wi	th Flat Pa	nel Antenna
A STATE OF THE PARTY OF THE PAR						mber: 305		
08:17:41 PM,	Friday, Octob	er 31, 200	3	Co	mpany: P	ROXIM COR	Ρ.	
	1	2	3	4	5	6	7	8
requency	Quasi Pk FS	Limit@3m	Margin	RA	AG	CF	AF	Atten
MHz	dB(uV/m)	dB(uV/m)	dB	dB(uV)	dB	dB	dB(1/m)	dB
15.783 MHz	34.6	40.0	-5.4			0.6	8.4	3.0
265.7575 MHz	32.7	46.0	-13.3				12.9	3.0
375.13 MHz	24.9	46.0	-21.1			2.8	23.1	3.0
Test Mode: Nor	mal							
Cemperature: 2	2 C							
Humidity: 50 %								
		100						
9.59 (4)								
		7.7						
	100							
			Page	1				

4.8 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation) FCC Rule: 15.109, 15.111

Not required - EUT operation above 960 MHz only.

EMC Report for Proxim Cor. on the Unlicensed Transceiver HZB-S58-S60 File: 30507211




4.9 AC Line Conducted Emission FCC Rule: 15.207

AC line conducted emission test was performed according the ANSI C63.4 standard. The EUT was connected to AC Line through the LISNs.

For the test result, see attached plots. The EUT passed by 5 dB.

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. INTERVAL	CAL. DUE
Spectrum Analyzer w/85650 QP Adapter	Hewlett Packard	8566B	2416A00317 2043A00251	12	10/28/04
Spectrum Analyzer w/86650 QP Adapter	Hewlett Packard	8568B	1912A0053 2521A01021	12	11/18/04
Spectrum Analyzer	Hewlett Packard	8565E	AE9674	12	5/27/04
BI-Log Antenna	EMCO	3143	9509-1160	12	3/24/04
Horn Antenna	EMCO	3115	8812-3049	12	4/08/04
Horn Antenna	EMCO	3160-09	Not Labeled	#	#
Horn Antenna	EMCO	3160-10	Not Labeled	#	#
Pre-Amplifier	Miteq	AMF-4D-001180-24-10P	799159	12	4/06/04
Pre-Amplifier	Avantek	AFT-18855	8723H705	12	4/10/04
Pre-amplifier	CTT	ACO/400	47526	12	4/10/04
LISN	FCC	FCC-LISN-50-50-M-H	2011	12	2/08/04

[#] No Calibration required

6.0 Document History

Revision/ Job Number	Writer Initials	Date	Change
1.0 / 3050721	BG	December 18, 2003	Original document

Appendix A – Out-of-band conducted emissions plots

Plot	Point of measurement	Modulation	Description
4.1a–4.1e	connectorized SU antenna connector	QAM16	low channel, scan 30 MHz to 40 GHz
4.2a-4.2d	connectorized SU antenna connector	QAM16	middle channel, scan 30 MHz to 40 GHz
4.3a–4.3d	connectorized SU antenna connector	QAM16	high channel, scan 30 MHz to 40 GHz
4.4a–4.4b	connectorized SU antenna connector	QPSK ³ / ₄	low channel, scan 4 GHz to 5.85 GHz
4.4c-4.4d	connectorized SU antenna connector	QPSK ½	low channel, scan 4 GHz to 5.85 GHz
4.5a–4.5b	connectorized SU antenna connector	QPSK ¾	high channel, scan 5.725 GHz to 8 GHz
4.5c–4.5d	connectorized SU antenna connector	QPSK ½	high channel, scan 5.725 GHz to 8 GHz
4.6a–4.6b	integrated SU RF output	QAM16	low channel, scan 5 GHz to 5.85 GHz
4.6c-4.6d	integrated SU RF output	QPSK ¾	low channel, scan 5 GHz to 5.85 GHz
4.6e-4.6f	integrated SU RF output	QPSK ½	low channel, scan 5 GHz to 5.85 GHz
4.7a-4.7b	integrated SU RF output	QAM16	high channel, scan 5.725 GHz to 10 GHz
4.7c-4.7d	integrated SU RF output	QPSK ¾	high channel, scan 5.725 GHz to 10 GHz
4.7e-4.7f	integrated SU RF output	QPSK ½	high channel, scan 5.725 GHz to 10 GHz