

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Qingdao Intelligent & Precise Electronics Co., Ltd.
Address:	No.218, Qianwangang Road, Economic and Technological Development Zone, Qingdao,Shandong Province, China

Manufacturer or	Oin adea Intelligent 9 Descies Flortropies Co. Ltd	
Supplier:	Qingdao Intelligent & Precise Electronics Co., Ltd.	
Address:	No.218, Qianwangang Road, Economic and Technological Development Zone,	
Address.	Qingdao,Shandong Province, China	
Product:	WiFi/BT Module	
Brand Name:	Hisense	
Model Name:	MWH634B	
FCC ID:	2AJVQ-MWH634B	
Date of tests:	Feb.13, 2025 ~ Mar.19, 2025	

The tests have been carried out according to the requirements of the following standard:

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun		
Engineer / Mobile Department	Manager / Mobile Department		
Lu Hannen	Simperbo		
Date: Mar.19, 2025	Date: Mar.19, 2025		

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

RI	ELEA	ASE C	CONTROL RECORD	5
1	S	UMM	ARY OF TEST RESULTS	6
	1.1	MEA	ASUREMENT UNCERTAINTY	7
2	G	ENE	RAL INFORMATION	8
	2.1	GEN	NERAL DESCRIPTION OF EUT	8
	2.2	DES	SCRIPTION OF TEST MODES	9
	2	.2.1	CONFIGURATION OF SYSTEM UNDER TEST	10
	2	.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
	2.3	GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	12
	2.4	DES	SCRIPTION OF SUPPORT UNITS	12
3	Т	EST	TYPES AND RESULTS	13
	3.1	CON	NDUCTED EMISSION MEASUREMENT	13
	3	.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	13
	3	.1.2	TEST INSTRUMENTS	13
	3	.1.3	TEST PROCEDURES	13
	3	.1.4	DEVIATION FROM TEST STANDARD	14
	3	.1.5	TEST SETUP	14
	3	.1.6	EUT OPERATING CONDITIONS	14
	3	.1.7	TEST RESULTS	14
	3.2	RAD	DIATED EMISSION AND BANDEDGE MEASUREMENT	15
	3	.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	15
	3	.2.2	TEST INSTRUMENTS	16
	3	.2.3	TEST PROCEDURES	17
	3	.2.4	DEVIATION FROM TEST STANDARD	17
	3	.2.5	TEST SETUP	18
	3	.2.6	EUT OPERATING CONDITIONS	19
	3	.2.7	TEST RESULTS	20
	3.3	NUN	MBER OF HOPPING FREQUENCY USED	48
	3	.3.1	LIMIT OF HOPPING FREQUENCY USED	48
	3	.3.2	TEST SETUP	48
	3	.3.3	TEST INSTRUMENTS	48
	3	.3.4	TEST PROCEDURES	49
	3	.3.5	DEVIATION FROM TEST STANDARD	49
	3	.3.6	TEST RESULTS	49
	3.4	DWI	ELL TIME ON EACH CHANNEL	50

3.4.1	LIMIT OF DWELL TIME USED	50
3.4.2	TEST SETUP	50
3.4.3	TEST INSTRUMENTS	50
3.4.4	TEST PROCEDURES	50
3.4.5	DEVIATION FROM TEST STANDARD	51
3.4.6	TEST RESULTS	51
3.5 CHA	NNEL BANDWIDTH	52
3.5.1	LIMITS OF CHANNEL BANDWIDTH	52
3.5.2	TEST SETUP	52
3.5.3	TEST INSTRUMENTS	52
3.5.4	TEST PROCEDURE	52
3.5.5	DEVIATION FROM TEST STANDARD	52
3.5.6	EUT OPERATING CONDITION	53
3.5.7	TEST RESULTS	53
3.6 HOF	PPING CHANNEL SEPARATION	54
3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	54
3.6.2	TEST SETUP	54
3.6.3	TEST INSTRUMENTS	54
3.6.4	TEST PROCEDURES	54
3.6.5	DEVIATION FROM TEST STANDARD	54
3.6.6	TEST RESULTS	55
3.7 MAX	KIMUM OUTPUT POWER	55
3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	55
3.7.2	TEST SETUP	55
3.7.3	TEST INSTRUMENTS	55
3.7.4	TEST PROCEDURES	55
3.7.5	DEVIATION FROM TEST STANDARD	56
3.7.6	EUT OPERATING CONDITION	56
3.7.7	TEST RESULTS	56
3.7.7.1	MAXIMUM PEAK OUTPUT POWER	56
3.7.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	56
3.8 OUT	OF BAND MEASUREMENT	57
3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	57
3.8.2	TEST INSTRUMENTS	57
3.8.3	TEST PROCEDURE	57
3.8.4	DEVIATION FROM TEST STANDARD	57

3.8	.5 EUT OPERATING CONDITION57	
3.8	.6 TEST RESULTS57	
4	PHOTOGRAPHS OF THE TEST CONFIGURATION58	
5	MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAE	58
6	APPENDIX59	
20DB	EMISSION BANDWIDTH59	
TE	ST RESULT59	
TE	ST GRAPHS60	
occ	JPIED CHANNEL BANDWIDTH63	
TE	ST RESULT	
TE	ST GRAPHS64	
MAX	MUM CONDUCTED OUTPUT POWER67	
TE	ST RESULT	
CARI	RIER FREQUENCY SEPARATION68	
TE	ST GRAPHS	
TIME	OF OCCUPANCY70	
TE	ST RESULT	
TE	ST GRAPHS71	
NUM	BER OF HOPPING CHANNELS74	
TE	ST GRAPHS74	
BANI	DEDGE MEASUREMENTS76	
TE	ST GRAPHS76	
CON	DUCTED SPURIOUS EMISSION79	
TE	ST GRAPHS79	
DUT	CYCLE82	
TE	ST RESULT82	
TE	ST GRAPHS	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED	
PSU-NQN2503180111RF01	Original release	Mar.19, 2025	

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD	STANDARD TEST TYPE AND LIMIT					
15.207	AC Power Conducted Emission	N/A				
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Compliance				
15.247(a)(1) (iii)	247(a)(1) Dwell Time on Each Channel					
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Compliance				
15.247(b)	Maximum Peak Output Power	Compliance				
15.247(d)& 15.209	Transmitter Radiated Emissions	Compliance				
15.247(d)	Out of band Measurement	Compliance				
15.203	Antenna Requirement	Compliance				

NOTE:

- If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

*Test Lab Information Reference

Lab A:

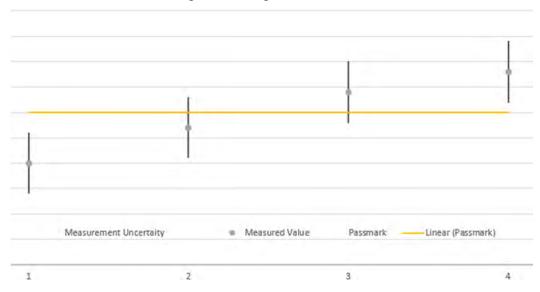
Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY		
AC Power Conducted emissions	±2.70dB		
Radiated emissions (9KHz~30MHz)	±2.68dB		
Radiated emissions (30MHz~1GHz)	±4.98dB		
Radiated emissions (1GHz ~6GHz)	±4.70dB		
Radiated emissions (6GHz ~18GHz)	±4.60dB		
Radiated emissions (18GHz ~40GHz)	±4.12dB		
Conducted emissions	±4.01dB		
Occupied Channel Bandwidth	±43.58KHz		
Conducted Output power	±2.06dB		
Power Spectral Density	±0.85 dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

	, -	-	
Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	WiFi/BT Module	
BRAND NAME*	Hisense	
MODEL NAME*	MWH634B	
NOMINAL VOLTAGE*	3.3Vdc (Battery supply)	
MODULATION TECHNOLOGY	FHSS	
MODULATION TYPE*	GFSK, 8DPSK, π/4 DQPSK	
OPERATING FREQUENCY	2402MHz~2480MHz	
NUMBER OF CHANNEL	79	
MAX. OUTPUT POWER	4.688mW (Max. Measured)	
ANTENNA TYPE*	Loop Antenna with 4.17dBi gain	
HW VERSION*	V1.00	
SW VERSION*	N/A	
I/O PORTS*	Refer to user's manual	
CABLE SUPPLIED*	N/A	

NOTE:

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

2.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE		APPLICA	ABLE TO		DECORPTION
MODE	RE<1G	G RE≥1G PLC APCM DESCRIPTION	DESCRIPTION		
-	V	V	V	V	-

Where

RE<1G: Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	78	FHSS	π/4-DQPSK	2DH5

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	0, 39, 78	FHSS	π/4-DQPSK	2DH5

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	TYPE
-	0 to 78	78	FHSS	π /4-DQPSK	2DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- oxtimes The following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH1/DH3/DH5
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH1/2DH3/2DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH1/3DH3/3DH5

TEST CONDITION:

APPLICABLE TO	PPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY
RE<1G	23deg. C, 70%RH	DC 3.3V By Battery Supply	Hanwen Xu
RE≥1G	23deg. C, 70%RH	DC 3.3V By Battery Supply	Hanwen Xu
PLC	25deg. C, 52%RH	DC 3.3V By Battery Supply	Hanwen Xu
APCM	25deg. C, 60%RH	DC 3.6V By Battery Supply	Hanwen Xu

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2020

NOTE: 1. All test items have been performed and recorded as per the above standards.

2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	AC Line: Unshielded, Detachable 1.5m
2	AC Line: Unshielded, Detachable 1.5m
3	AC Line: Unshielded, Detachable 1.5m

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)		
0.15 ~ 0.5	Quasi-peak	Average	
0.5 ~ 5 5 ~ 30	66 to 56 56 60	56 to 46 46 50	

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

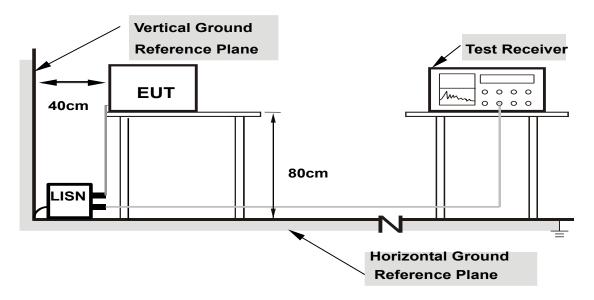
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25

NOTE: 1. The test was performed in CE shielded room.

2. The calibration interval of the above test instruments is 12/24months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.


c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

N/A

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,23	Aug.21,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.23,23	Feb.22,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Sep.06,23	Sep.05,25
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CA	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

NOTE: 1. The calibration interval of the above test instruments is 12/24/36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

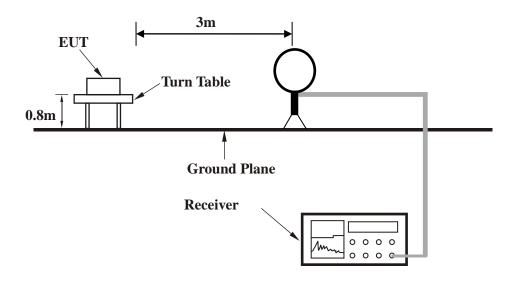
Tel: +86 (0557) 368 1008

3.2.3 TEST PROCEDURES

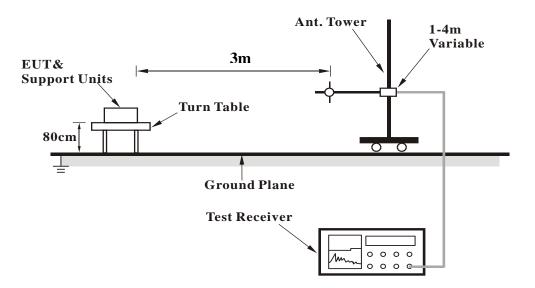
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) /
 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test.
 The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

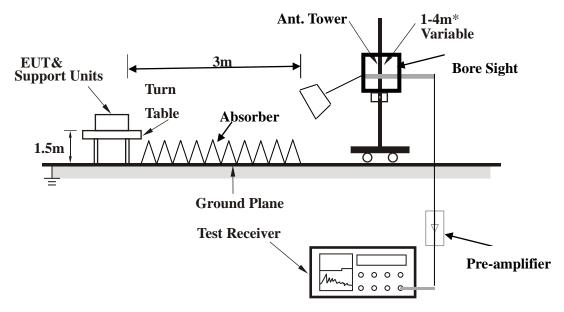

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

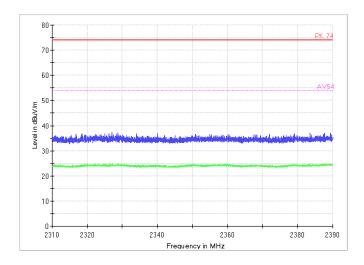
<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

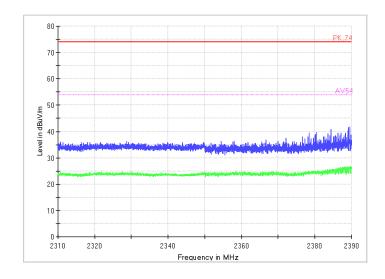
Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

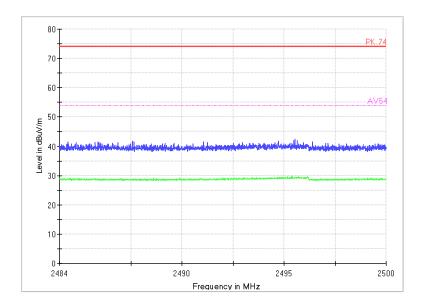

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

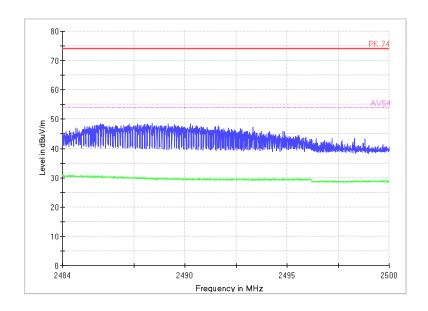

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

Radiated Emission Band Edge for BT

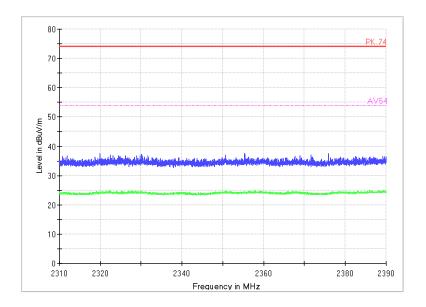
Carrier frequency (MHz): 2402


Channel No.:0 Test Mode: GFSK Polarity: Vertical

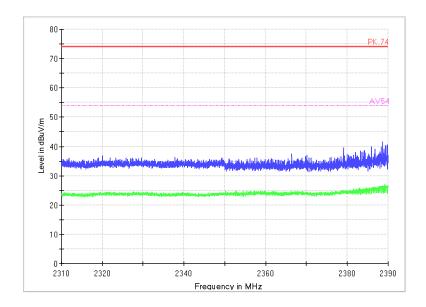
Carrier frequency (MHz): 2402


Channel No.:0
Test Mode: GFSK
Polarity: Horizontal

Carrier frequency (MHz): 2480

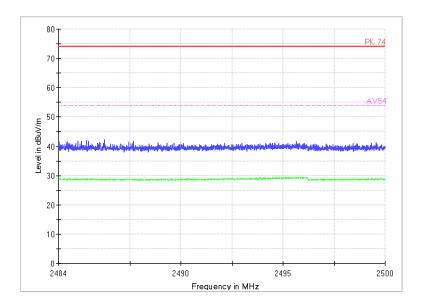

Channel No.:78
Test Mode: GFSK
Polarity: Vertical

Carrier frequency (MHz): 2480


Channel No.:78
Test Mode: GFSK
Polarity: Horizontal

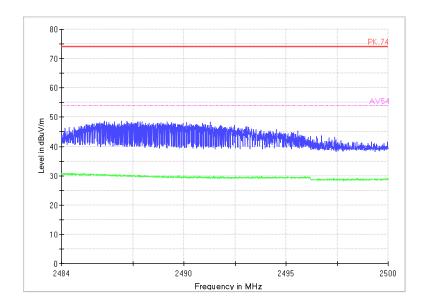
Carrier frequency (MHz): 2402 Channel No.:0 Test Mode: π/4DQPSK

Polarity: Vertical


Carrier frequency (MHz): 2402

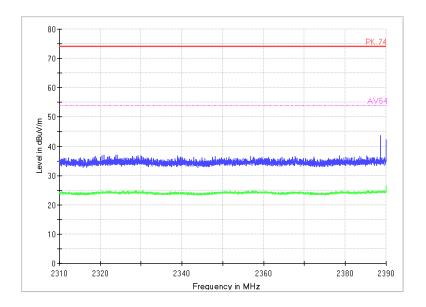
Channel No.:0

Test Mode: $\pi/4DQPSK$


Polarity: Horizontal

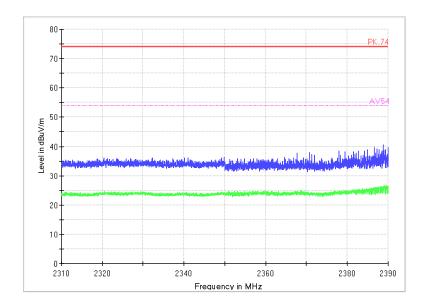
Carrier frequency (MHz): 2480 Channel No.:78 Test Mode: π/4DQPSK

Polarity: Vertical


Carrier frequency (MHz): 2480

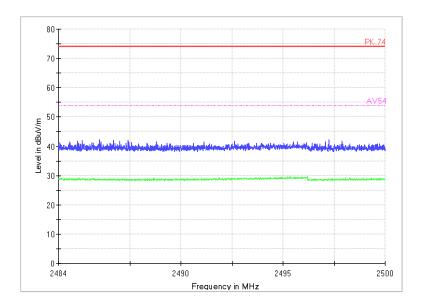
Channel No.:78

Test Mode: π/4DQPSK


Polarity: Horizontal

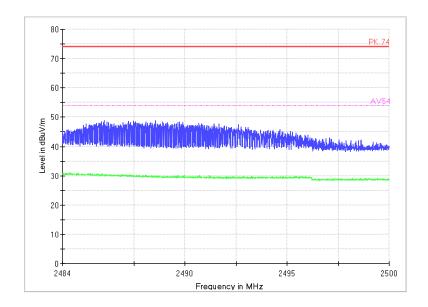
Carrier frequency (MHz): 2402 Channel No.:0 Test Mode: 8DPSK

Polarity: Vertical



Carrier frequency (MHz): 2402

Channel No.:0


Test Mode: 8DPSK Polarity: Horizontal

Carrier frequency (MHz): 2480

Channel No.:78
Test Mode: 8DPSK
Polarity: Vertical

Carrier frequency (MHz): 2480

Channel No.:78
Test Mode: 8DPSK
Polarity: Horizontal

Radiated Emission for BT

After comparison, the worst case attitude is EUT lay down.

Determining Spurious Emissions Levels

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

The measurement results are obtained as described below:

Result= Pmea+ ARpl

Sample calculation: $(13.68 dB\mu V/m) = (29.08 dB\mu V) + (-15.4 dB/m)$, the corresponding frequency is 52.2615MHz.

For GFSK

Channel No.:0

Frequency	Result	ARpl	Pmea	Polarity	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
52.2615	13.68	-15.4	29.08	Vertical	40	26.32
94.893	12.09	-18.1	30.19	Vertical	43.5	31.41
120.792	7.09	-19.1	26.19	Vertical	43.5	36.41
199.9925	15.82	-16.6	32.42	Vertical	43.5	27.68
436.333	21.57	-10.4	31.97	Vertical	46	24.43
750.031	16.27	-4.2	20.47	Vertical	46	29.73

For π/4DQPSK

Channel No.:0

Frequency	Result	ARpl	Pmea	Polarity	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
31.067	15.36	-19.1	34.46	Vertical	40	24.64
57.4995	12.68	-15.9	28.58	Vertical	40	27.32
99.9855	12.52	-17.2	29.72	Vertical	43.5	30.98
196.1125	12.09	-16.5	28.59	Vertical	43.5	31.41
436.333	21.89	-10.4	32.29	Vertical	46	24.11
872.2025	18.23	-2.4	20.63	Vertical	46	27.77

For 8DPSK

Channel No.:0

Frequency	Result	ARpl	Pmea	Polarity	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)

31.746	14.86	-19.2	34.06	Vertical	40	25.14
58.033	12.81	-16	28.81	Vertical	40	27.19
99.258	10.61	-17.4	28.01	Vertical	43.5	32.89
199.265	10.68	-16.6	27.28	Vertical	43.5	32.82
436.333	21.71	-10.4	32.11	Vertical	46	24.29
896.016	17.68	-2.5	20.18	Vertical	46	28.32

For GFSK

Channel No.:39

Frequency	Result	ARpl	Pmea	Dolority	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
31.067	15.3	-19.1	34.4	Vertical	40	24.7
57.354	12.17	-15.9	28.07	Vertical	40	27.83
100.81	8.86	-17.1	25.96	Vertical	43.5	34.64
199.944	13.08	-16.6	29.68	Vertical	43.5	30.42
436.3815	22.65	-10.4	33.05	Vertical	46	23.35
744.017	20.49	-4.2	24.69	Vertical	46	25.51

For $\pi/4DQPSK$

Channel No.:39

Frequency	Result	ARpl	Pmea	Dolority	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
31.94	14.17	-19.3	33.47	Vertical	40	25.83
59.4395	10.43	-16.3	26.73	Vertical	40	29.57
150.2315	9.49	-20.6	30.09	Vertical	43.5	34.01
199.9925	15.84	-16.6	32.44	Vertical	43.5	27.66
436.333	21.68	-10.4	32.08	Vertical	46	24.32
878.7015	17.97	-2.3	20.27	Vertical	46	28.03

For 8DPSK

Channel No.:39

Frequency	Result	ARpl	Pmea	Dolority	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
30	12.99	-18.7	31.69	Vertical	40	27.01
57.5965	11.46	-15.9	27.36	Vertical	40	28.54
121.762	11.05	-19.2	30.25	Vertical	43.5	32.45
199.9925	15.79	-16.6	32.39	Vertical	43.5	27.71
436.3815	22.54	-10.4	32.94	Vertical	46	23.46

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

872.736	20.98	-2.4	23.38	Vertical	46	25.02
012.100	20.50	-∠.¬	20.00	v Ci ticai	70	20.02

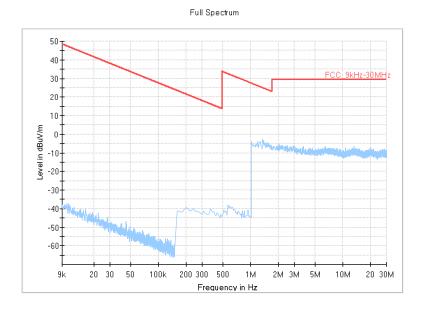
For GFSK

Channel No.:78

Frequency	Result	ARpl	Pmea	Dolority	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
30.3395	15.89	-18.8	34.69	Vertical	40	24.11
64.726	7.64	-17.4	25.04	Vertical	40	32.36
101.295	11.17	-17.1	28.27	Vertical	43.5	32.33
199.9925	15.85	-16.6	32.45	Vertical	43.5	27.65
436.3815	22.52	-10.4	32.92	Vertical	46	23.48
861.7265	17.7	-2.6	20.3	Vertical	46	28.3

For $\pi/4DQPSK$

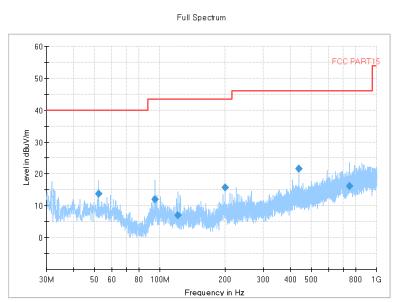
Channel No.:78


Frequency	Result	ARpl	Pmea	Polarity	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
30.2425	14.78	-18.8	33.58	Vertical	40	25.22
58.0815	13.31	-16	29.31	Vertical	40	26.69
124.0415	12.76	-19.6	32.36	Vertical	43.5	30.74
199.9925	15.87	-16.6	32.47	Vertical	43.5	27.63
436.333	21.59	-10.4	31.99	Vertical	46	24.41
830.056	17.64	-3.3	20.94	Vertical	46	28.36

For 8DPSK

Channel No.:78

Frequency	Result	ARpl	Pmea	Polarity	Limit	Margin
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Polarity	(dBuV/m)	(dB)
52.3585	13.36	-15.4	28.76	Vertical	40	26.64
58.712	11.02	-16.2	27.22	Vertical	40	28.98
98.8215	11.61	-17.5	29.11	Vertical	43.5	31.89
199.9925	15.78	-16.6	32.38	Vertical	43.5	27.72
436.333	21.69	-10.4	32.09	Vertical	46	24.31
937.435	18.34	-1.8	20.14	Vertical	46	27.66



Frequency Range: 9kHz -30MHz
Detector: QP mode

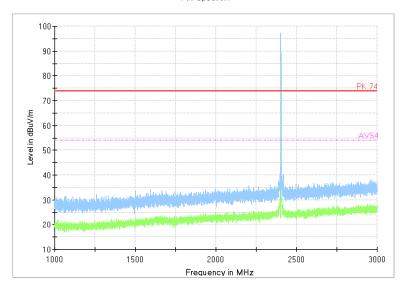
Note: The relevant tests have been performed in order to verify in which mode would have the worst features, the result show above is the worst case.

Carrier frequency (MHz): 2402

Channel No.:0

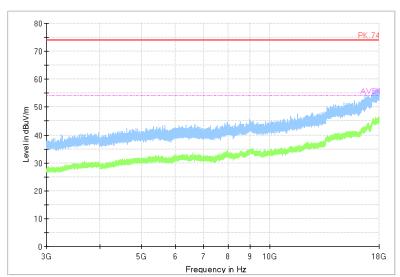
Frequency Range:30MHz-1GHz

Detector: QP mode Modulation type: GFSK

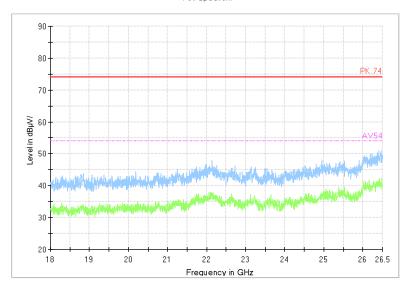

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

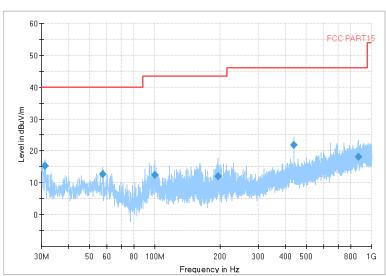
Tel: +86 (0557) 368 1008



Frequency Range: 1GHz-3GHz
Detector: Av mode and PK mode
Modulation type: GFSK


Full Spectrum

Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: GFSK

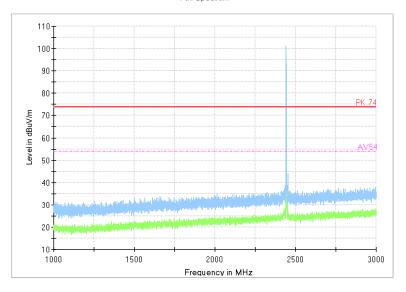


Frequency Range: 18GHz-26GHz
Detector: Av mode and PK mode
Modulation type: GFSK

Carrier frequency (MHz): 2402

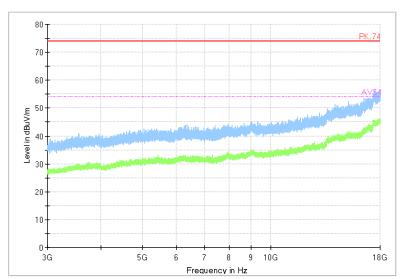
Channel No.:0

Full Spectrum

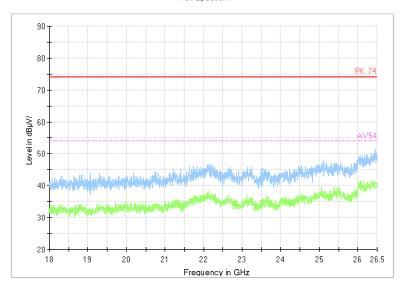

Frequency Range:30MHz-1GHz

Detector: QP mode

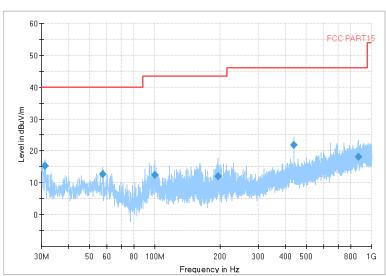
Modulation type: $\pi/4DQPSK$



Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK


Full Spectrum

Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

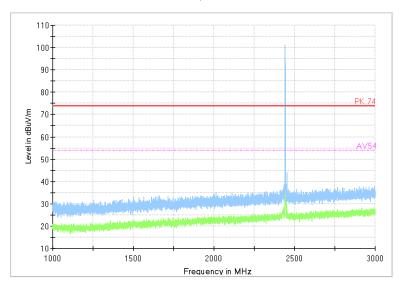


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

Carrier frequency (MHz): 2402

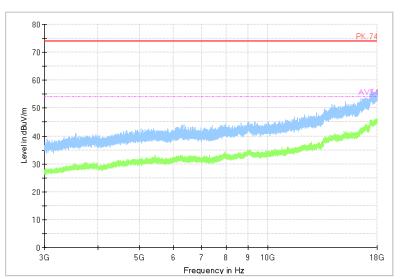
Channel No.:0

Full Spectrum

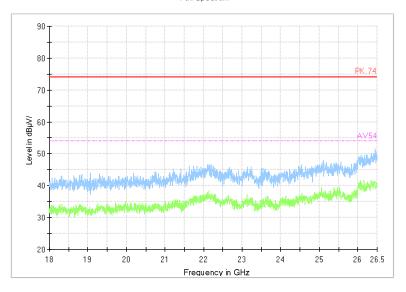

Frequency Range:30MHz-1GHz

Detector: QP mode

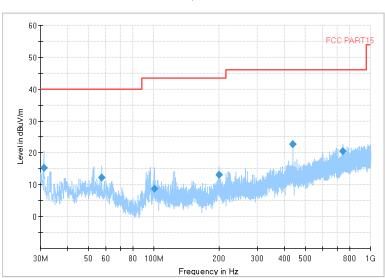
Modulation type: $\pi/4DQPSK$



Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK


Full Spectrum

Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

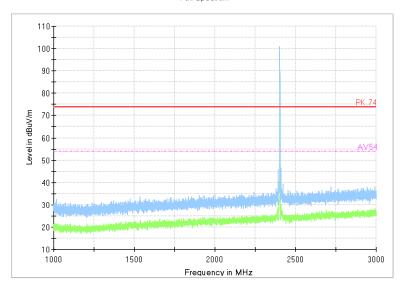


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

Carrier frequency (MHz): 2440

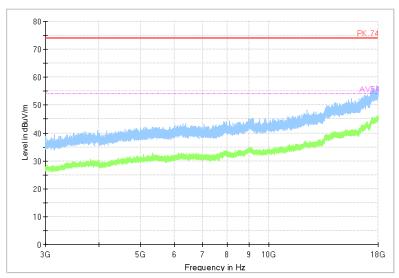
Channel No.:39

Full Spectrum

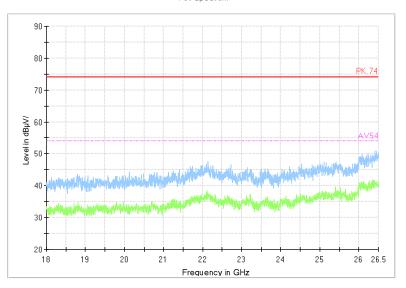


Frequency Range: 30MHz-1GHz

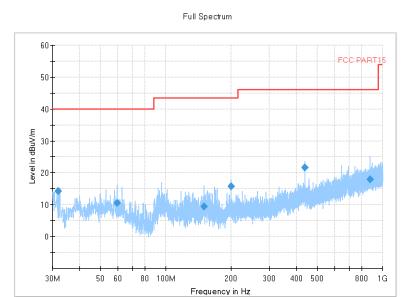
Detector: QP mode Modulation type: GFSK



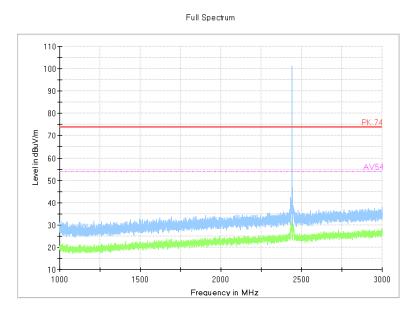
Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: GFSK


Full Spectrum

Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: GFSK



Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: GFSK

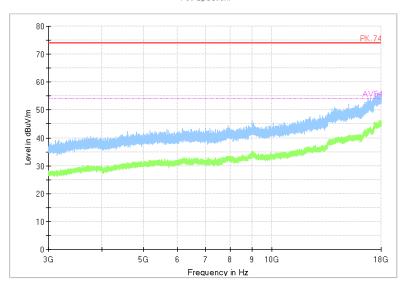


Carrier frequency (MHz): 2440

Channel No.:39

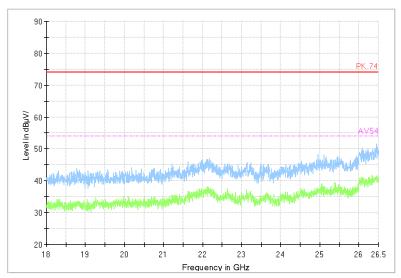
Frequency Range: 30MHz-1GHz
Detector:QP mode
Modulation type: π/4DQPSK

Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK


Huarui 7layers High Technology (Suzhou) Co., Ltd.

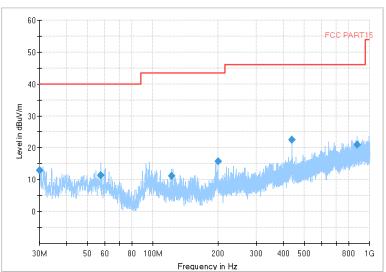
Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

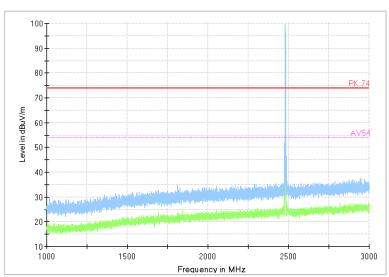


Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

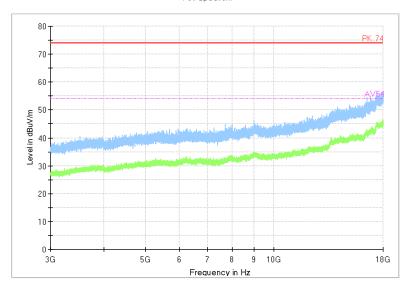
Full Spectrum


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

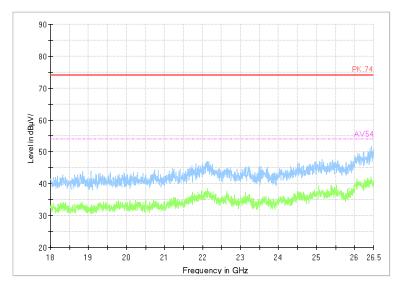
VERITAS Carrier frequency (MHz): 2440


Channel No.:39

Frequency Range: 30MHz-1GHz
Detector: QP mode
Modulation type: 8DPSK

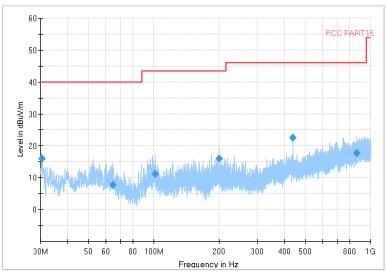

Full Spectrum

Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: 8DPSK



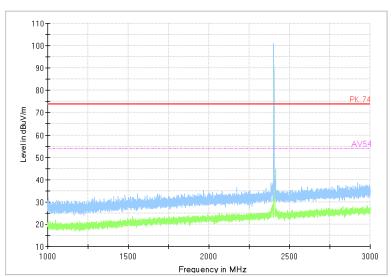
Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: 8DPSK

Full Spectrum


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: 8DPSK

VERITAS Carrier frequency (MHz): 2480

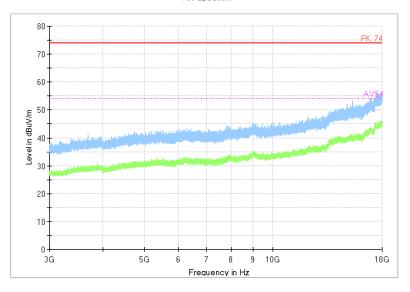
Channel No.:78



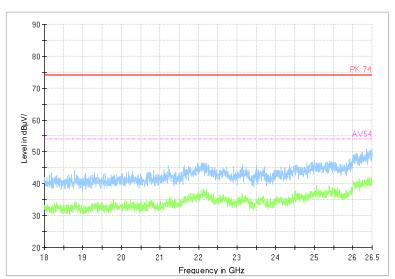
Frequency Range:30MHz-1GHz

Detector: QP mode

Modulation type: GFSK

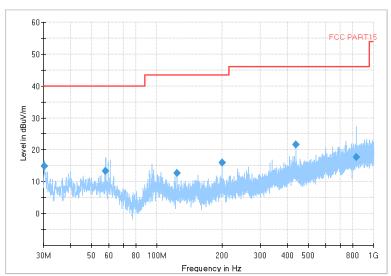

Full Spectrum

Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: GFSK

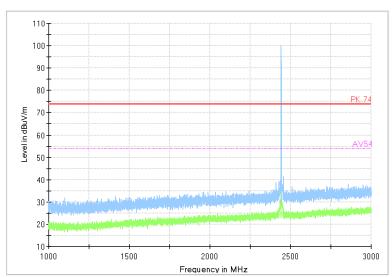


Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: GFSK

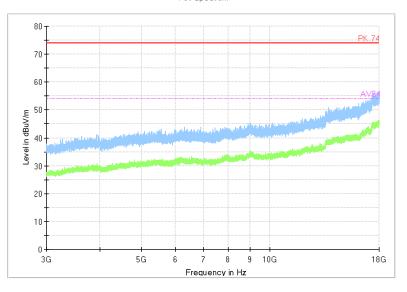
Full Spectrum


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: GFSK

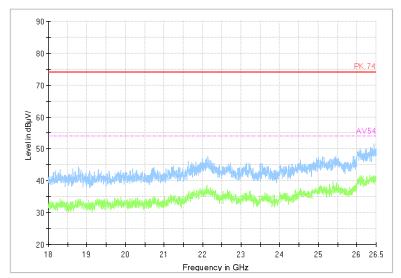
VERITAS Carrier frequency (MHz): 2480


Channel No.:78

Frequency Range: 30MHz-1GHz Detector: QP mode Modulation type: π/4DQPSK

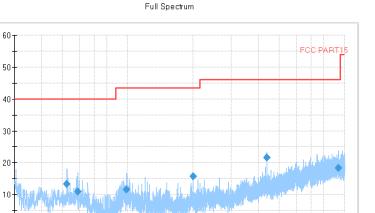

Full Spectrum

Frequency Range: 1GHz-3GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK



Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

Full Spectrum


Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: π/4DQPSK

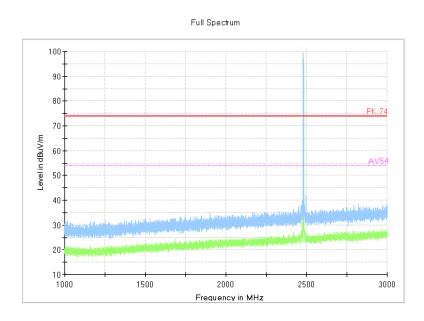
VERITAS Carrier frequency (MHz): 2480

30M

Channel No.:78

200

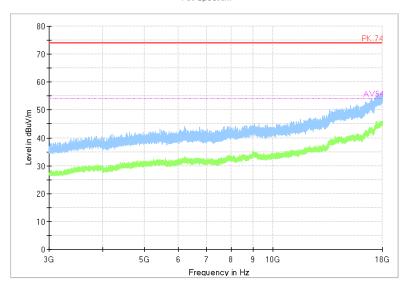
Frequency in Hz


300

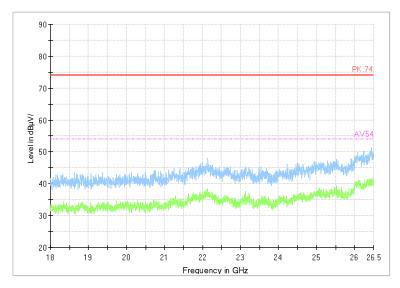
400 500

800 1G

Frequency Range: 30MHz-1GHz
Detector: QP mode
Modulation type: 8DPSK


80 100M

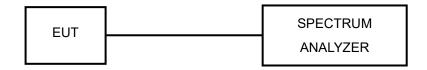
Frequency Range: 1GHz-3GHz
Detector: Av mode and PK mode
Modulation type: 8DPSK



Frequency Range: 3GHz-18GHz Detector: Av mode and PK mode Modulation type: 8DPSK

Full Spectrum

Frequency Range: 18GHz-26GHz Detector: Av mode and PK mode Modulation type: 8DPSK



3.3 NUMBER OF HOPPING FREQUENCY USED

3.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

3.3.2 TEST SETUP

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Mar.28,24	Mar.27,26
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A03	182185	Mar.29,24	Mar.28,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Hygrothermograph	DELI	20210528	SZ015	Sep.06,23	Sep.05,25
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 69	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 70	Apr.27,24	Apr.26,25
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsch	VT4002	5856607810 0050	May.30,24	May.29,26
Power Meter	R&S	NRX	102380	Mar.28,24	Mar.27,26
Power Meter probe	R&S	NRP6A	102942	Mar.28,24	Mar.27,26

NOTE:

- 1. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.

3.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

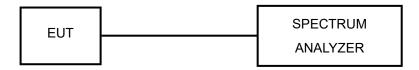
3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Please Refer to Appendix Of this test report.



3.4 DWELL TIME ON EACH CHANNEL

3.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.4.4 TEST PROCEDURES

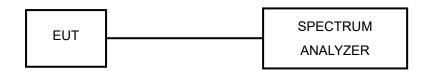
- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 TEST RESULTS

Please Refer to Appendix Of this test report



3.5 CHANNEL BANDWIDTH

3.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.5.5 DEVIATION FROM TEST STANDARD

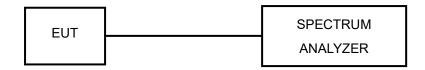
No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

Please Refer to Appendix Of this test report.



3.6 HOPPING CHANNEL SEPARATION

3.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

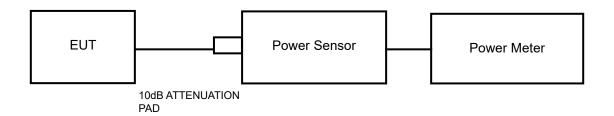
3.6.4 TEST PROCEDURES

- Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 TEST RESULTS


Please Refer to Appendix Of this test report.

3.7 MAXIMUM OUTPUT POWER

3.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

3.7.2 TEST SETUP

3.7.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.7.5 DEVIATION FROM TEST STANDARD No deviation.

3.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.7.7 TEST RESULTS

3.7.7.1 MAXIMUM PEAK OUTPUT POWER

Please Refer to Appendix Of this test report.

3.7.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix Of this test report.

3.8 OUT OF BAND MEASUREMENT

3.8.1 LIMITS OF OUT OF BAND MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 TEST INSTRUMENTS

Refer to section 3.3.3 to get information of above instrument.

3.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.8.4 DEVIATION FROM TEST STANDARD

No deviation.

3.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix Of this test report.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

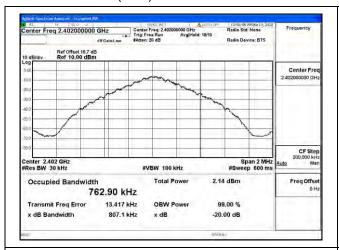
No any modifications are made to the EUT by the lab during the test.

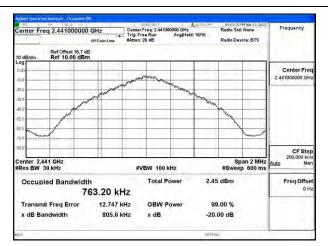
6 APPENDIX

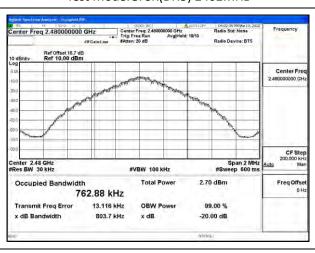
20DB EMISSION BANDWIDTH

TEST RESULT

Test Mode	Carrier frequency (MHz) 20dB Bandwidth(KHz	
GFSK(DH5)	2402	807.1
GFSK(DH5)	2441	805.6
GFSK(DH5)	2480	803.7

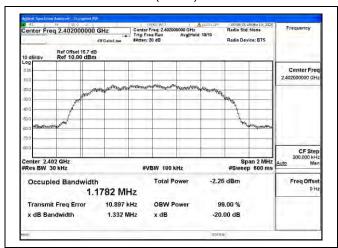

Test Mode	Carrier frequency (MHz)	20dB Bandwidth(KHz)
π/4DQPSK(2DH5)	2402	1332.1
π/4DQPSK(2DH5)	2441	1332.4
π/4DQPSK(2DH5)	2480	1333.9

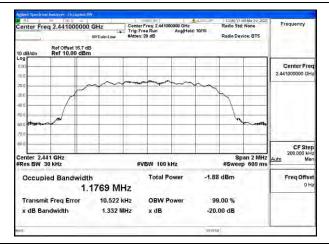

Test Mode	Carrier frequency (MHz)	20dB Bandwidth(KHz)
8DPSK(3DH5)	2402	1330.9
8DPSK(3DH5)	2441	1329.2
8DPSK(3DH5)	2480	1322.5


TEST GRAPHS

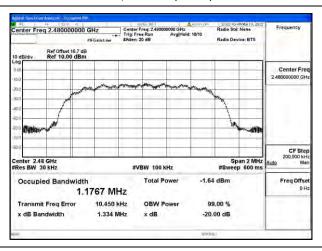
Test Mode: GFSK(DH5)

Test Mode:GFSK(DH5) 2402MHz

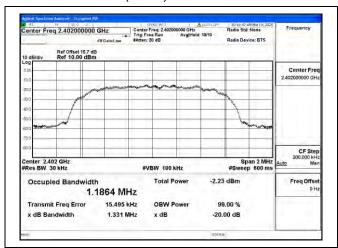


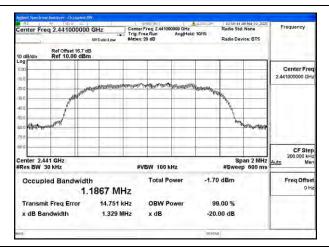

Test Mode:GFSK(DH5) 2480MHz

Test Mode:GFSK(DH5) 2441MHz

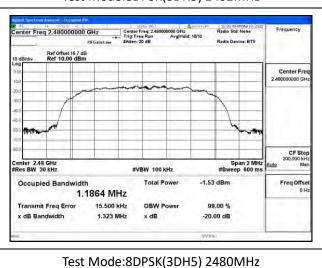


Test Mode: π/4DQPSK(2DH5)


Test Mode:π/4DQPSK(2DH5) 2402MHz



Test Mode:π/4DQPSK(2DH5) 2441MHz



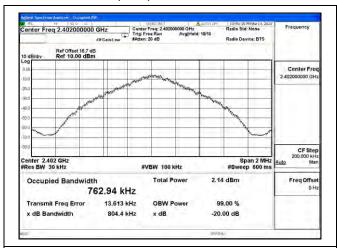
Test Mode: 8DPSK(3DH5)

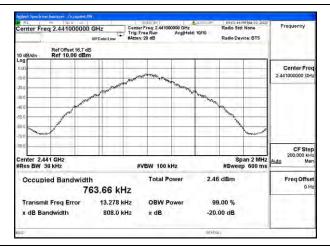
Test Mode:8DPSK(3DH5) 2402MHz

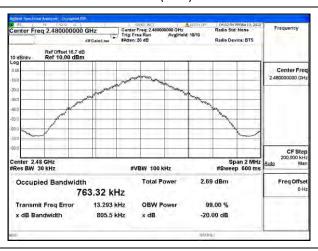
Test Mode:8DPSK(3DH5) 2441MHz

OCCUPIED CHANNEL BANDWIDTH TEST RESULT

Test Mode	Carrier frequency (MHz)	99% Bandwidth(kHz)
GFSK(DH5)	2402	762.9
GFSK(DH5)	2441	763.7
GFSK(DH5)	2480	763.3

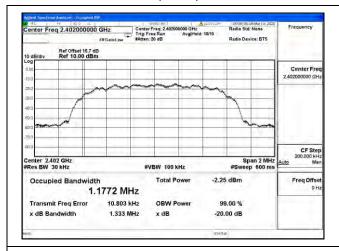

Test Mode	Carrier frequency (MHz)	99% Bandwidth(kHz)
π/4DQPSK(2DH5)	2402	1177.2
π/4DQPSK(2DH5)	2441	1177.0
π/4DQPSK(2DH5)	2480	1176.4

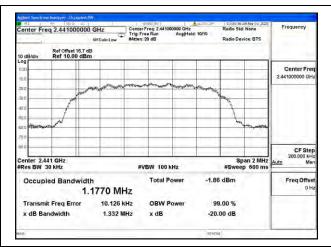

Test Mode	Carrier frequency (MHz)	99% Bandwidth(kHz)
8DPSK(3DH5)	2402	1186.5
8DPSK(3DH5)	2441	1186.6
8DPSK(3DH5)	2480	1185.8


TEST GRAPHS

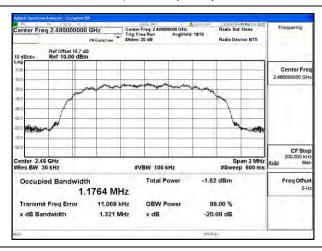
Test Mode: GFSK(DH5)

Test Mode:GFSK(DH5) 2402MHz

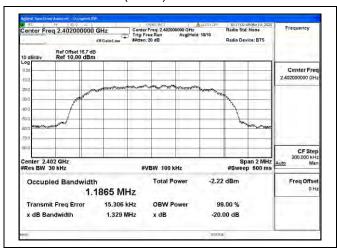


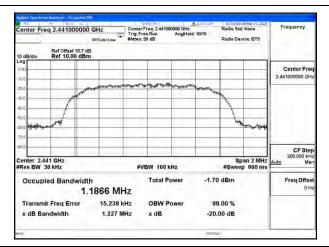

Test Mode:GFSK(DH5) 2480MHz

Test Mode:GFSK(DH5) 2441MHz

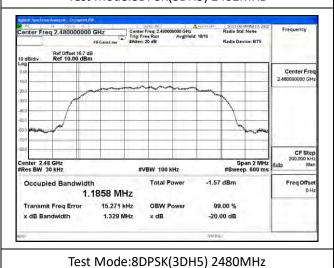


Test Mode: π/4DQPSK(2DH5)


Test Mode:π/4DQPSK(2DH5) 2402MHz



Test Mode:π/4DQPSK(2DH5) 2441MHz



Test Mode: 8DPSK(3DH5)

Test Mode:8DPSK(3DH5) 2402MHz

Test Mode:8DPSK(3DH5) 2441MHz

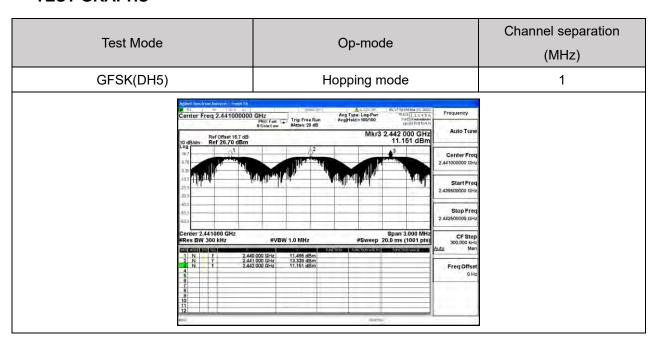
MAXIMUM CONDUCTED OUTPUT POWER TEST RESULT

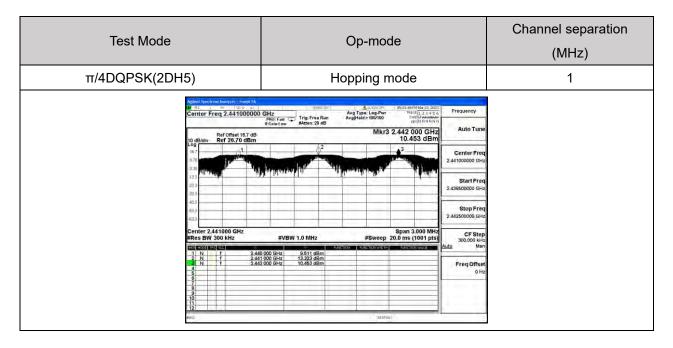
Conducted Power

Madulation type	Conducted Peak Power(dBm)		
Modulation type	2402MHz	2441MHz	2480MHz
GFSK(DH5)	5.24	5.80	5.74
π/4DQPSK(2DH5)	6.01	6.49	6.41
8DPSK(3DH5)	5.98	6.71	6.46

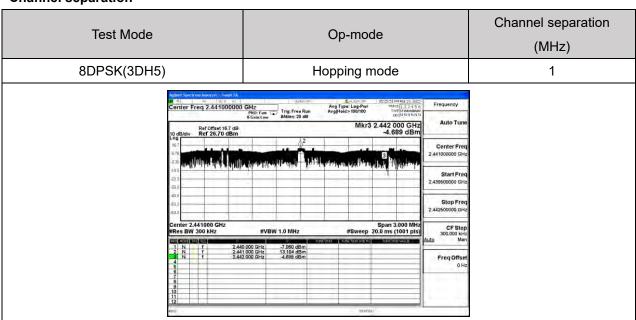
Madulation type	Conducted Average Power(dBm)		
Modulation type	2402MHz	2441MHz	2480MHz
GFSK(DH5)	4.98	4.37	5.09
π/4DQPSK(2DH5)	3.50	3.40	3.43
8DPSK(3DH5)	3.04	3.78	3.28

EIRP


Modulation type	Peak EIRP (dBm)		
iviodulation type	2402MHz	2441MHz	2480MHz
GFSK(DH5)	9.41	9.97	9.91
π/4DQPSK(2DH5)	10.18	10.66	10.58
8DPSK(3DH5)	10.15	10.88	10.64


Modulation type	Average EIRP (dBm)		
Modulation type	2402MHz	2441MHz	2480MHz
GFSK(DH5)	9.15	8.54	9.26
π/4DQPSK(2DH5)	7.67	7.57	7.60
8DPSK(3DH5)	7.21	7.95	7.45

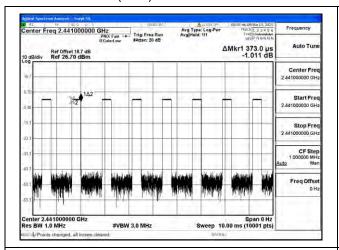
EIRP (dBm)=Conducted Power(dBm)+Antenna Gain(dBi)

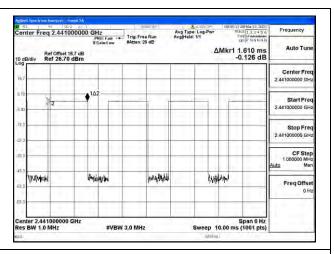

CARRIER FREQUENCY SEPARATION TEST GRAPHS

Channel separation

TIME OF OCCUPANCY TEST RESULT

Test Mode	Packet type	Time slot	Dwell time	Dwell time(ms)
CECK(DH4)	DH1	272	Time slot length	119.4
GFSK(DH1)	DHT	373	*31.6*16000/2/79	119.4
CESK(DH3)	DH3	1610	Time slot length	257.6
GFSK(DH3)	DH3	1010	*31.6*16000/4/79	237.0
CESK(DHE)	DUE	2960	Time slot length	205.1
GFSK(DH5)	DH5	2860	*31.6*16000/6/79	305.1


Test Mode	Packet type	Time slot	Dwell time	Dwell time(ms)	
π/4DQPSK(2DH1)	2DH1	381	Time slot length	404.0	
			*31.6*16000/2/79	121.9	
π/4DQPSK(2DH3)	2DH3	1620	Time slot length	259.2	
		1020	*31.6*16000/4/79		
π/4DQPSK(2DH5)	2DH5	2850 Time slot length *31.6*16000/6/79	Time slot length	304.0	
			304.0		

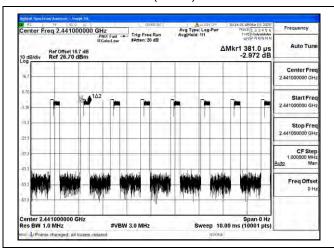

Test Mode	Packet type	Time slot	Dwell time	Dwell time(ms)	
		length(µs)			
8DPSK(3DH1)	3DH1	370	Time slot length	118.4	
			*31.6*16000/2/79	110.4	
8DPSK(3DH3)	3DH3	1610	Time slot length	257.6	
			*31.6*16000/4/79	257.6	
8DPSK(3DH5)	3DH5	Time slot length	305.1		
		*31.6*16000/6/79			

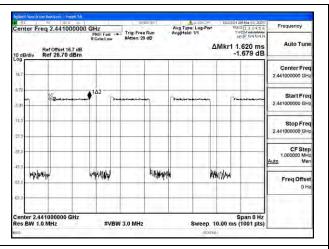
TEST GRAPHS

Test Mode: GFSK(DH5)

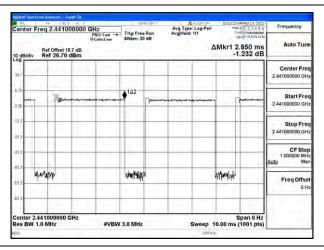
Test Mode:GFSK(DH1) 2441MHz

Test Mode:GFSK(DH5) 2441MHz


Brynisten

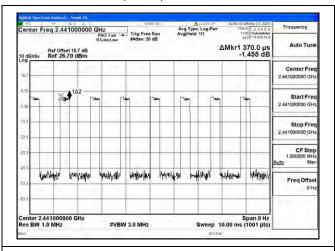

MANYA

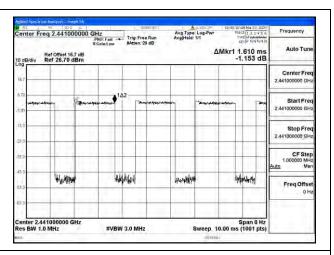
#VBW 3.0 MHz



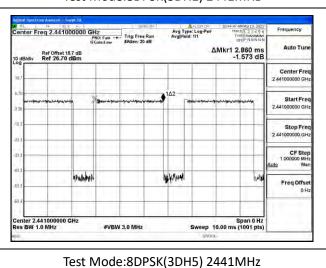
Test Mode: π/4DQPSK(2DH5)

Test Mode:π/4DQPSK(2DH1) 2441MHz



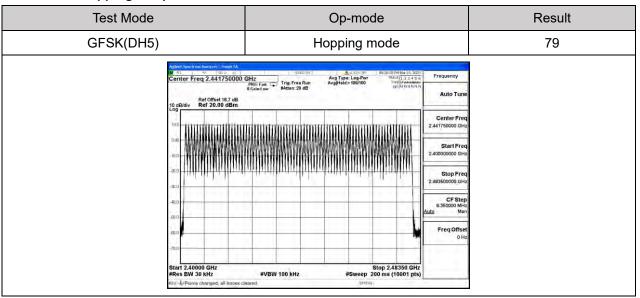

Test Mode:π/4DQPSK(2DH3) 2441MHz

Test Mode:π/4DQPSK(2DH5) 2441MHz

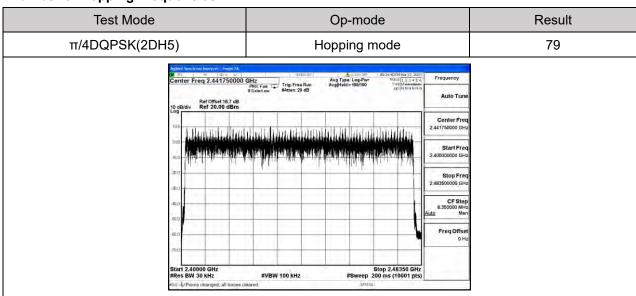


Test Mode: 8DPSK(3DH5)

Test Mode:8DPSK(3DH1) 2441MHz

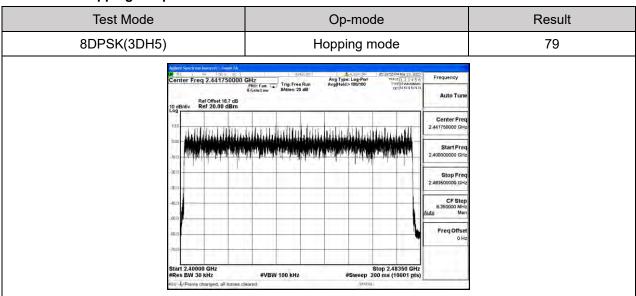


Test Mode:8DPSK(3DH3) 2441MHz



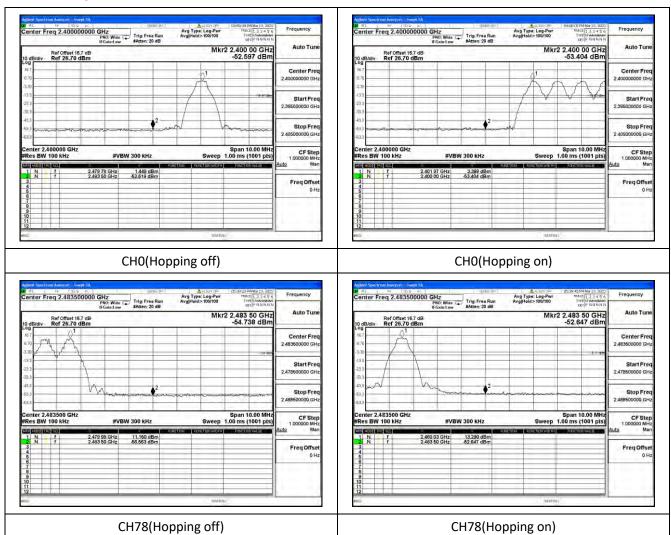
NUMBER OF HOPPING CHANNELS TEST GRAPHS

Number of Hopping Frequencies

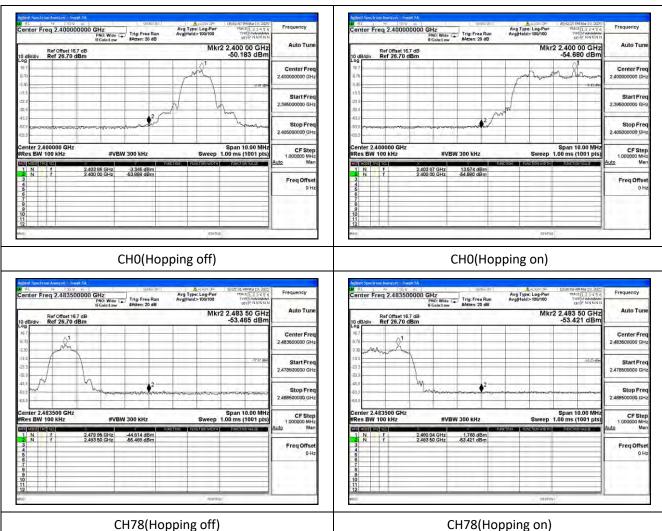


Number of Hopping Frequencies

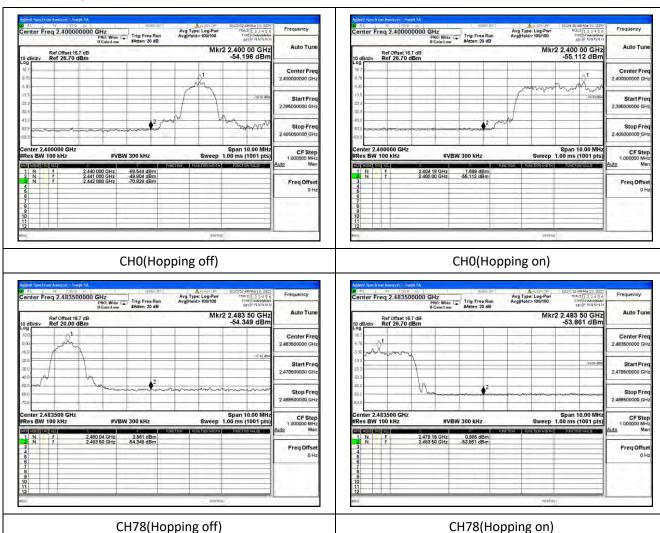
Number of Hopping Frequencies



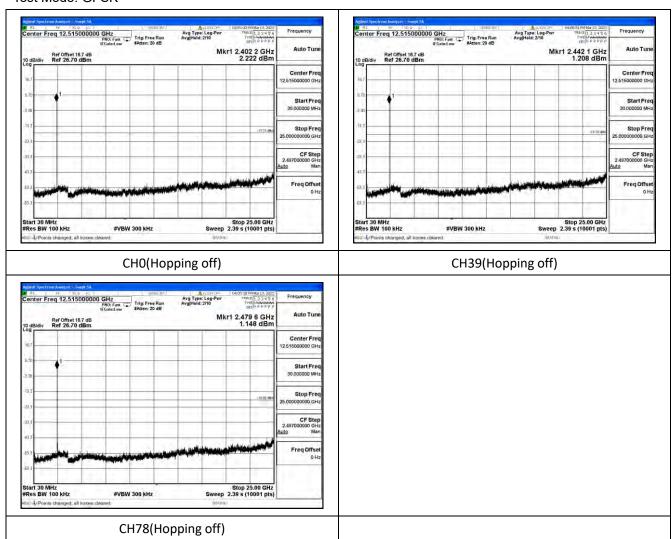
BAND EDGE MEASUREMENTS

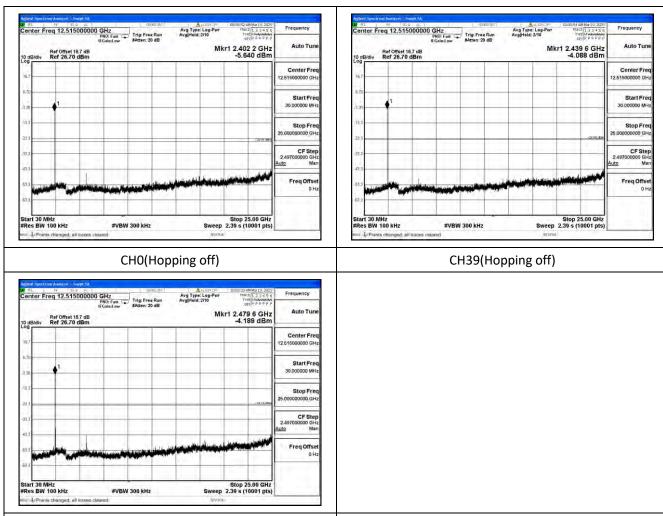

TEST GRAPHS

Test Mode: GFSK

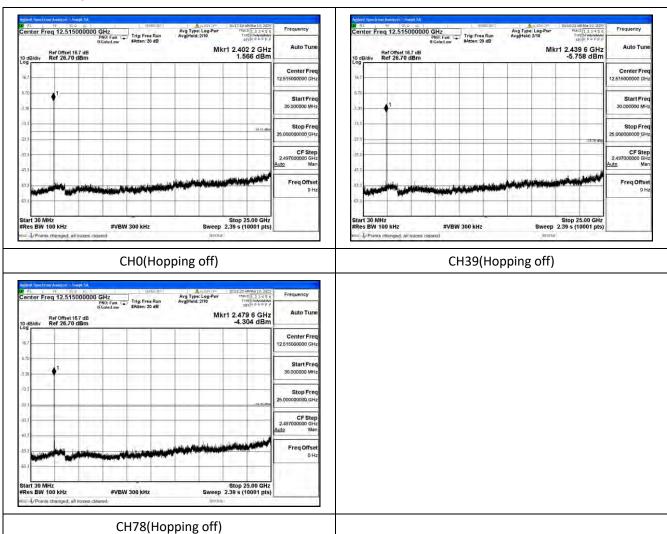


Test Mode: π/4DQPSK


Test Mode: 8DPSK


CONDUCTED SPURIOUS EMISSION TEST GRAPHS

Test Mode: GFSK


Test Mode: π/4DQPSK

CH78(Hopping off)

Test Mode: 8DPSK

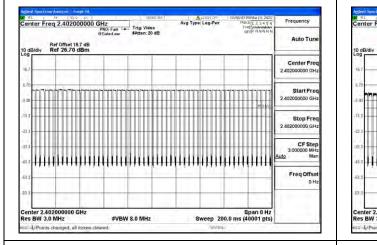
DUTY CYCLE TEST RESULT

Test Mode	Frequency	Plot	Duty Cycle	Correction	Antenna
	(MHz)			Factor(dB)	Gain(dBi)
GFSK(DH5)	2402	Fig.1	78.00%	1.08	4.17

Note: Correction Factor=10*log(1/Duty Cycle)

Test Mode	Frequency (MHz)	Plot	Duty Cycle	Correction Factor(dB)	Antenna Gain(dBi)
π/4DQPSK(2D H5)	2402	Fig.2	77.60%	1.10	4.17

Note: Correction Factor=10*log(1/Duty Cycle)


Test Mode	Frequency (MHz)	Plot	Duty Cycle	Correction Factor(dB)	Antenna Gain(dBi)
8DPSK(3DH5)	2402	Fig.3	78.10%	1.07	4.17
8DPSK(3DH5)	2402	Fig.3	78.10%	1.07	4.17

Note: Correction Factor=10*log(1/Duty Cycle)

TEST GRAPHS

Test Mode: GFSK(DH5) Test Mode: π/4DQPSK(2DH5)

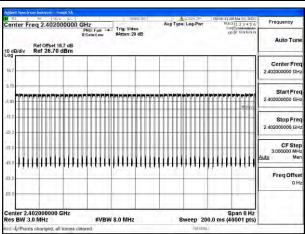
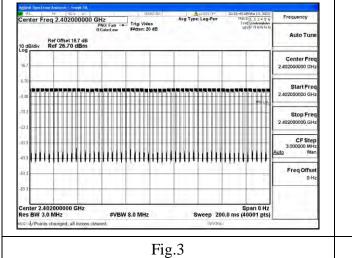



Fig.1

Fig.2

Test Mode: 8DPSK(3DH5)

---END---