

Report No.: EED32M00298803 Page 1 of 116

Product : Portable PC

Trade mark : CHUWI

Model/Type reference : GemiBook

Serial Number : N/A

Report Number : EED32M00298803 **FCC ID** : 2AHLZ-GEMIBOOK

Date of Issue : Nov. 09, 2020

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED 2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by

Compiled by

Report Seal

Sunlight Sun
Sunlight Sun

Reviewed by:

Date:

Jok Yang

Jok (an

1,63

Nov. 09, 2020

Aaron Ma

Check No: 4762111346

2 Version

Version No.	Date	Description
00	Nov. 09, 2020	Original

3 Test Summary

o rest ourinitary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
7 10.0 . /			2.70

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 116 Report No.: EED32M00298803

4 Content

1 COVER PAGE.				1
2 VERSION				
3 TEST SUMMA	RY	•••••	••••••	3
4 CONTENT				
5 TEST REQUIR	EMENT			5
5.1.1 For Co 5.1.2 For Ra 5.1.3 For Co 5.2 TEST ENVIR	onducted test setup adiated Emissions test setup onducted Emissions test set CONMENT	o		
6 GENERAL INF	ORMATION			8
6.2 GENERAL D 6.3 PRODUCT S 6.4 DESCRIPTIO 6.5 TEST LOCA 6.6 DEVIATION I 6.7 ABNORMALI 6.8 OTHER INFO 6.9 MEASUREM	ESCRIPTION OF EUT SPECIFICATION SUBJECTIVE TO SUPPORT UNITS FION FROM STANDARDS TIES FROM STANDARD CONDITION REQUESTED BY THE SENT UNCERTAINTY (95% CONDITION TO THE SENT UNCERTAINTY (95% CONTINUE TO THE SENT UNCERTAINTY (95% CONTI	THIS STANDARDITIONSE CUSTOMER		
7 EQUIPMENT L	IST			11
		PECIFICATION		
Appendix B) Appendix C) Appendix D) Appendix E) Appendix F) Appendix G Appendix H	:: 6dB Occupied Bandwidth.): Band-edge for RF Conducted Spurious E): Power Spectral Density : Antenna Requirement): AC Power Line Conducte): Restricted bands around the	Power Cited Emissions Emissions d Emission fundamental frequency (Radons	liated)	25 43 48 62 68 68
PHOTOGRAPHS	OF TEST SETUP			113
PHOTOGRAPHS	OF EUT CONSTRUCTION	NAL DETAILS		110

Report No.: EED32M00298803 Page 5 of 116

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	24.0 °C		
Humidity:	54 % RH	100	
Atmospheric Pressure:	1010mbar		9

5.3 Test Condition

Test channel:

Took Mode	Tu/Du	RF Channel				
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
902 11h/a/a/UT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)	24 12WINZ ~2402 WINZ	2412MHz	2437MHz	2462MHz		
000 44~(UT40)	2422141- 2452141-	Channel 3	Channel 6	Channel 9		
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz		
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.					

Test mode:

Pre-scan under all rate at lowest channel

		8	02.11b	- /				
	1Mbp	s 2Mbp	s 5.5Mbp	s 11Mbp	S			
	13.43	13.4	1 13.38	13.35				
1	TO.		()	80	2.11g	13		
(6	6Mbp	s 9Mbp	s 12Mbps	18Mbps	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
)	12.98	3 12.9	5 12.93	12.90	12.88	12.85	12.83	12.81
	802.11n (HT20)							
6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
11	.22	11.20	11.17	11.14	11.12	11.10	11.08	11.05
	802.11n (HT40)							
13.5	Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
10	.74	10.72	10.7	10.68	10.65	10.63	10.62	10.6
	13.5	13.43 6Mbp	1Mbps 2Mbp 13.43 13.44 6Mbps 9Mbp 12.98 12.98 6.5Mbps 13Mbps 11.22 11.20 13.5Mbps 27Mbps	13.43 13.41 13.38 6Mbps 9Mbps 12Mbps 12.98 12.95 12.93 6.5Mbps 13Mbps 19.5Mbps 11.22 11.20 11.17 13.5Mbps 27Mbps 40.5Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 13.43 13.41 13.38 13.35 80 6Mbps 9Mbps 12Mbps 18Mbps 12.93 12.90 12.93 12.90 802.11n 6.5Mbps 13Mbps 19.5Mbps 26Mbps 11.22 11.20 11.17 11.14 802.11n 13.5Mbps 27Mbps 40.5Mbps 54Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 13.43 13.41 13.38 13.35 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbp 12.98 12.95 12.93 12.90 12.88 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 11.22 11.20 11.17 11.14 11.12 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 13.43 13.41 13.38 13.35 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbp 12.98 12.95 12.93 12.90 12.88 12.85 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 52Mbps 11.22 11.20 11.17 11.14 11.12 11.10 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps 108Mbps	1Mbps 2Mbps 5.5Mbps 11Mbps 13.43 13.41 13.38 13.35 802.11g 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 12.98 12.95 12.93 12.90 12.88 12.85 12.83 802.11n (HT20) 6.5Mbps 13Mbps 19.5Mbps 26Mbps 39Mbps 52Mbps 58.5Mbps 11.22 11.20 11.17 11.14 11.12 11.10 11.08 802.11n (HT40) 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mbps 108Mbps 121.5Mbps

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of802.11n(HT40).

Report No. : EED32M00298803 Page 8 of 116

6 General Information

6.1 Client Information

Applicant:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Applicant:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Manufacturer:	CHUWI TECHNOLOGY (ShenZhen) CO., LIMITED
Address of Manufacturer:	2 Floor Building 3 LiJinCheng Industrial park the east of Gongye road LongHua, Shenzhen, China
Factory:	JIANGSU LUCKYSTAR INTELLIGENT & TECHNOLOGY CO., LTD
Address of Factory:	Inelligent Terminal Pioneer Park (D),Yanlong Street Office,Yandu District,Yancheng City,Jiangsu Province

6.2 General Description of EUT

Product Name:	Portable	Portable PC				
Model No.(EUT):	GemiBoo	GemiBook				
Trade mark:	CHUWI	CHUWI				
Frequency Range of Operation:	IEEE 802.11b/g/n(HT20)(HT40): 2400MHz to 2483.5MHz					
Power Supply:	Adapter	Model:A241-1202000D Input:100-240V~ 50/60Hz 0.8A Output:12.0V2.0A 24.0W				
(6.)	Battery	Model:5059B4-2S-1 2ICP5/59/115 Norminal Voltage:7.6Vd.c. Rated Capacity:5000mAh 38Wh				
Sample Received Date:	Sep. 21,	Sep. 21, 2020				
Sample tested Date:	Sep. 21,	2020 to Oct.22, 2020	6			

6.3 Product Specification subjective to this standard

-	
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Test Power Grade:	Default
Test Software of EUT:	DRTU
Antenna Type and Gain:	Type: FPC antenna Gain:1.15 dBi
Test Voltage:	Battery 7.6V

Page	9	of	1	10	6
ı ayı	, ,	O.	- 1	٠,	•

16.4	1/2	16.0	el(802.11b/g/n	V6Ca Y)	(6)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz)	
Operation	Frequency ea	ch of channe	el(802.11n HT4	-0)	0	1	
Channe	I Frequ	iency	Channel	Frequenc	cy Cha	nnel F	requency
3	2422	MHz	6	2437MH	z S		2452MHz
4	2427	MHz	7	2442MH	Z		
5	2432	MHz	8	2447MH	z		

Report No. : EED32M00298803 Page 10 of 116

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Spurious amission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
13	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

	RF test s	system		
Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
perature/ midity biaozhi dicator biaoscite	HM10	1804186	06-29-2020	06-28-2021
	FL3CX03WG18N M12-0398-002			
MICRO- TRONICS	SPA-F-63029-4			
Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
Lenovo	R4960d			
R&S	OSP120	101374	02-17-2020	02-16-2021
JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
JS Tonscend	JS1120-3			
	Keysight Keysight biaozhi Sinoscite MICRO-TRONICS Keysight Lenovo R&S JS Tonscend	ManufacturerMode No.KeysightN9010AKeysightN5182BbiaozhiHM10SinosciteFL3CX03WG18N M12-0398-002MICROTRONICSSPA-F-63029-4KeysightE3642ALenovoR4960dR&SOSP120JS TonscendJS0806-2	Manufacturer Mode No. Number Keysight N9010A MY54510339 Keysight N5182B MY53051549 biaozhi HM10 1804186 Sinoscite FL3CX03WG18N M12-0398-002 MICROTRONICS SPA-F-63029-4 Keysight E3642A MY56376072 Lenovo R4960d R&S OSP120 101374 JS Tonscend JS0806-2 158060006	Manufacturer Mode No. Serial Number Cal. Date (mm-dd-yyyy) Keysight N9010A MY54510339 02-17-2020 Keysight N5182B MY53051549 02-17-2020 biaozhi HM10 1804186 06-29-2020 Sinoscite FL3CX03WG18N M12-0398-002 MICRO-TRONICS SPA-F-63029-4 Keysight E3642A MY56376072 02-17-2020 Lenovo R4960d R&S OSP120 101374 02-17-2020 JS Tonscend JS0806-2 158060006 02-17-2020

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128	1	-/ <u></u>	<u> </u>
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	/-3	

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019 10-16-2020	10-20-2020 10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	(File)		(c/1)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/ -	
Cable line	Fulai(3M)	SF106	5217/6A	(,42	

Page 13 of 116

		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710	(a)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C. 2.)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M00298803 Page 14 of 116

8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
1	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No. : EED32M00298803 Page 15 of 116

EUT DUTY CYCLE

Test Graph

Page 16 of 116

Page 17 of 116

Report No. : EED32M00298803 Page 18 of 116

Report No. : EED32M00298803 Page 19 of 116

Appendix A): Conducted Peak Output Power

Test Limit

According to §15.247(b)(3),

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	☐ Antenna with DG greater than 6 dBi :[Limit = 30 – (DG – 6)]☐ Point-to-point operation :	(cil)

Average output power: For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW = 1 MHz.
 - b) Set the VBW \geq [3 \times RBW].
 - c) Set the span \geq [1.5 × DTS bandwidth].
 - d) Detector = peak.
 - e) Sweep time = auto couple.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges
- 4. Measure and record the result in the test report.

Test Setup

Test Result

10011100111	7 2 3	/ 231	
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	13.43	PASS
11B	MCH	13.94	PASS
11B	НСН	13.16	PASS
11G	LCH	12.98	PASS
11G	MCH	12.74	PASS
11G	HCH	12.96	PASS
11N20SISO	LCH	11.22	PASS
11N20SISO	MCH	11.71	PASS
11N20SISO	HCH	11.93	PASS
11N40SISO	LCH	10.74	PASS
11N40SISO	MCH	10.92	PASS
11N40SISO	НСН	11.04	PASS

Report No. : EED32M00298803 Page 21 of 116

Test Graph

Page 23 of 116

Page 24 of 116

Report No. : EED32M00298803 Page 25 of 116

Appendix B): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2),

6 dB Bandwidth :

		2000	
	01 111 11 1500111		100
Limit	Shall be at least 500kHz		

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2.

- The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Report No. : EED32M00298803 Page 26 of 116

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
11B	LCH	10.11	13.503	PASS
11B	MCH	10.09	13.494	PASS
11B	нсн	10.10	13.474	PASS
11G	LCH	16.34	16.831	PASS
11G	MCH	16.35	16.783	PASS
11G	НСН	16.33	16.768	PASS
11N20SISO	LCH	17.57	17.927	PASS
11N20SISO	MCH	17.58	17.895	PASS
11N20SISO	HCH	17.58	17.895	PASS
11N40SISO	LCH	35.73	36.510	PASS
11N40SISO	MCH	36.31	36.535	PASS
11N40SISO	нсн	36.07	36.502	PASS

Report No. : EED32M00298803 Page 27 of 116

Test Graph 6 dB Bandwidth

Page 29 of 116

Page 30 of 116

Report No. : EED32M00298803 Page 31 of 116

Occupied Bandwidth(99%)

Mode: 11B	Ant: Ant1
Channel: LCH	Voltage: VN
Temperature: TN	Result:PASS Value:XBW:10.21;OBW:13.503
Start Time: 2020/10/13 0:04:54	End Time: 2020/10/13 0:05:00

Page 32 of 116

Page 33 of 116

Page 34 of 116

Page 35 of 116

Page 36 of 116

Page 37 of 116

Mode: 11N20SISO		(2)	Ant: Ant1	(2	(1)	(23)
Channel: MCH			Voltage: \	VN		
emperature: TN			Result:PA	ASS		
	6.		Value:XB	W:17	.62;OBW:17.	895
Start Time: 2020/10/13	0:08:55		End Time	e: 202	0/10/13 0:09:	02
Keysight Spectrum Analyzer - Occupied BW						
RL RF 50 Ω DC Center Freq 2.437000000	CH-	SENSE:INT		IGN AUTO	02:48:58 AM Oct 13, 2 Radio Std: None	Frequency
Ceriller Fred 2.437000000	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 1	0/10	Radio Device: BTS	_
Ref Offset 19.77 d 10 dB/div Ref 30.00 dB m						
Log						
20.0						Center Freq
10.0						2.437000000 GHz
0.00						
-10.0	merana	work-worky was more made	and has been been been been been been been bee	\	+	
-20.0	<i>[</i>			<u> </u>		
-30.0	' 			AN AND AND AND AND AND AND AND AND AND A	V.	
-40.0 myrman market feet from					and the forth of t	the home
-50.0						
-60.0						
Center 2.437 GHz #Res BW 200 kHz		#VBW 30	0 kHz		Span 40 M Sweep 1.067	
Occupied Bandwidtl	n	Tota	l Power	10.7	7 dBm	<u>Auto</u> Man
17	.895 MF	lz				Freq Offset
Transmit Freq Error	23.633 k	Hz OBW	Power	99	9.00 %	0 Hz
x dB Bandwidth	17.62 M	Hz x dB		-6.	.00 dB	
MSG				STATU	su	
(3)		13			100	(38

Page 39 of 116

Page 40 of 116

Page 41 of 116

Mode: 11N40SISO	(6	Ant: Ant	1 (3)	(2)
Channel: MCH	6	Voltage	: VN	
Temperature: TN		Result:F	PASS	
		Value:X	BW:36.48;OBW:36.5	35
Start Time: 2020/10/13	0:10:30	End Tim	ne: 2020/10/13 0:10:3	7
📕 Keysight Spectrum Analyzer - Occupied BV	V			
XI RL RF 50 Ω DC			ALIGN AUTO 02:50:34 AM Oct 13, 202 Radio Std: None	Frequency
Center Freq 2.437000000	Trig:	ter Freq: 2.437000000 GHz : Free Run Avg Hold: en: 30 dB		_
Ref Offset 19.77 a 10 dB/div Ref 20.00 dBn				
Log	'			
10.0				Center Freq
0.00				2.437000000 GHz
-10.0	Mark the second	of principal and the principal	run,	
-20.0		Ψ		
	/		N. I	
-30.0			The same of the sa	
-40.0			A STATE OF THE PARTY OF THE PAR	
-50.0				
-60.0				
-70.0				
-10.0				
Center 2.437 GHz			Span 80 MH	
#Res BW 390 kHz		#VBW 1.2 MHz	Sweep 1.067 m	8.000000 MHz
Occupied Bandwidt	h	Total Power	9.59 dBm	<u>Auto</u> Man
	6.535 MHz			Freq Offset
Transmit Freq Error	87.517 kHz	OBW Power	99.00 %	0 Hz
			C 00 JB	
x dB Bandwidth	36.48 MHz	x dB	-6.00 dB	
wsg			STATUS	
	·			

Page 42 of 116

	0		100	200
Mode: 11N40SISO	(3)	Ant: Ar	nt1	(65)
Channel: HCH		Voltage	e: VN	
Temperature: TN		Result	PASS	
	6	Value:	XBW:36.36;OBW:36.	502
Start Time: 2020/10/13 0	:11:49	End Ti	me: 2020/10/13 0:11	:55
Keysight Spectrum Analyzer - Occupied BW				
X RL RF 50 Ω DC Center Freq 2.452000000 C	Center Trig: F	SENSE:INT	ALIGN AUTO 02:51:52 AM Oct 13,	Frequency
Ref Offset 19.77 dE 10 dB/div Ref 30.00 dBm				
20.0				Center Fred
10.0				2.452000000 GH:
0.00				
-10.0		- Company of the Company	 	
20.0				
30.0 Military and All Control of the Control of th			The adjudy being the little of the property of	house
50.0				
60.0				
Center 2.452 GHz			Span 80 N	
#Res BW 390 kHz	#	VBW 1.2 MHz	Sweep 1.067	8.000000 MH
Occupied Bandwidth		Total Power	9.65 dBm	<u>Auto</u> Mar
36.	502 MHz			Freq Offse
Transmit Freq Error	43.060 kHz	OBW Power	99.00 %	0 H
x dB Bandwidth	36.36 MHz	x dB	-6.00 dB	
MSG			STATUS	

Report No. : EED32M00298803 Page 43 of 116

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup EUT Spectrum Analyzer

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Result Table

			and the same of th		
Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	1.082	-50.265	-28.92	PASS
11B	HCH	0.875	-49.401	-29.13	PASS
11G	LCH	-5.880	-49.597	-35.88	PASS
11G	НСН	-5.677	-49.258	-35.68	PASS
11N20SISO	LCH	-7.256	-50.088	-37.26	PASS
11N20SISO	НСН	-6.756	-49.432	-36.76	PASS
11N40SISO	LCH	-11.474	-50.403	-41.47	PASS
11N40SISO	нсн	-10.848	-50.010	-40.85	PASS

Report No. : EED32M00298803 Page 45 of 116

Test Graph

Page 46 of 116

Report No. : EED32M00298803 Page 48 of 116

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

- EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	1.064	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	1.394	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	0.852	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-5.594	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-5.843	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-5.74	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-7.125	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-6.85	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-6.632	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-10.716	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-10.507	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	нсн	-10.606	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Page 50 of 116

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 56 of 116

Page 57 of 116

Page 58 of 116

Page 59 of 116

Page 60 of 116

Page 61 of 116

Report No. : EED32M00298803 Page 62 of 116

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit		☐ Antenna with DG greater than 6 dBi :	
		[Limit = $8 - (DG - 6)$]	
	15	☐ Point-to-point operation :	15

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Result Table

Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-12.494	PASS
11B	MCH	-12.478	PASS
11B	HCH	-13.149	PASS
11G	LCH	-19.825	PASS
11G	MCH	-20.976	PASS
11G	НСН	-19.672	PASS
11N20SISO	LCH	-21.612	PASS
11N20SISO	MCH	-21.116	PASS
11N20SISO	HCH	-20.652	PASS
11N40SISO	LCH	-25.492	PASS
11N40SISO	MCH	-25.487	PASS
11N40SISO	нсн	-25.421	PASS

Report No.: EED32M00298803 Page 64 of 116

Test Graph

Page 65 of 116

Page 66 of 116

Page 67 of 116

Report No. : EED32M00298803 Page 68 of 116

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna. The best case gain of the antenna is 1.15dBi.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32M00298803 Page 69 of 116

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range: 150KH 1) The mains terminal disturbation 2) The EUT was connected Stabilization Network) who power cables of all other which was bonded to the general three	z-30MHz ance voltage test was to AC power source lich provides a 50Ω/s units of the EUT we ground reference plan A multiple socket outle ISN provided the ratin aced upon a non-me floor-standing arrange te plane, ith a vertical ground refe e vertical ground refe ded to the horizontal ge boundary of the unit s mounted on top of closest points of the d equipment was at lea	conducted in a shield through a LISN 1 (Lir 50μH + 5Ω linear impere connected to a set e in the same way as et strip was used to cong of the LISN was not etallic table 0.8m abovement, the EUT was reference plane. The reference plane. The versund reference plane is under test and bonder the ground reference LISN 1 and the EUT.	ne Impedance pedance. The econd LISN 2, the LISN 1 for nnect multiple exceeded. We the ground placed on the ear of the EUT ertical ground e. The LISN 1 ed to a ground e plane. This All other units N 2.
Limit:	5) In order to find the maximum the interface cables must measurement.			
	(6,2)	L imit ((dBµV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
§°)	5-30	60	50	
	* The limit decreases linearly to 0.50 MHz. NOTE : The lower limit is app	_		nge 0.15 MHz
Measurement Data				
An initial pre-scan wa	s performed on the live and neu	tral lines with peak de	tector.	
Quasi-Peak and Aver	age measurement were perform	ned at the frequencies	with maximized peak	emission were
detected.				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 70 of 116

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	44.27	9.87	54.14	65.06	-10.92	QP	
2		0.1680	26.68	9.87	36.55	55.06	-18.51	AVG	
3		0.2355	37.24	9.94	47.18	62.25	-15.07	QP	
4		0.2400	20.73	9.95	30.68	52.10	-21.42	AVG	
5		0.4920	36.87	9.95	46.82	56.13	-9.31	QP	
6	*	0.5460	30.27	10.01	40.28	46.00	-5.72	AVG	
7		0.7799	27.28	9.86	37.14	56.00	-18.86	QP	
8		0.8430	15.34	9.85	25.19	46.00	-20.81	AVG	
9		9.1005	25.37	9.78	35.15	60.00	-24.85	QP	
10		10.5540	14.47	9.80	24.27	50.00	-25.73	AVG	
11		13.1370	12.70	9.87	22.57	50.00	-27.43	AVG	
12		17.1645	20.60	9.95	30.55	60.00	-29.45	QP	

Page 71 of 116

Neutral line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	42.64	9.87	52.51	65.75	-13.24	QP	
2	0.1590	27.74	9.87	37.61	55.52	-17.91	AVG	
3	0.2040	24.33	9.88	34.21	53.45	-19.24	AVG	
4	0.2670	36.90	10.00	46.90	61.21	-14.31	QP	
5	0.5415	40.67	10.00	50.67	56.00	-5.33	QP	
6 *	0.5505	34.69	10.01	44.70	46.00	-1.30	AVG	
7	0.6540	25.33	9.97	35.30	46.00	-10.70	AVG	
8	0.6585	32.45	9.96	42.41	56.00	-13.59	QP	
9	4.0245	17.96	9.78	27.74	46.00	-18.26	AVG	
10	5.4510	26.54	9.78	36.32	60.00	-23.68	QP	
11	11.9220	26.37	9.84	36.21	60.00	-23.79	QP	
12	12.2729	16.50	9.85	26.35	50.00	-23.65	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32M00298803 Page 72 of 116

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	Al 4011-	Peak	1MHz	3MHz	Peak	- 0.00
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 means are was mounted on the total c. The antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 degree. The test-receiver systems and the systems and the systems are systems.	ure as below: B 558074 D01 on the top of a rochoic camber. The of the highest rate eters away from op of a variable-hadred from one um value of the finatenna are set to mission, the EUT d to heights from grees to 360 degreem was set to Person and to heights from grees to 360 degreem was set to Person and to heights from grees to 360 degreem was set to Person and the person are set to Person are set to Person and the person are set to Person are set	tating table table was adiation. the interfer neight ante meter to found the read the read arranged arranged to find the rees to find	e 0.8 meter ence-receinna tower. our meters n. Both hor neasurement aged to its we 4 meters a	rs above the 360 degrees iving antenna above the grizontal and vent. worst case along the rotation and the rotation and the rotation and the rotation and the rotation.	to a, whice ound vertica nd the able
	f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest	end of the restric mpliance. Also m trum analyzer plo	easure any	emission:	s in the restri	
	f. Place a marker at the frequency to show cor bands. Save the spec	end of the restrict mpliance. Also must rum analyzer plot channel were as below: eve is the test site mber change forms 1 meter and table towest channel, the ments are performed found the X axis.	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	s in the restri ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the lower in the lower transmitting mode, arguments, i. Repeat above procedure.	end of the restrict mpliance. Also mustrum analyzer plot channel we as below: I we as below: I we is the test site of the change form the change form the channel of the	easure any ot. Repeat to e, change find table 0.8 le is 1.5 months he Highest rmed in X, kis positioniuencies me	rom Semi- meter to 1 eter). channel Y, Z axis ping which it	Anechoic Ch .5 meter(Abo positioning for t is worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, arg. Repeat above procedure.	end of the restrict mpliance. Also more trum analyzer plot channel were as below: eve is the test site of the change form of the channel, the ements are performed found the X average until all frequency.	easure any ot. Repeat for e, change for n table 0.8 le is 1.5 mon he Highest rmed in X, kis position uencies me	rom Semi- meter to 1 eter). channel Y, Z axis ping which i	Anechoic Ch .5 meter(Abecositioning for t is worse cases complete.	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proceds. Above 1GHz test proceds g. Different between about to fully Anechoic Charal 18GHz the distance is h. Test the EUT in the lowest in the radiation measure Transmitting mode, arginal j. Repeat above proceds. Frequency 30MHz-88MHz	end of the restrict mpliance. Also more trum analyzer plot channel were as below: eve is the test site of the change form of a 1 meter and table owest channel, the ments are performed found the X as the channel all frequences until all frequences.	easure any ot. Repeat for table 0.8 le is 1.5 months to the Highest rmed in X, kis position uencies mediate (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa	Anechoic Ch .5 meter(Abecositioning for tis worse cares complete.	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, arg. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz	end of the restrice in pliance. Also more in trum analyzer plots channel in the rest site in the rest site in the rest site in the rest in the rest site in the rest in the re	easure any ot. Repeat for table 0.8 le is 1.5 months to he Highest rmed in X, kis position uencies med/m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cars complete. mark eak Value eak Value	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, ar j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrict mpliance. Also more trum analyzer plot channel were as below: eve is the test site of the change form of a meter and table of the change form of found the X as the change form of the X as th	easure any ot. Repeat for table 0.8 le is 1.5 months to the Highest red in X, kis position uencies mediate (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete. mark eak Value eak Value	dulation nambe ove
imit:	f. Place a marker at the frequency to show corbands. Save the spector for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, arg. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz	end of the restrict mpliance. Also more trum analyzer plots channel were as below: we is the test site of the change form of the channel of t	easure any easure and easure and easure and easure and easure	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete. mark eak Value eak Value eak Value	dulation nambe ove
Limit:	f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the low. The radiation measure Transmitting mode, ar j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrict mpliance. Also more trum analyzer plot channel were as below: eve is the test site of the change form of a meter and table of the change form of found the X as the change form of the X as th	easure any ot. Repeat for table 0.8 le is 1.5 months he Highest rmed in X, kis position uencies mediate (m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis ping which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete. mark eak Value eak Value	dulation nambe ove

Page 73 of 116

Test plot as follows:

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	63.17	65.67	74.00	8.33	Pass	Horizontal
2	2410.3191	32.27	13.35	-43.12	101.53	104.03	74.00	-30.03	Pass	Horizontal

Page	74	of	116	
------	----	----	-----	--

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	53.95	56.45	74.00	17.55	Pass	Vertical
2	2410.4631	32.27	13.35	-43.12	90.97	93.47	74.00	-19.47	Pass	Vertical

Page	75	of	116	
------	----	----	-----	--

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.49	40.99	54.00	13.01	Pass	Horizontal
2	2414.0613	32.28	13.36	-43.11	90.37	92.90	54.00	-38.90	Pass	Horizontal

Page 76 of 116

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.42	40.92	54.00	13.08	Pass	Vertical
2	2410.8949	32.28	13.35	-43.12	84.65	87.16	54.00	-33.16	Pass	Vertical

Page	77	of	116	
------	----	----	-----	--

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4205	32.34	13.48	-43.10	98.17	100.89	74.00	-26.89	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.72	53.37	74.00	20.63	Pass	Horizontal

Page	78	of	116	
------	----	----	-----	--

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4931	32.34	13.48	-43.10	93.20	95.92	74.00	-21.92	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	50.62	53.27	74.00	20.73	Pass	Vertical

Page 79 of 116

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462		
Remark:	AV				

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-43.11	94.84	97.56	54.00	-43.56	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	42.93	45.58	54.00	8.42	Pass	Horizontal

Page	80	of	11	6

Mode:	802.11 b(1Mbps) Transmitting	Channel:	2462	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.9287	32.35	13.48	-43.11	90.78	93.50	54.00	-39.50	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	42.21	44.86	54.00	9.14	Pass	Vertical

Page	81	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	66.03	68.53	74.00	5.47	Pass	Horizontal
2	2416.9399	32.28	13.38	-43.11	98.90	101.45	74.00	-27.45	Pass	Horizontal

Page	82	of	1	16	3
raue	OZ	OI.	- 1	- 1 (

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	58.05	60.55	74.00	13.45	Pass	Vertical
2	2407.7284	32.27	13.34	-43.12	93.48	95.97	74.00	-21.97	Pass	Vertical

Page	83	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	45.40	47.90	54.00	6.10	Pass	Horizontal
2	2417.8035	32.28	13.38	-43.11	83.17	85.72	54.00	-31.72	Pass	Horizontal

Page	84	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	42.22	44.72	54.00	9.28	Pass	Vertical
2	2416.9399	32.28	13.38	-43.11	77.62	80.17	54.00	-26.17	Pass	Vertical

Page 85 of 116

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.8636	32.34	13.50	-43.11	87.79	90.52	74.00	-16.52	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Horizontal

Page	86	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2455.6295	32.34	13.50	-43.11	85.00	87.73	74.00	-13.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.29	51.94	74.00	22.06	Pass	Vertical

Page	87	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2455.8473	32.34	13.50	-43.11	79.96	82.69	54.00	-28.69	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.42	43.07	54.00	10.93	Pass	Horizontal

Page	88	of	116	
------	----	----	-----	--

Mode:	802.11 g(6Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4205	32.34	13.48	-43.10	74.21	76.93	54.00	-22.93	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.42	43.07	54.00	10.93	Pass	Vertical

Page 89 c	of 116	;
-----------	--------	---

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.19	51.69	74.00	22.31	Pass	Horizontal
2	2419.8185	32.29	13.39	-43.12	87.10	89.66	74.00	-15.66	Pass	Horizontal

Page 90 of 116	Page	90	of	116
----------------	------	----	----	-----

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.20	51.70	74.00	22.30	Pass	Vertical
2	2419.5307	32.29	13.39	-43.12	82.07	84.63	74.00	-10.63	Pass	Vertical

Page 91 of 116

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.47	40.97	54.00	13.03	Pass	Horizontal
2	2419.2428	32.29	13.39	-43.12	72.97	75.53	54.00	-21.53	Pass	Horizontal

Page	92	of	1	16	
------	----	----	---	----	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.40	40.90	54.00	13.10	Pass	Vertical
2	2419.3867	32.29	13.39	-43.12	68.87	71.43	54.00	-17.43	Pass	Vertical

Page	93	of	116	
------	----	----	-----	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462	
Remark:	PK	50		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2455.1940	32.34	13.51	-43.12	87.26	89.99	74.00	-15.99	Pass	Horizontal
Ī	2	2483.5000	32.38	13.38	-43.11	49.40	52.05	74.00	21.95	Pass	Horizontal

Page	94	of	11	6	
------	----	----	----	---	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2456.7910	32.34	13.50	-43.11	82.48	85.21	74.00	-11.21	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.95	51.60	74.00	22.40	Pass	Vertical

Page	95	of	1	16	
------	----	----	---	----	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2455.0488	32.34	13.51	-43.12	73.17	75.90	54.00	-21.90	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.44	43.09	54.00	10.91	Pass	Horizontal

Page	96	of	1	16	
------	----	----	---	----	--

Mode:	802.11 n(HT20) (6.5Mbps) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.3479	32.34	13.48	-43.10	68.94	71.66	54.00	-17.66	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.39	43.04	54.00	10.96	Pass	Vertical

Page 97 of 116

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.45	51.95	74.00	22.05	Pass	Horizontal
2	2417.4093	32.28	13.38	-43.11	84.82	87.37	74.00	-13.37	Pass	Horizontal

Page	a۵	of	1	16	3
raue	90	OΙ	- 1	10)

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.90	51.40	74.00	22.60	Pass	Vertical
2	2434.0551	32.31	13.46	-43.12	80.13	82.78	74.00	-8.78	Pass	Vertical

Page 99 of 116

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.60	41.10	54.00	12.90	Pass	Horizontal
2	2438.4355	32.31	13.48	-43.11	72.75	75.43	54.00	-21.43	Pass	Horizontal

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.04	41.54	54.00	12.46	Pass	Vertical
2	2438.6108	32.31	13.48	-43.11	72.18	74.86	54.00	-20.86	Pass	Vertical

Page 101 of 116	Page	101	of 1	16
-----------------	------	-----	------	----

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2437.1277	32.31	13.47	-43.11	85.20	87.87	74.00	-13.87	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.38	52.03	74.00	21.97	Pass	Horizontal

Page	102	of	116	
------	-----	----	-----	--

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2445.8511	32.32	13.51	-43.11	80.56	83.28	74.00	-9.28	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.99	51.64	74.00	22.36	Pass	Vertical

Page 103 of 116

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2437.6596	32.31	13.47	-43.11	70.60	73.27	54.00	-19.27	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.31	40.96	54.00	13.04	Pass	Horizontal

Page 104 of 116

Mode:	802.11 n(HT40) (13.5Mbps) Transmitting	Channel:	2452
Remark:	AV	_	

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2446.4894	32.33	13.51	-43.11	66.14	68.87	54.00	-14.87	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.23	40.88	54.00	13.12	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 1Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No.: EED32M00298803 Page 105 of 116

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel, the middle channel, the Highest channel.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

٠		• 4
	m	IT

<u> </u>			4.00		and Still Dec.
	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)		-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	255	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32M00298803 Page 106 of 116

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 11b Channel 2437MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode) :	802.11	b(1Mbps) Transmi	tting	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	46.2006	13.20	0.76	-31.81	38.63	20.78	40.00	19.22	Pass	Н
2	83.5494	7.92	1.05	-31.97	43.87	20.87	40.00	19.13	Pass	Н
3	150.0010	7.55	1.45	-32.01	44.70	21.69	43.50	21.81	Pass	Н
4	249.8240	12.20	1.88	-31.91	53.49	35.66	46.00	10.34	Pass	Н
5	600.0290	19.00	2.96	-31.50	42.99	33.45	46.00	12.55	Pass	Н
6	909.9750	22.16	3.60	-31.48	38.14	32.42	46.00	13.58	Pass	Н
7	45.9096	13.20	0.76	-31.79	37.90	20.07	40.00	19.93	Pass	V
8	84.5195	8.14	1.06	-31.99	45.66	22.87	40.00	17.13	Pass	V
9	250.0180	12.20	1.88	-31.90	46.89	29.07	46.00	16.93	Pass	V
10	411.4421	15.58	2.42	-31.83	38.26	24.43	46.00	21.57	Pass	V
11	600.0290	19.00	2.96	-31.50	44.06	34.52	46.00	11.48	Pass	V
12	909.9750	22.16	3.60	-31.48	39.22	33.50	46.00	12.50	Pass	V

Transmitter Emission above 1GHz

Mode:		802.11 b (1Mbps)	Γransmittin	9	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1170.4170	28.07	2.68	-42.92	55.30	43.13	74.00	30.87	Pass	Н	Peak
2	2068.1068	31.80	3.57	-43.19	50.10	42.28	74.00	31.72	Pass	Н	Peak
3	3755.0503	33.60	4.35	-43.04	49.41	44.32	74.00	29.68	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	48.29	44.60	74.00	29.40	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	45.60	45.57	74.00	28.43	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	47.35	49.63	74.00	24.37	Pass	Н	Peak
7	1235.4235	28.14	2.67	-42.85	51.41	39.37	74.00	34.63	Pass	V	Peak
8	1815.8816	30.48	3.34	-42.75	50.28	41.35	74.00	32.65	Pass	V	Peak
9	3055.0037	33.22	4.82	-43.10	49.80	44.74	74.00	29.26	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	48.66	44.97	74.00	29.03	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	45.97	45.94	74.00	28.06	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	47.27	49.55	74.00	24.45	Pass	V	Peak

Mode	e:	802.11	b (1Mbps	s) Transmit	tting	Channel:		2437	2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1170.2170	28.07	2.68	-42.92	55.63	43.46	74.00	30.54	Pass	Н	Peak	
2	3066.0044	33.23	4.79	-43.10	50.15	45.07	74.00	28.93	Pass	Н	Peak	
3	4217.0811	34.10	4.49	-42.91	48.83	44.51	74.00	29.49	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-42.80	48.25	44.73	74.00	29.27	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-42.14	45.58	45.70	74.00	28.30	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-42.10	47.72	50.09	74.00	23.91	Pass	Н	Peak	
7	1160.2160	28.06	2.68	-42.93	52.13	39.94	74.00	34.06	Pass	V	Peak	
8	1780.8781	30.25	3.29	-42.70	50.67	41.51	74.00	32.49	Pass	V	Peak	
9	3055.0037	33.22	4.82	-43.10	50.13	45.07	74.00	28.93	Pass	V	Peak	
10	4874.0000	34.50	4.78	-42.80	48.02	44.50	74.00	29.50	Pass	V	Peak	
11	7311.0000	36.41	5.85	-42.14	46.95	47.07	74.00	26.93	Pass	V	Peak	
12	9748.0000	37.70	6.77	-42.10	46.85	49.22	74.00	24.78	Pass	V	Peak	

Page 108 of 116

Mod	e:	802.11	b (1Mbps	s) Transmit	ting	Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Resul t	Polarit y	Remark
1	1170.6171	28.07	2.68	-42.92	54.30	42.13	74.00	31.87	Pass	Н	Peak
2	2018.7019	31.73	3.50	-43.20	51.65	43.68	74.00	30.32	Pass	Н	Peak
3	2993.5994	33.19	4.53	-43.10	50.64	45.26	74.00	28.74	Pass	Н	Peak
4	4924.0000	34.50	4.85	-42.80	48.11	44.66	74.00	29.34	Pass	Н	Peak
5	7386.0000	36.49	5.85	-42.13	45.92	46.13	74.00	27.87	Pass	Н	Peak
6	9848.0000	37.74	6.83	-42.10	45.20	47.67	74.00	26.33	Pass	Н	Peak
7	1552.6553	28.75	3.03	-43.00	50.92	39.70	74.00	34.30	Pass	V	Peak
8	3036.0024	33.21	4.86	-43.10	49.58	44.55	74.00	29.45	Pass	V	Peak
9	3958.0639	33.77	4.34	-43.01	50.41	45.51	74.00	28.49	Pass	V	Peak
10	4924.0000	34.50	4.85	-42.80	48.64	45.19	74.00	28.81	Pass	V	Peak
11	7386.0000	36.49	5.85	-42.13	48.34	48.55	74.00	25.45	Pass	V	Peak
12	9848.0000	37.74	6.83	-42.10	46.38	48.85	74.00	25.15	Pass	V	Peak

Mode	e:	802.11	g (6Mbps	s) Transmit	ting	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1169.8170	28.07	2.68	-42.92	54.89	42.72	74.00	31.28	Pass	Н	Peak
2	1648.2648	29.38	3.14	-42.79	51.34	41.07	74.00	32.93	Pass	Н	Peak
3	3363.0242	33.35	4.53	-43.10	49.74	44.52	74.00	29.48	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	47.06	43.37	74.00	30.63	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	45.14	45.11	74.00	28.89	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	46.08	48.36	74.00	25.64	Pass	Н	Peak
7	1363.8364	28.26	2.84	-42.71	51.26	39.65	74.00	34.35	Pass	V	Peak
8	1841.2841	30.65	3.37	-42.81	50.23	41.44	74.00	32.56	Pass	V	Peak
9	3070.0047	33.23	4.79	-43.11	50.11	45.02	74.00	28.98	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	47.29	43.60	74.00	30.40	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	47.05	47.02	74.00	26.98	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	46.10	48.38	74.00	25.62	Pass	V	Peak

Page	100	of 11	6
Paue	าบษ	01 11	ס

Mode	:	802.11	g (6Mbps	s) Transmit	ting	Channel:		2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1168.2168	28.07	2.68	-42.93	53.71	41.53	74.00	32.47	Pass	Н	Peak
2	2115.9116	31.86	3.60	-43.17	51.27	43.56	74.00	30.44	Pass	Н	Peak
3	3772.0515	33.62	4.36	-43.05	49.68	44.61	74.00	29.39	Pass	Н	Peak
4	4874.0000	34.50	4.78	-42.80	46.64	43.12	74.00	30.88	Pass	Н	Peak
5	7311.0000	36.41	5.85	-42.14	46.12	46.24	74.00	27.76	Pass	Н	Peak
6	9748.0000	37.70	6.77	-42.10	46.32	48.69	74.00	25.31	Pass	Н	Peak
7	1171.6172	28.07	2.68	-42.92	51.59	39.42	74.00	34.58	Pass	V	Peak
8	2009.5010	31.71	3.49	-43.20	50.28	42.28	74.00	31.72	Pass	V	Peak
9	3042.0028	33.22	4.85	-43.11	50.62	45.58	74.00	28.42	Pass	V	Peak
10	4874.0000	34.50	4.78	-42.80	46.69	43.17	74.00	30.83	Pass	V	Peak
11	7311.0000	36.41	5.85	-42.14	46.18	46.30	74.00	27.70	Pass	V	Peak
12	9748.0000	37.70	6.77	-42.10	46.35	48.72	74.00	25.28	Pass	V	Peak

Mode	ə:	802.11	g (6Mbps	s) Transmitt	ing	Channel:		2462				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak	
1	1393.0393	28.29	2.89	-42.69	51.40	39.89	74.00	34.11	Pass	Н	Peak	
2	2064.3064	31.79	3.57	-43.19	51.64	43.81	74.00	30.19	Pass	Н	Peak	
3	2969.9970	33.15	4.46	-43.10	50.80	45.31	74.00	28.69	Pass	Н	Peak	
4	4924.0000	34.50	4.85	-42.80	47.31	43.86	74.00	30.14	Pass	Н	Peak	
5	7386.0000	36.49	5.85	-42.13	46.38	46.59	74.00	27.41	Pass	Н	Peak	
6	9848.0000	37.74	6.83	-42.10	46.88	49.35	74.00	24.65	Pass	Н	Peak	
7	1302.4302	28.20	2.75	-42.78	51.40	39.57	74.00	34.43	Pass	V	Peak	
8	1861.8862	30.79	3.39	-42.86	50.05	41.37	74.00	32.63	Pass	V	Peak	
9	3193.0129	33.28	4.64	-43.10	49.82	44.64	74.00	29.36	Pass	V	Peak	
10	4924.0000	34.50	4.85	-42.80	47.05	43.60	74.00	30.40	Pass	V	Peak	
11	7386.0000	36.49	5.85	-42.13	45.38	45.59	74.00	28.41	Pass	V	Peak	
12	9848.0000	37.74	6.83	-42.10	46.88	49.35	74.00	24.65	Pass	V	Peak	

Mode) :	802.11	n (HT20)	(6.5Mbps))	Channel:		2412			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1254.4254	28.15	2.69	-42.83	52.86	40.87	74.00	33.13	Pass	Н	Peak
2	1842.2842	30.66	3.37	-42.81	50.99	42.21	74.00	31.79	Pass	Н	Peak
3	3068.0045	33.23	4.79	-43.10	50.74	45.66	74.00	28.34	Pass	Н	Peak
4	4824.0000	34.50	4.61	-42.80	47.80	44.11	74.00	29.89	Pass	Н	Peak
5	7236.0000	36.34	5.79	-42.16	45.56	45.53	74.00	28.47	Pass	Н	Peak
6	9648.0000	37.66	6.72	-42.10	47.22	49.50	74.00	24.50	Pass	Н	Peak
7	1279.8280	28.18	2.72	-42.80	51.64	39.74	74.00	34.26	Pass	V	Peak
8	1967.0967	31.48	3.44	-43.12	51.02	42.82	74.00	31.18	Pass	V	Peak
9	2896.5897	33.03	4.37	-43.10	50.94	45.24	74.00	28.76	Pass	V	Peak
10	4824.0000	34.50	4.61	-42.80	46.49	42.80	74.00	31.20	Pass	V	Peak
11	7236.0000	36.34	5.79	-42.16	46.33	46.30	74.00	27.70	Pass	V	Peak
12	9648.0000	37.66	6.72	-42.10	46.51	48.79	74.00	25.21	Pass	V	Peak

Mode	e:	802.11 ו	n (HT20)	(6.5Mbps)		Channel:		2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak	
1	1229.6230	28.13	2.67	-42.86	52.20	40.14	74.00	33.86	Pass	Н	Peak	
2	1800.0800	30.38	3.32	-42.71	51.13	42.12	74.00	31.88	Pass	Н	Peak	
3	2929.1929	33.09	4.39	-43.10	50.94	45.32	74.00	28.68	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-42.80	46.89	43.37	74.00	30.63	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-42.14	46.34	46.46	74.00	27.54	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-42.10	46.96	49.33	74.00	24.67	Pass	Η	Peak	
7	1174.8175	28.07	2.68	-42.92	51.19	39.02	74.00	34.98	Pass	V	Peak	
8	1794.8795	30.35	3.31	-42.71	51.40	42.35	74.00	31.65	Pass	V	Peak	
9	3086.0057	33.23	4.75	-43.09	51.03	45.92	74.00	28.08	Pass	V	Peak	
10	4874.0000	34.50	4.78	-42.80	46.87	43.35	74.00	30.65	Pass	V	Peak	
11	7311.0000	36.41	5.85	-42.14	45.52	45.64	74.00	28.36	Pass	V	Peak	
12	9748.0000	37.70	6.77	-42.10	46.86	49.23	74.00	24.77	Pass	V	Peak	

Mode) :	802.11	n (HT20)	(6.5Mbps)		Channel:		2462			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1332.2332	28.23	2.80	-42.75	52.15	40.43	74.00	33.57	Pass	Н	Peak
2	1838.6839	30.64	3.37	-42.81	50.62	41.82	74.00	32.18	Pass	Н	Peak
3	3932.0621	33.75	4.34	-43.02	50.08	45.15	74.00	28.85	Pass	Н	Peak
4	4924.0000	34.50	4.85	-42.80	48.52	45.07	74.00	28.93	Pass	Н	Peak
5	7386.0000	36.49	5.85	-42.13	46.72	46.93	74.00	27.07	Pass	Н	Peak
6	9848.0000	37.74	6.83	-42.10	45.86	48.33	74.00	25.67	Pass	Н	Peak
7	1299.2299	28.20	2.75	-42.79	51.79	39.95	74.00	34.05	Pass	V	Peak
8	1838.6839	30.64	3.37	-42.81	50.72	41.92	74.00	32.08	Pass	V	Peak
9	3101.0067	33.24	4.72	-43.10	49.71	44.57	74.00	29.43	Pass	V	Peak
10	4924.0000	34.50	4.85	-42.80	47.81	44.36	74.00	29.64	Pass	V	Peak
11	7386.0000	36.49	5.85	-42.13	45.48	45.69	74.00	28.31	Pass	V	Peak
12	9848.0000	37.74	6.83	-42.10	46.33	48.80	74.00	25.20	Pass	V	Peak

Mode	e:	802.11	n (HT40)	(13.5Mbps	;)	Channel:		2422			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1171.0171	28.07	2.68	-42.92	52.31	40.14	74.00	33.86	Pass	Н	Peak
2	2929.9930	33.09	4.39	-43.10	50.56	44.94	74.00	29.06	Pass	Н	Peak
3	3930.0620	33.74	4.34	-43.01	49.85	44.92	74.00	29.08	Pass	Н	Peak
4	4844.0000	34.50	4.66	-42.80	47.05	43.41	74.00	30.59	Pass	Н	Peak
5	7266.0000	36.37	5.80	-42.15	44.80	44.82	74.00	29.18	Pass	Н	Peak
6	9688.0000	37.68	6.62	-42.10	46.51	48.71	74.00	25.29	Pass	Η	Peak
7	1336.6337	28.24	2.80	-42.75	51.62	39.91	74.00	34.09	Pass	V	Peak
8	1725.8726	29.89	3.22	-42.68	50.14	40.57	74.00	33.43	Pass	V	Peak
9	3122.0081	33.25	4.65	-43.10	50.57	45.37	74.00	28.63	Pass	V	Peak
10	4844.0000	34.50	4.66	-42.80	47.48	43.84	74.00	30.16	Pass	V	Peak
11	7266.0000	36.37	5.80	-42.15	45.56	45.58	74.00	28.42	Pass	V	Peak
12	9688.0000	37.68	6.62	-42.10	47.69	49.89	74.00	24.11	Pass	V	Peak

Mod	e:	802.11	n (HT40)	(13.5Mbps))	Channel:		2437				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readi ng [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak	
1	1170.0170	28.07	2.68	-42.92	54.71	42.54	74.00	31.46	Pass	Н	Peak	
2	1653.6654	29.41	3.14	-42.76	51.32	41.11	74.00	32.89	Pass	Н	Peak	
3	3066.0044	33.23	4.79	-43.10	50.36	45.28	74.00	28.72	Pass	Н	Peak	
4	4874.0000	34.50	4.78	-42.80	46.41	42.89	74.00	31.11	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-42.14	45.08	45.20	74.00	28.80	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-42.10	46.02	48.39	74.00	25.61	Pass	Н	Peak	
7	1278.8279	28.18	2.72	-42.81	51.17	39.26	74.00	34.74	Pass	V	Peak	
8	1939.2939	31.30	3.42	-43.05	50.75	42.42	74.00	31.58	Pass	V	Peak	
9	2833.3833	32.93	4.23	-43.09	50.99	45.06	74.00	28.94	Pass	V	Peak	
10	4874.0000	34.50	4.78	-42.80	46.83	43.31	74.00	30.69	Pass	V	Peak	
11	7311.0000	36.41	5.85	-42.14	46.23	46.35	74.00	27.65	Pass	V	Peak	
12	9748.0000	37.70	6.77	-42.10	46.67	49.04	74.00	24.96	Pass	V	Peak	

Mode	e:	802.11	802.11 n (HT40) (13.5Mbps)					2452			
NO	Freq. [MHz]	Ant Facto r [dB]	Cable loss [dB]	Pream gain [dB]	Readi ng [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remak
1	1170.2170	28.0	2.68	-42.92	56.42	44.25	74.00	29.75	Pass	Н	Peak
2	1716.4716	29.8	3.21	-42.67	51.14	41.51	74.00	32.49	Pass	Н	Peak
3	2954.9955	33.1	4.41	-43.10	50.56	45.00	74.00	29.00	Pass	Н	Peak
4	4904.0000	34.5	4.88	-42.80	47.63	44.21	74.00	29.79	Pass	Н	Peak
5	7356.0000	36.4	5.85	-42.13	45.99	46.17	74.00	27.83	Pass	Н	Peak
6	9808.0000	37.7	6.59	-42.10	47.62	49.83	74.00	24.17	Pass	Н	Peak
7	1300.0300	28.2	2.75	-42.78	51.75	39.92	74.00	34.08	Pass	V	Peak
8	2029.1029	31.7	3.52	-43.19	51.84	43.91	74.00	30.09	Pass	V	Peak
9	3076.0051	33.2	4.77	-43.10	50.43	45.33	74.00	28.67	Pass	V	Peak
10	4904.0000	34.5	4.88	-42.80	46.48	43.06	74.00	30.94	Pass	V	Peak
11	7356.0000	36.4	5.85	-42.13	45.94	46.12	74.00	27.88	Pass	V	Peak
12	9808.0000	37.7	6.59	-42.10	46.92	49.13	74.00	24.87	Pass	V	Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

