

TEST REPORT

Applicant:	Shenzhen Kuntu Technology Co. LTD
Address of Applicant:	401,Building 3,No.109, Yanluo Road,Luotian Community,Yanluo Street, Baoan District, Shenzhen, China
Manufacturer/Factory:	Shenzhen Kuntu Technology Co. LTD
Address of Manufacturer/Factory:	401,Building 3,No.109, Yanluo Road,Luotian Community,Yanluo Street, Baoan District, Shenzhen, China
Equipment Under Test (E	EUT)
Product Name:	Smart data relay charging stand
Model No.:	Qico-K1
FCC ID:	2AZBC-QICO-K1
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C
Date of sample receipt:	Feb. 20, 2021
Date of Test:	Feb. 20, 2021- Mar. 10, 2021
Date of report issued:	Mar. 10, 2021
Test Result :	PASS *

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Mar. 10, 2021	Original

handlu Tested/Prepared By: Date: Mar. 10, 2021 **Project Engineer** this song lund Check By: Date: Mar. 10, 2021 Reviewer

3 Contents

		Pa	ge
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	IERAL INFORMATION	5
	5.1 5.2	GENERAL DESCRIPTION OF EUT	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4 5.5	DEVIATION FROM STANDARDS Abnormalities from Standard Conditions	-
	5.6	TEST FACILITY	-
	5.7 5.8	TEST LOCATION OTHER INFORMATION REQUESTED BY THE CUSTOMER	-
6	TES	T INSTRUMENTS LIST	7
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1 7.2 7.3 7.4	ANTENNA REQUIREMENT: CONDUCTED EMISSIONS RADIATED EMISSION 20DB OCCUPY BANDWIDTH	11 14
8	TES	T SETUP PHOTO	20
9	EUT	CONSTRUCTIONAL DETAILS	20

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Radiated Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty					
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB (1)						
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.			

5 General Information

5.1 General Description of EUT

Product Name:	Smart data relay charging stand
Model/Type reference:	PA220A
Serial No.:	N/A
Test sample(s) ID:	GTSL202102000066-1(Engineer sample) GTSL202102000066-2(Normal sample)
Power supply:	DC 5V or 9V from adapter
Operation frequency:	110KHz - 205KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna

5.2 Test mode

Equipment under test was operated during the measurement under the following conditions:

Charging and communication mode

Test M	Test Modes:					
Mode 1	AC/DC Adapter (5V/3A) + EUT + Mobile Phone1 (Battery Status: <1%)	Record				
Mode 2	AC/DC Adapter (5V/3A) + EUT + Mobile Phone1 (Battery Status: <50%)	Record				
Mode 3	AC/DC Adapter (5V/2A) + EUT + Mobile Phone1 (Battery Status: 100%)	Record				
Mode 4	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: <1%)	Pre-tested				
Mode 5	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested				
Mode 6	AC/DC Adapter (9V/2A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested				
Mode 7	AC/DC Adapter (12V/1.5A) + EUT + Mobile Phone1 (Battery Status: <1%)	Pre-tested				
Mode 8	AC/DC Adapter (12V/1.5A) + EUT + Mobile Phone1 (Battery Status: <50%)	Pre-tested				
Mode 9	AC/DC Adapter (12V/1.5A) + EUT + Mobile Phone1 (Battery Status: 100%)	Pre-tested				
Note: All	test modes were pre-tested, but we only recorded the worst case in this report.	·				

5.3 Description of Support Units

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Adaptar	CHENYANG	CD107	Input: 100-240V~, 50/60Hz, 0.5A	CE/FCC	loborotory (
Adapter	ELECTRONICS	CD107	Output: 5V2A / 9V2.0A	CE/FCC	laboratory

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.8 Other Information Requested by the Customer

None.

Test Instruments list 6

Radi	iated Emission:					
ltem	n Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

٦

Con	Conducted Emission										
ltem	Item Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021					
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021					
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021					
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A					
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					
7	Thermo meter	КТJ	TA328	GTS233	June. 25 2020	June. 24 2021					
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021					
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021					

RF C	RF Conducted Test:									
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021				
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021				
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021				
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021				
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021				
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021				
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021				

Gene	General used equipment:									
ltem	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date				
				No.	(mm-dd-yy)	(mm-dd-yy)				
1	Humidity/ Temperature Indicator	КТЈ	TA328	GTS243	June. 25 2020	June. 24 2021				
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021				

7 Test results and Measurement Data

7.1 Antenna requirement:

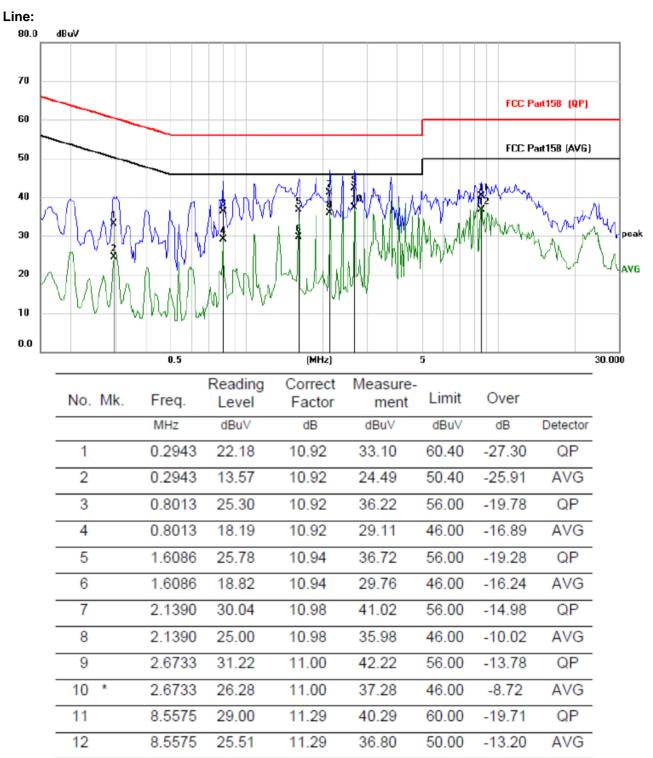
Standard requirement:	FCC Part15 C Section 15.203
45 000 1 4	

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

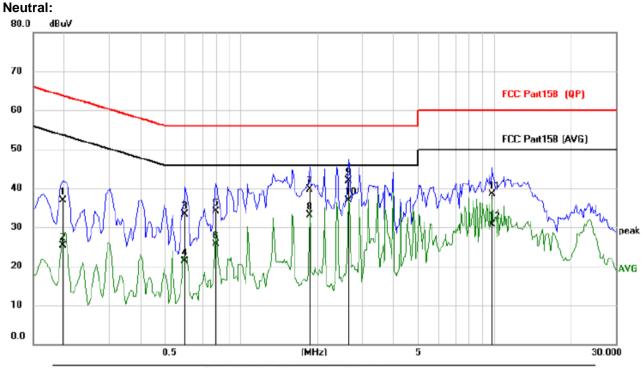
EUT Antenna:

The antenna is Inductive loop coil Antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.



7.2 Conducted Emissions

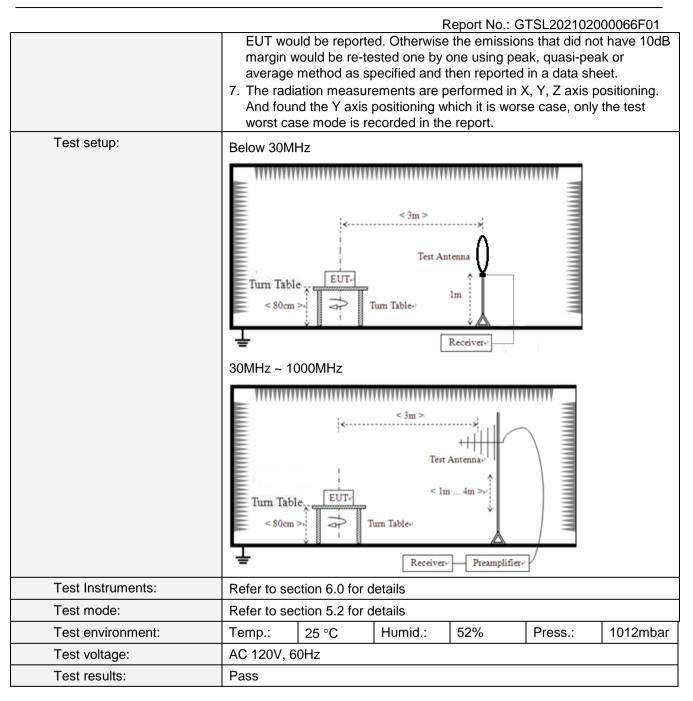
Test	Poquiromont:							
	Requirement:	FCC Part15	C Section 15.	207				
Test	Method:	ANSI C63.1	0:2013					
Test	Frequency Range:	150KHz to 30MHz						
Clas	s / Severity:	Class B						
Rece	eiver setup:	RBW=9KHz	z, VBW=30KH	z, Sweep tir	ne=auto			
Limit	t:	Fragues			Limit	t (dBuV)		
			cy range (MHz	, QI	uasi-peak		erage	
).15-0.5	6	66 to 56*		o 46*	
			0.5-5		56		46	
		* Docrococo	5-30 s with the logar	rithm of the	60 froquency	5	50	
Test	setup:	Decreases	Reference F		irequency.			
Test	procedure:	Remark E.U.T: Equipment LISN: Line Imped Test table height= 1. The E.U. line impe 50ohm/5 2. The perip LISN tha terminati photogra 3. Both side	t E.U.T Insulation plane Under Test ance Stabilization Netwo 0.8m T and simulator odance stabilization outh coupling in oheral devices t provides a 50 on. (Please refines). es of A.C. line a	EMI Receive ork ors are conr ation netwo mpedance are also co Oohm/50uH fer to the blo are checked	r AC p AC	This provide uring equipm he main powe edance with of the test se m conducted	s a nent. er through a 50ohm etup and	
	Instruments:	positions according Refer to sec	nce. In order to of equipment g to ANSI C63 ction 6.0 for de	and all of th .10 on conc tails	ne interface c	ables must b		
Test	mode:	Refer to see	ction 5.2 for de		1			
Test	environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test	voltage:	AC 120V, 6	0Hz					
Test	results:	Pass						



Measurement data:

Report No.: GTSL202102000066F01

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBu∀	dB	Detector
1	0.1968	26.08	10.92	37.00	63.74	-26.74	QP
2	0.1968	14.31	10.92	25.23	53.74	-28.51	AVG
3	0.5985	22.41	10.92	33.33	56.00	-22.67	QP
4	0.5985	10.29	10.92	21.21	46.00	-24.79	AVG
5	0.7935	23.20	10.92	34.12	56.00	-21.88	QP
6	0.7935	14.72	10.92	25.64	46.00	-20.36	AVG
7	1.8582	28.78	10.96	39.74	56.00	-16.26	QP
8	1.8582	22.24	10.96	33.20	46.00	-12.80	AVG
9	2.6576	30.99	11.00	41.99	56.00	-14.01	QP
10 *	2.6576	25.81	11.00	36.81	46.00	-9.19	AVG
11	9.8328	27.15	11.35	38.50	60.00	-21.50	QP
12	9.8328	19.28	11.35	30.63	50.00	-19.37	AVG


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Radiated Emission

	111331011							
Test Requirem	ent:	FCC Part15 C Se	ection 15.209)				
Test Method:		ANSI C63.10:2013						
Test Frequency	/ Range:	9kHz to 1GHz						
Test site:		Measurement Distance: 3m						
Receiver setup	:	Frequency	requency Detector		RBW	VBW	Remark	
		9kHz- 30MHz	Quasi-peal	< ´	10kHz	30kHz	Quasi-peak Value	
		30MHz-1GHz	Quasi-peal	< 1	20kHz	300kHz	Quasi-peak Value	
		Above 1GHz	Peak		1MHz	3MHz	Peak Value	
			AV		1MHz	10Hz	Average Value	
		Remark: For the MHz. Radiated er					kHz and above 1000	
		measurements e					54364 011	
Limit:		Limits for freque				0.011		
(Spurious Emis	sions)	Frequency	Limit (uV/		Meas	urement ance(m)	Remark	
		0.009-0.490	2400/F(kł			300	Quasi-peak Value	
		0.490-1.705	24000/F(k	Hz)		30	Quasi-peak Value	
		1.705-30	30			30	Quasi-peak Value	
		Limits for frequency Above 30MHz						
		Frequency		Limit (dBuV/m @3m)			Remark	
		30MHz-88MHz		40.00			Quasi-peak Value	
		88MHz-216MHz			43.5		Quasi-peak Value	
	216MHz-960MHz 960MHz-1GHz			<u>46.0</u> 54.0		Quasi-peak Value Quasi-peak Value		
		960IVIH2-TGH2			<u> </u>		Average Value	
		Above 1GHz 74.00 Peak Value						
		Remark: The em measurements e frequency bands emission limits in employing an ave	mploying a C 9-90 kHz, 11 these three	CISPF 10-49 band	R quasi-p 0 kHz ar	eak detect	or except for the 000 MHz. Radiated	
Test Procedure):	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 						
		ground to detend for izontal and measurement.4. For each suspond then the and then the and the rota table maximum readers.	ermine the m vertical pola ected emiss intenna was was turned fr ding. ver system w	aximu rizatio ion, tl tunec rom 0 vas se	um value ons of th he EUT d to heigh d degrees et to Pea	e of the field e antenna : was arrang nts from 1 r s to 360 de	r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters and grees to find the unction and Specified	

Measurement data:

Measurement data:

GTS

For 9 KHz-30MHz

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.116(F)	67.73	Loop	23.64	0.01	91.38	103.91	12.53	PK
0.116(F)	51.60	Loop	23.64	0.01	75.25	83.91	8.66	AV
0.110	42.76	Loop	23.55	0.01	66.32	106.78	40.46	PK
0.110	35.83	Loop	23.55	0.01	59.39	86.78	27.39	AV
0.685	26.66	Loop	25.07	-0.17	51.56	70.89	19.33	QP
1.735	21.34	Loop	27.12	-0.25	48.21	62.82	14.61	QP
6.525	29.17	Loop	23.91	-0.24	52.84	69.54	16.70	QP

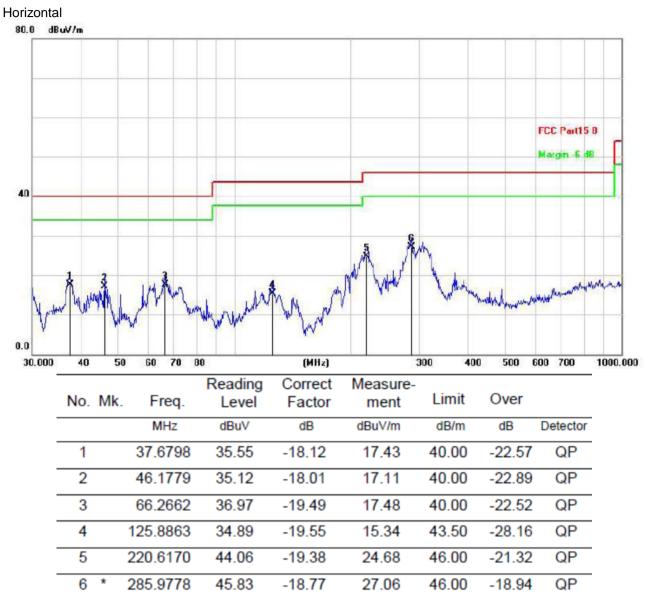
Remark:

1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.

2. The test limit distance is 3m limit.

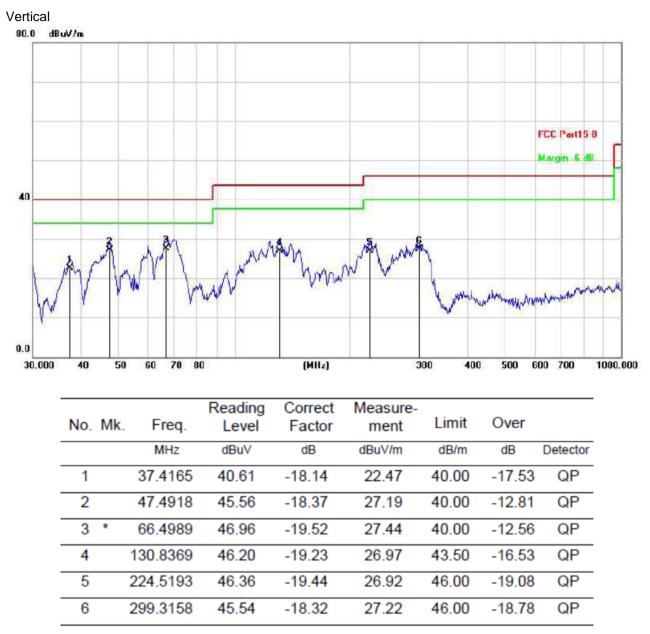
3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.

4. F means Fundamental Frequency.


5. Emission level (dBuV/m) =Reading + Antenna Factor + Cable Loss.

6. Margin value = Limit value- Emission level.

30MHz~1GHz


Report No.: GTSL202102000066F01

Final Level =Receiver Read level + Correct Factor

Report No.: GTSL202102000066F01

Final Level =Receiver Read level + Correct Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C S	FCC Part15 C Section 15.215						
Test Method:	ANSI C63.10:20	ANSI C63.10:2013						
Test setup:	Spectru		E.I ucted Table erence Plane	U.T				
	Defende eestien		-					
Test Instruments:	Refer to section	6.0 for detai	IS					
Test mode:	Refer to section	5.2 for detai	s					
Test environment:	Temp.:	23 °C	Humid.:	51%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

Measurement Data

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Conclusion
Tx Mode	116.00	6.486	PASS

x dB -20.00 dB		Cen Trig				Mar 04, 2021 None ce: BTS	Trace/Detector	
0 dB/div	Ref 0.00 dBm							
- og 10.0 20.0							Clear	Writ
30.0 40.0								
50.0							Av	eraç
70.0							Max	x Ho
90.0 Center 116					Spa	n 10 kHz		
#Res BW 1 kHz Occupied Bandwidth			#VBW 3 kHz Total Power	-27 f	Sweep 12.4 ms			1 Ho
Occupie		 7.295 kHz	rotari offer	2.11			De	tect
Transmit	Freq Error	127 Hz	OBW Power	99	9.00 %			erag M
x dB Ban	dwidth	6.486 kHz	x dB	-20.	00 dB			
sg 🕕 File <1.p	no> saved			STATU	s 🔥 DC Cou	pled		

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------