

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202303173F01

TEST Report

Applicant: Shenzhen Green Giant Energy Technology Development

Co.,Ltd

Address of Applicant: 2nd Floor, Building B, Minle industrial Park, Minzhi

Street, Longhua District, shenzhen

Manufacturer: Shenzhen Green Giant Energy Technology Development

Co.,Ltd

Address of 2nd Floor, Building B, Minle industrial Park, Minzhi

Manufacturer: Street,Longhua District,shenzhen

Equipment Under Test (EUT)

Product Name: Bluetooth Dongle

Model No.: LCB7100

Series model: N/A

Trade Mark: N/A

FCC ID: 2A77D-LCB7100

IC: 29100-LCB7100

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-247 Issue 2 February 2017

RSS-Gen Issue 5

Date of sample receipt: Mar.15,2023

Date of Test: Mar.15,2023~Mar.21,2023

Date of report issued: Mar.21,2023

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar.21,2023	Original

Tested/ Prepared By	Heber He	Date:	Mar.21,2023
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Mar.21,2023
	Reviewer	_	
Approved By :	Kein Yang	Date:	Mar.21,2023
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS. 4.6. TEST FACILITY.	
4.7. TEST FACILITY	7
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	12
6.3. 20DB EMISSION BANDWIDTH AND 99% BANDWIDTH	_
6.4. FREQUENCIES SEPARATION	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.7.2. Radiated Emission Method	33
6.8. Spurious Emission	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	40
7. TEST SETUP PHOTO	48
8. EUT CONSTRUCTIONAL DETAILS	48

3. Test Summary

Test Item	Section in CFR 47 15.247/RSS 247	Result
Antenna Requirement	15.203/15.247 (c) RSS-Gen Issue 5	Pass
AC Power Line Conducted Emission	15.207 RSS-Gen 8.8	Pass
Conducted Peak Output Power	15.247 (b)(1) RSS 247 5.4 (2)	Pass
20dB Bandwidth& 99% Bandwidth	15.247 (a)(1) RSS 247 5.1 (1) RSS-Gen 4.6	Pass
Carrier Frequencies Separation	15.247 (a)(1) RSS 247 5.1 (2)	Pass
Hopping Channel Number	15.247 (a)(1)(iii) RSS 247 5.1 (4)	Pass
Dwell Time	15.247 (a)(1)(iii) RSS 247 5.1 (4)	Pass
Radiated Emission	15.205/15.209 RSS-Gen 8.9	Pass
Band Edge	15.247(d) RSS-Gen 8.10	Pass
Spurious RF Conducted Emission	15.247(d) RSS 247 5.5	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	Bluetooth Dongle
Model No.:	LCB7100
HVIN:	LCB7100
Test sample(s) ID:	HTT202303173-1(Engineer sample) HTT202303173-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK,8-DPSK
Antenna Type:	External Antenna
Antenna gain:	3.22dBi
Power Supply:	DC 5.0V

Operation	Frequency each	n of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED#: 27952 CAB identifier: CN0128

Shenzhen HTT Technology Co.,Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

5. Test Instruments list

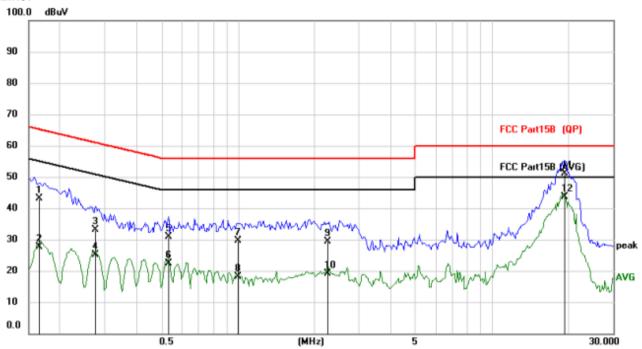
<u>J.</u>	rest mstrume	110 1101	T	ı		1
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	Toot Equipment	manarataro		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

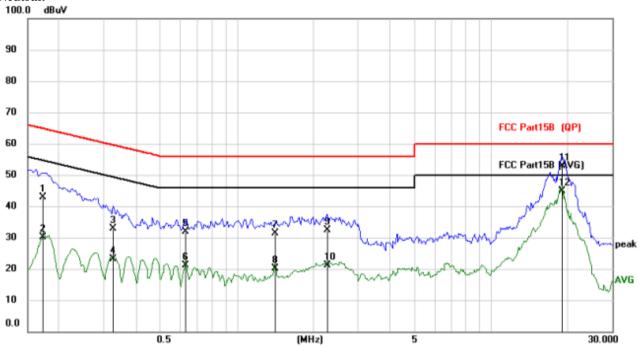
6. Test results and Measurement Data

6.1. Conducted Emissions


	<u></u>				
Test Requirement:	FCC Part15 C Section 15.207/RSS-Gen 8.8				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto			
Limit:	Frequency range (MHz)	Limit	(dBuV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	* Decreases with the logarithm	60	50		
Test setup:					
Test procedure:	Reference Plane LISN				
	positions of equipment and according to ANSI C63.10				
Test Instruments:	Refer to section 6.0 for details	S			
Test mode:	Refer to section 5.2 for details	S			
Test environment:	Temp.: 25 °C Hui	mid.: 52%	Press.: 1012mbar		
Test voltage:	AC 120V, 60Hz	•	<u>'</u>		
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

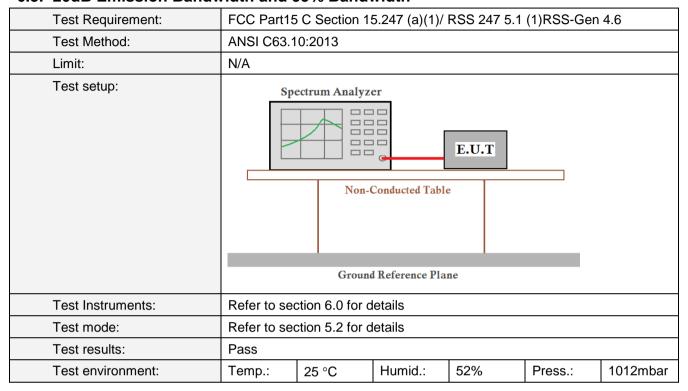
No Mk	From	Reading	Correct	Measure-	Limit	Over	
No. Mk.	Freq.	Level	Factor	ment	Littill	Ovei	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1641	32.69	10.38	43.07	65.25	-22.18	QP
2	0.1641	17.24	10.38	27.62	55.25	-27.63	AVG
3	0.2748	22.76	10.40	33.16	60.97	-27.81	QP
4	0.2748	14.77	10.40	25.17	50.97	-25.80	AVG
5	0.5322	20.45	10.49	30.94	56.00	-25.06	QP
6	0.5322	12.01	10.49	22.50	46.00	-23.50	AVG
7	0.9997	18.75	10.90	29.65	56.00	-26.35	QP
8	0.9997	7.26	10.90	18.16	46.00	-27.84	AVG
9	2.2367	18.61	10.83	29.44	56.00	-26.56	QP
10	2.2367	8.36	10.83	19.19	46.00	-26.81	AVG
11	19.2236	38.77	12.35	51.12	60.00	-8.88	QP
12 *	19.2236	31.34	12.35	43.69	50.00	-6.31	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1722	32.59	10.24	42.83	64.85	-22.02	QP
2	0.1722	19.94	10.24	30.18	54.85	-24.67	AVG
3	0.3255	22.55	10.26	32.81	59.57	-26.76	QP
4	0.3255	12.89	10.26	23.15	49.57	-26.42	AVG
5	0.6297	21.26	10.54	31.80	56.00	-24.20	QP
6	0.6297	10.53	10.54	21.07	46.00	-24.93	AVG
7	1.4058	20.69	10.81	31.50	56.00	-24.50	QP
8	1.4058	9.29	10.81	20.10	46.00	-25.90	AVG
9	2.2726	21.62	10.83	32.45	56.00	-23.55	QP
10	2.2726	10.32	10.83	21.15	46.00	-24.85	AVG
11	19.0407	40.46	12.44	52.90	60.00	-7.10	QP
12 *	19.0407	32.40	12.44	44.84	50.00	-5.16	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

6.2. Conducted Peak Output Power

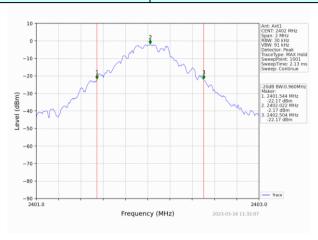

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(1)/ RSS 247 5.4 (2)							
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)					
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table								
		Ground Reference Pla	ane						
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

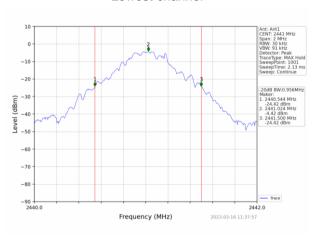
Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	0.35		
GFSK	Middle	-1.84	30.00	Pass
	Highest	-2.83		
	Lowest	0.33		
π/4-DQPSK	Middle	-1.81	20.97	Pass
	Highest	-2.77		
	Lowest	0.31		
8-DPSK	Middle	-1.80	20.97	Pass
	Highest	-2.85		

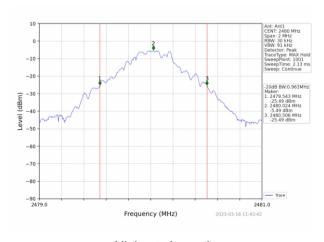
6.3. 20dB Emission Bandwidth and 99% Bandwidth

Measurement Data


Mode	Test channel	20dB Bandwidth (MHz)	99% bandwidth (MHz)	Result
	Lowest	0.960	0.880	
GFSK	Middle	0.956	0.864	Pass
	Highest	0.963	0.859	
	Lowest	1.273	1.156	
π/4-DQPSK	Middle	1.249	1.135	Pass
	Highest	1.244	1.129	
	Lowest	1.290	1.161	
8-DPSK	Middle	1.273	1.146	Pass
	Highest	1.276	1.140	

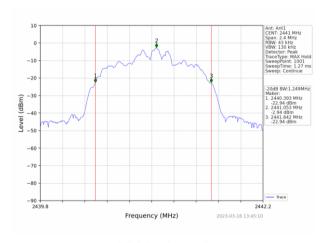
Test plot as follows:




20dB Bandwidth

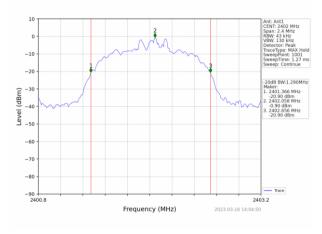
Test mode: GFSK mode

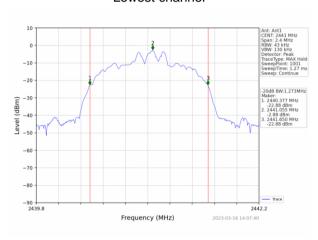
Lowest channel

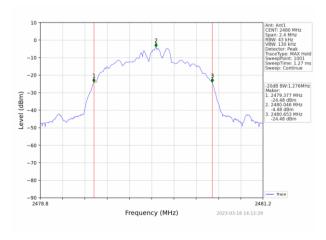

Highest channel

Test mode: $\pi/4$ -DQPSK mode

Lowest channel

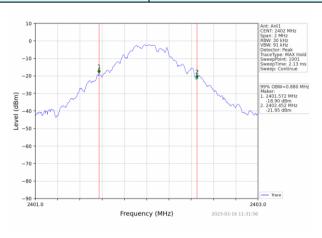



Highest channel

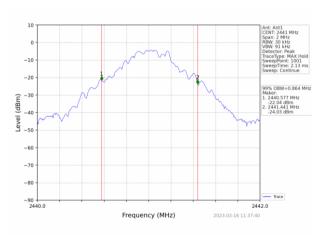


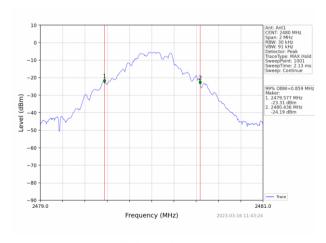
Test mode: 8-DPSK mode

Lowest channel



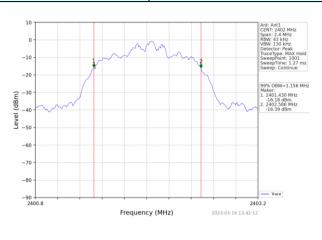
Highest channel

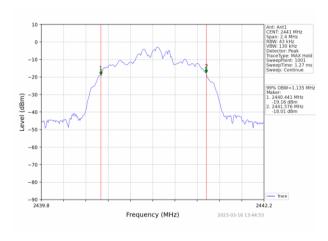


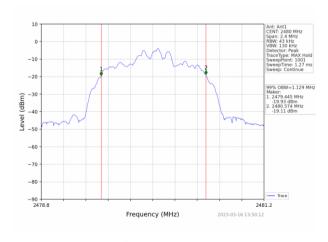

99% bandwidth

Test mode: GFSK mode

Lowest channel

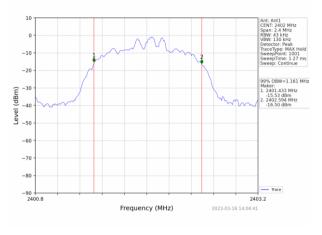


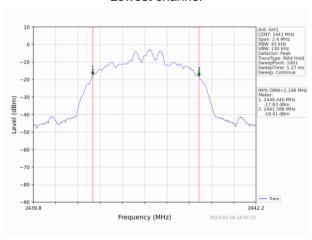

Highest channel

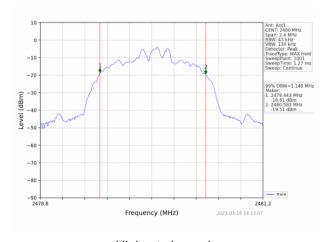


Test mode: $\pi/4$ -DQPSK mode

Lowest channel




Highest channel



Test mode: 8-DPSK mode

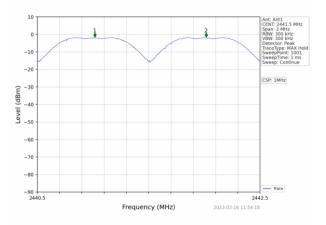
Lowest channel

Highest channel

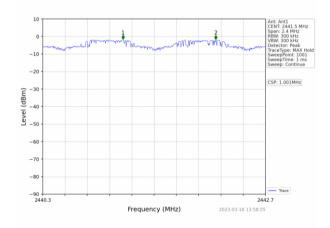
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)/ RSS 247 5.1 (2)								
Test Method:		ANSI C63.10:2013							
Receiver setup:		RBW=100KHz, VBW=300KHz, detector=Peak							
Limit:		GFSK: 20dB bandwidth π/4-DQPSK : 0.025MHz or 2/3 of the 20dB bandwidth (whichever is							
Test setup:	Sp								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

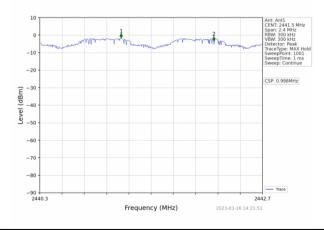
Measurement Data


Wieasurement Date	-			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.000	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8DPSK	Middle	0.998	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

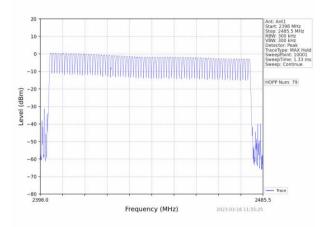

Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

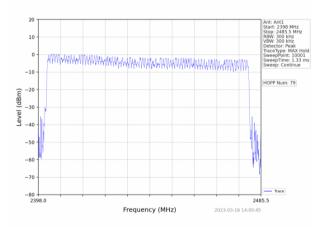
Test mode: 8-DPSK

6.5. Hopping Channel Number

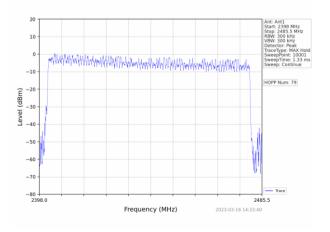
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)/ RSS 247 5.1 (4)						
Test Method:	ANSI C63.10:2013							
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channels	3						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for d	etails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

6.6. Dwell Time

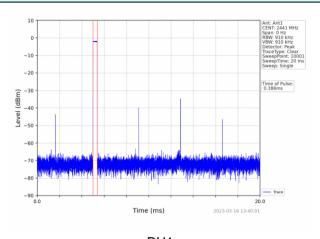
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)/ RSS 247 5.1 (4)								
Test Method:	ANSI C63.10	ANSI C63.10:20 13							
Receiver setup:	RBW=1MHz	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak							
Limit:	0.4 Second								
Test setup:	Spe								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

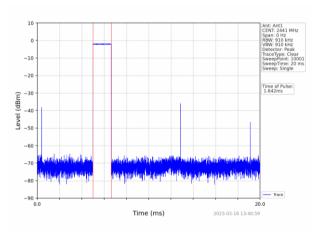
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result
	DH1	0.386	42.074		
GFSK	DH3	1.642	87.026	400	Pass
	DH5	2.890	127.160		
	2-DH1	0.394	40.582		
π/4-DQPSK	2-DH3	1.648	108.768	400	Pass
	2-DH5	2.896	144.800		
	3-DH1	0.396	49.104		
8-DPSK	3-DH3	1.646	100.406	400	Pass
	3-DH5	2.896	144.800		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

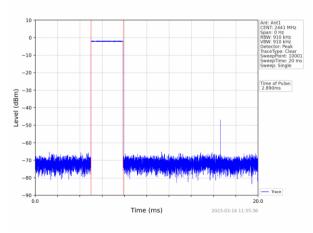
Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

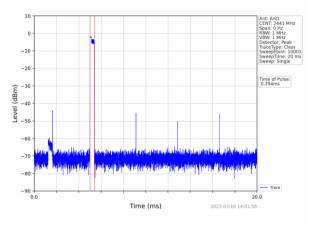

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

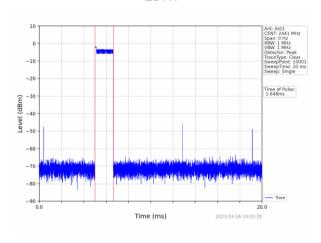
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

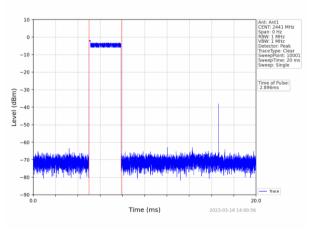


Test plot as follows:

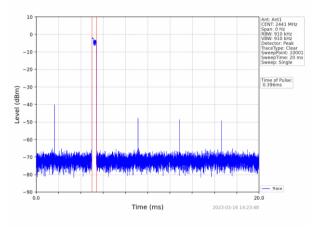

GFSK mode


DH3

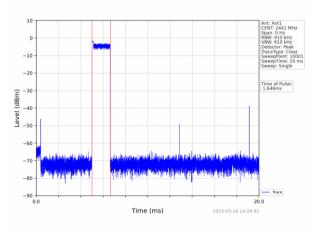

DH5

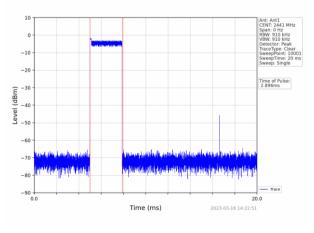

π/4-DQPSK mode

2DH1



2DH3



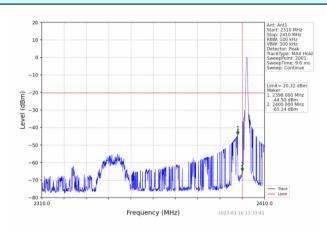

8-DPSK mode

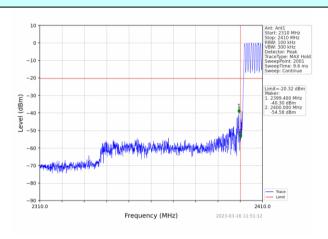
2DH1

2DH3

6.7. Band Edge

6.7.1. Conducted Emission Method

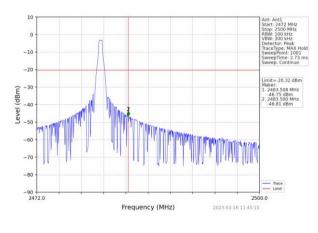

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (d)/ RSS-Gen 8.10							
Test Method:	ANSI C63.	ANSI C63.10:2013							
Receiver setup:	RBW=100k	KHz, VBW=30	00kHz, Detec	tor=Peak					
Limit:	spectrum ir produced b 100 kHz ba desired pov	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spec	Spectrum Analyzer E.U.T Non-Conducted Table							
Test Instruments:	Refer to se	Refer to section 6.0 for details							
Test mode:	Refer to se	Refer to section 5.2 for details							
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

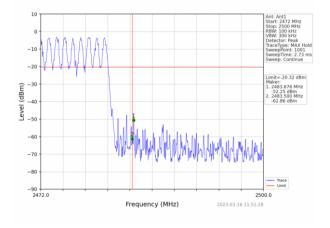


Test plot as follows: GFSK Mode:

Test channel

Lowest channel

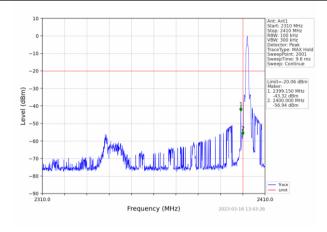


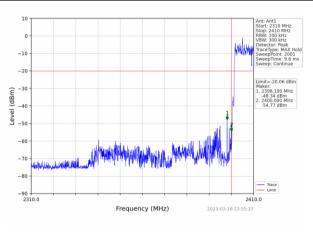

No-hopping mode

Hopping mode

Test channel:

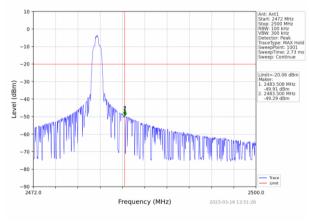
Highest channel

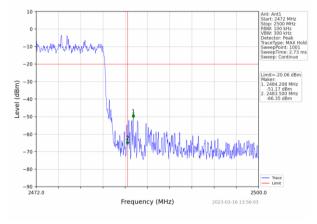

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

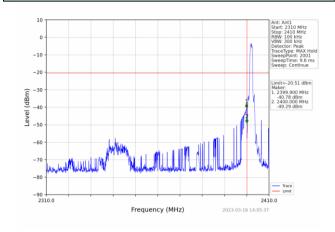


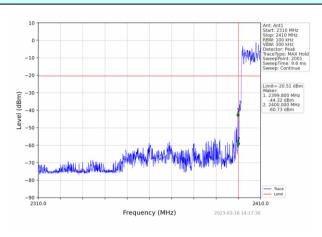

No-hopping mode

Hopping mode

Test channel:

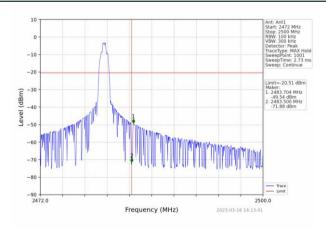
Highest channel


No-hopping mode

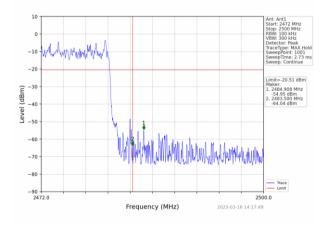

Hopping mode

8-DPSK Mode:

Test channel Lowest channel



No-hopping mode


Hopping mode

Test channel:

Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

0.7.2. Radiated Lillission Wethod								
Test Requirement:	FCC Part15	FCC Part15 C Section 15.209 and 15.205/RSS-Gen 8.9						
Test Method:	ANSI C63.10	ANSI C63.10:2013						
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measureme	nt Distance:	3m					
Receiver setup:	Frequenc			RBW	VBW		emark	
	Above 1GH	Hz Pea		1MHz 1MHz	3MHz 10Hz		k Value ge Value	
Limit:	Fre	quency	L	_imit (dBuV/			emark	
	Abov	ve 1GHz		54.0 74.0			ge Value k Value	
Test setup:		Test Antenna- Company Company						
Test Procedure:	1 The FUT	was placed			eamplifier	lo 1.5 motor	e above the	
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 							
Test Instruments:	Refer to sec	tion 6.0 for c	letails					
Test mode:	Refer to sec	tion 5.2 for c	letails					
Test results:	Pass		ı		т		T	
Test environment:	Temp.:	25 °C	Humi	d.: 52%	, D	Press.:	1012mbar	

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

TIONZONIAI (WOIGI GAGO)									
	Frequency	Meter Reading	Antenna		Preamp	Emissies Level	1 114-	Margin	Detector
			Factor	Cable Loss	Factor	Emission Level	Limits		
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
	(1411 12)	(αΒμν)	(dD/III)	(dD)	(GD)	(аБру/пі)	(аБрулп)	(GD)	
	2390	57.76	26.20	5.72	33.30	56.38	74.00	-17.62	peak
		00	20.20	0	00.00	00.00		2	Podit
	2390	44.96	26.20	5.72	33.30	43.58	54.00	-10.42	AVG
		1		J		10.00			

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
		Facioi	Cable Luss	Factor				
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.87	26.20	5.72	33.30	58.49	74.00	-15.51	peak
2390	46.26	26.20	5.72	33.30	44.88	54.00	-9.12	AVG

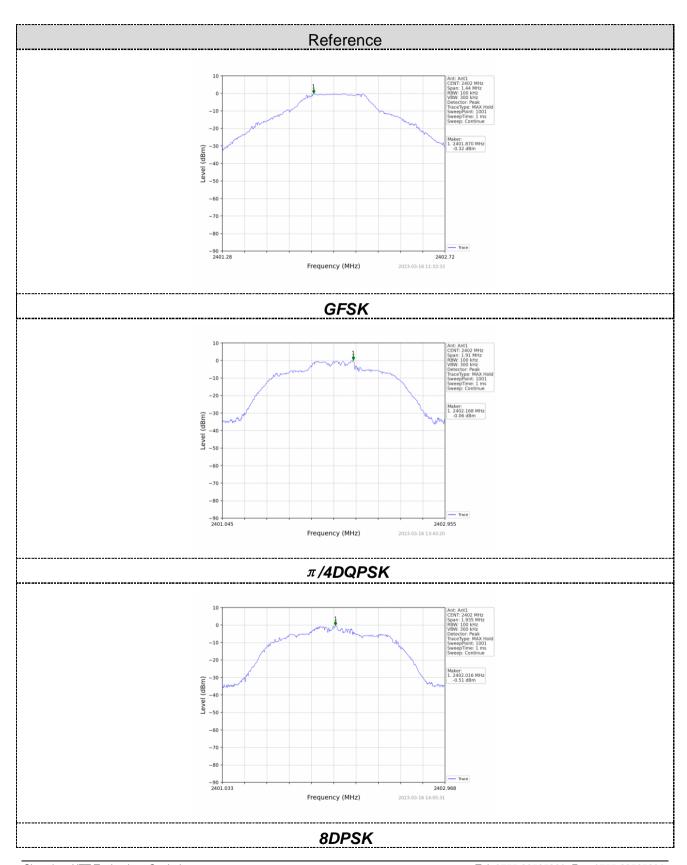
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
2483.5	55.63	28.60	6.97	32.70	58.50	74.00	-15.50	peak	
2483.5	42.96	28.60	6.97	32.70	45.83	54.00	-8.17	AVG	

Vertical:

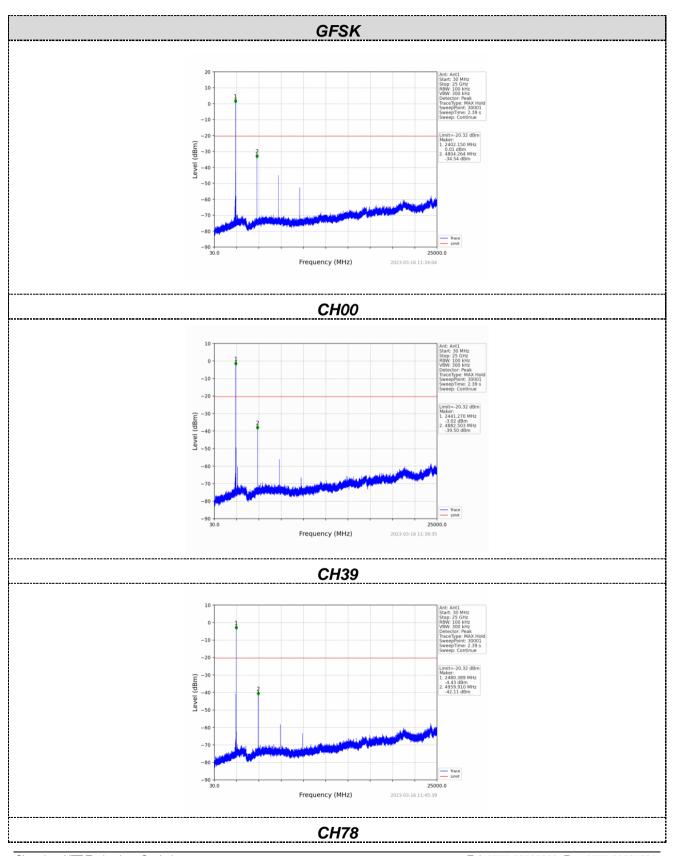
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
2483.5	57.10	28.60	6.97	32.70	59.97	74.00	-14.03	peak	
2483.5	43.07	28.60	6.97	32.70	45.94	54.00	-8.06	AVG	



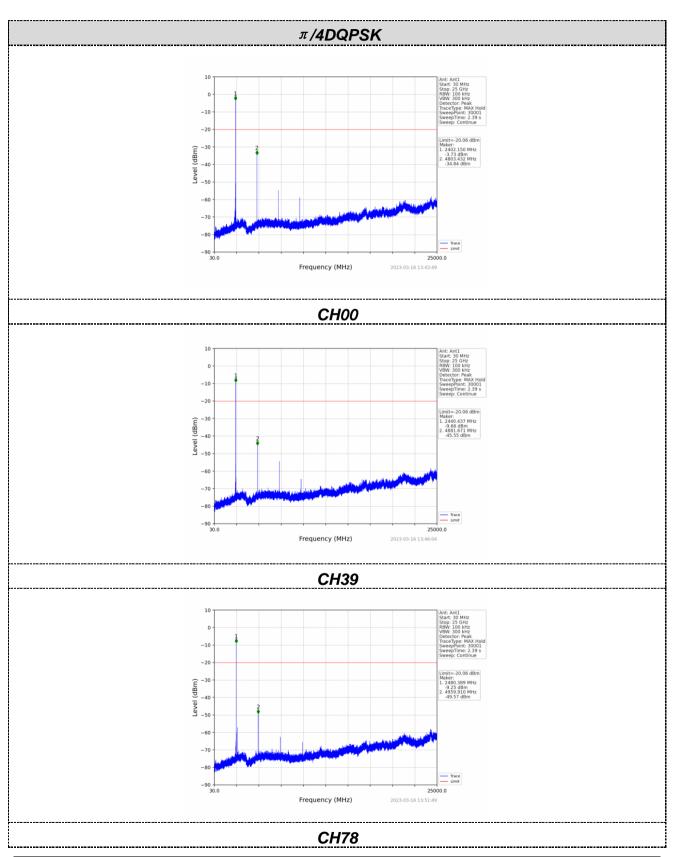
6.8. Spurious Emission

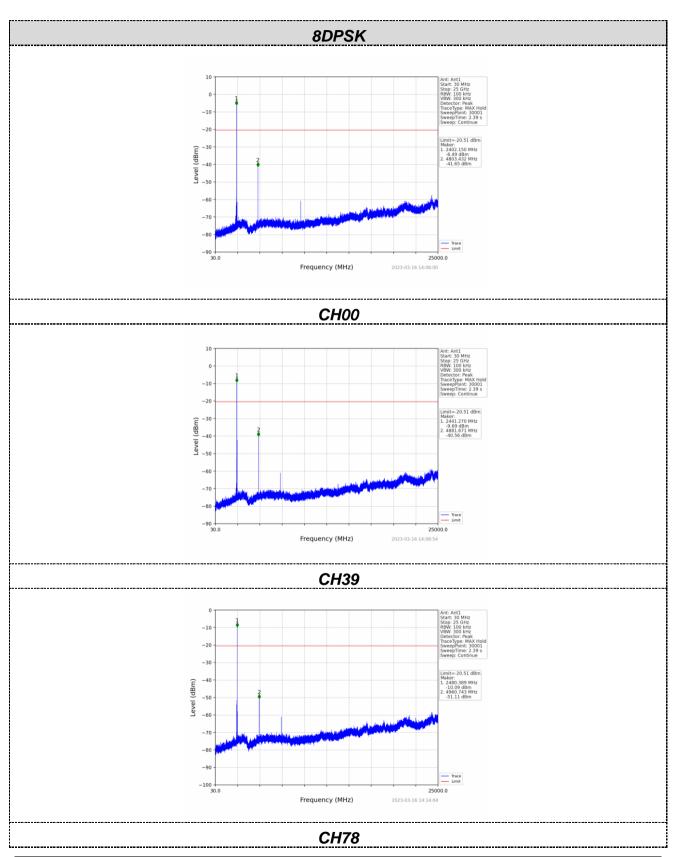
6.8.1. Conducted Emission Method

Test Requirement:	5.247 (d)/ RS	SS 247 5.5						
Test Method:	ANSI C63.10:2013							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details							
Test results:	Pass					_		
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

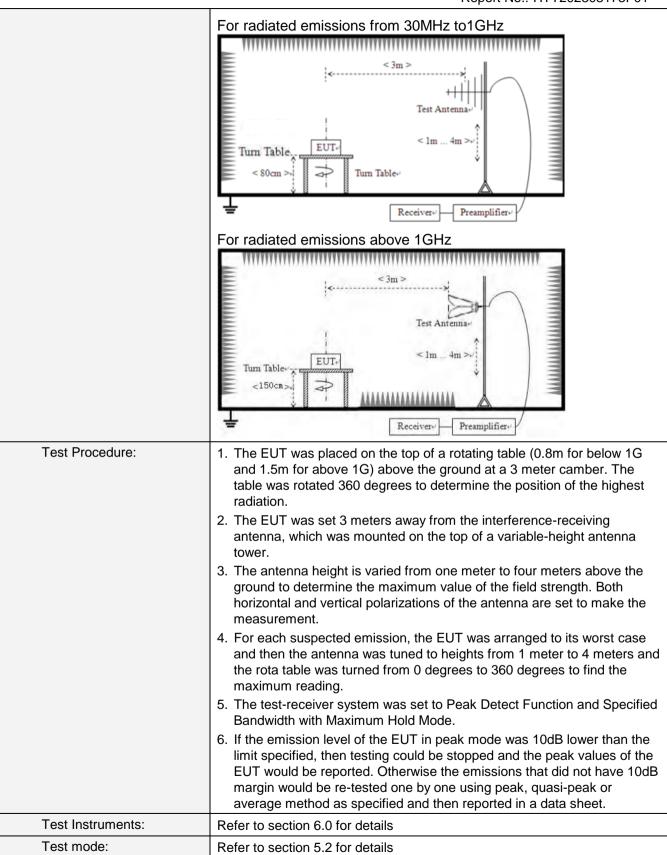


Shenzhen HTT Technology Co.,Ltd.


Tel: 0755-23595200 Fax: 0755-23595201


Shenzhen HTT Technology Co.,Ltd.

Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

6.8.2. Radiated Emission Method

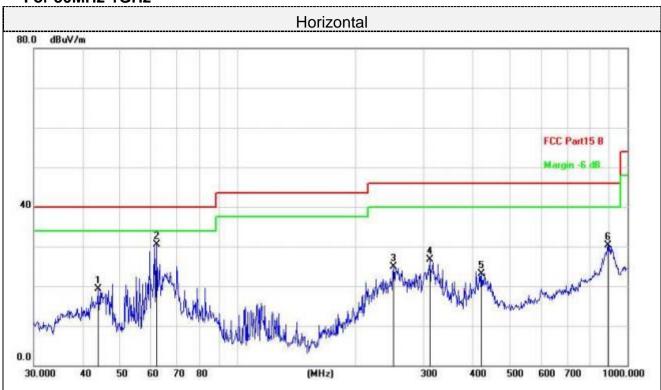
Test Requirement:	FCC Part15 C Section	on 15	5.209 /RSS-	Gen 8.	9			
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector RBV		Ν	VBW	'	Value
	9KHz-150KHz	Qı	ıasi-peak	200H	Ηz	600H:	z	Quasi-peak
	150KHz-30MHz	Q	ıasi-peak	9KF	łz	30KH	z	Quasi-peak
	30MHz-1GHz	Q	ıasi-peak	120K	Ήz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	Ηz	3MHz	Z	Peak
	Above 1GHz		Peak	1MF	Ηz	10Hz	<u>'</u>	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	M	leasurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705M	Hz	24000/F(00/F(KHz)		QP		30m
	1.705MHz-30MHz 30			QP			30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz	<u>'</u>	150			QP		
	216MHz-960MH	Z	200			QP		3m
	960MHz-1GHz		500		QP			Om
	Above 1GHz	500		Average				
	710000 10112		5000		Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	МН	Z		
	Turn Table EUT		< 3m > Test A	ntenna 1m)			

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 6	AC 120V, 60Hz						
Test results:	Pass							

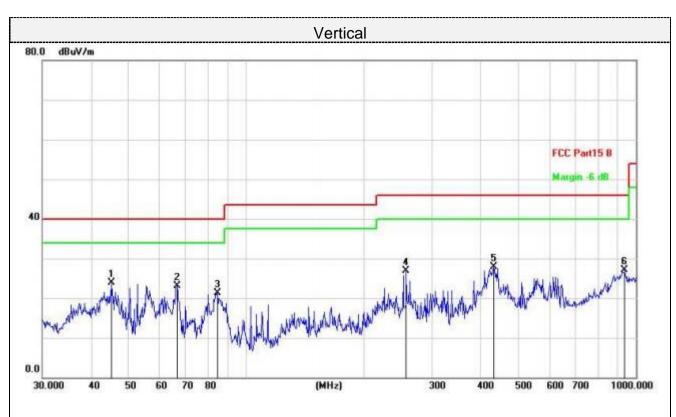
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK and 8DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		43.8119	36.61	-17.27	19.34	40.00	-20.66	QP
2	*	61.9951	49.06	-18.50	30.56	40.00	-9.44	QP
3		251.1804	43.76	-18.76	25.00	46.00	-21.00	QP
4		311.0867	43.97	-17.29	26.68	46.00	-19.32	QP
5		422.0577	37.13	-14.05	23.08	46.00	-22.92	QP
6		890.7278	35.29	-4.93	30.36	46.00	-15.64	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	45.2165	41.17	-17.22	23.95	40.00	-16.05	QP
2		66.4989	42.52	-19.32	23.20	40.00	-16.80	QP
3		84.4054	43.28	-21.97	21.31	40.00	-18.69	QP
4		257.4221	45.65	-18.71	26.94	46.00	-19.06	QP
5		432.5457	41.93	-14.02	27.91	46.00	-18.09	QP
6		935.5461	31.79	-4.65	27.14	46.00	-18.86	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

	nizoritai.							
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	52.34	31.40	8.18	31.50	60.42	74.00	-13.58	peak
4804	38.45	31.40	8.18	31.50	46.53	54.00	-7.47	AVG
7206	46.25	35.80	10.83	31.40	61.48	74.00	-12.52	peak
7206	29.03	35.80	10.83	31.40	44.26	54.00	-9.74	AVG
Remark: Facto	or = Antenna Fact	tor + Cable Los	s – Pre-amplifier					

Vertical:

	1	A 1		D				
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
	_							Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
` '	' '	, ,	` ′	, ,		` '	` '	
4804	52.33	31.40	8.18	31.50	60.41	74.00	-13.59	peak
4804	37.12	31.40	8.18	31.50	45.20	54.00	-8.80	AVG
7206	43.65	35.80	10.83	31.40	58.88	74.00	-15.12	peak
7206	28.57	35.80	10.83	31.40	43.80	54.00	-10.20	AVG
	l l		1					

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	51.24	31.40	9.17	32.10	59.71	74.00	-14.29	peak
4882	36.85	31.40	9.17	32.10	45.32	54.00	-8.68	AVG
7323	44.96	35.80	10.83	31.40	60.19	74.00	-13.81	peak
7323	29.54	35.80	10.83	31.40	44.77	54.00	-9.23	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4882	52.41	31.40	9.17	32.10	60.88	74.00	-13.12	peak
4882	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7000	40.00	0= 00	40.00	0.4.40		74.00		
7323	43.62	35.80	10.83	31.40	58.85	74.00	-15.15	peak
7323	29.68	35.80	10.83	31.40	44.91	54.00	-9.09	AVG
Remark: Facto	or = Antenna Fac	tor + Cable I os	s _ Pre-amplifie					

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	50.86	31.40	9.17	32.10	59.33	74.00	-14.67	peak
4960	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7440	43.65	35.80	10.83	31.40	58.88	74.00	-15.12	peak
7440	28.55	35.80	10.83	31.40	43.78	54.00	-10.22	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.41	31.40	9.17	32.10	60.88	74.00	-13.12	peak
4960	38.05	31.40	9.17	32.10	46.52	54.00	-7.48	AVG
7440	44.11	35.80	10.83	31.40	59.34	74.00	-14.66	peak
7440	28.70	35.80	10.83	31.40	43.93	54.00	-10.07	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

