

CFR 47 FCC PART 15 SUBPART C(DSS) TEST REPORT

For

Headphone

MODEL NUMBER: JH-803L2, JH-803L2-BT, JH-803, EMBT-01

REPORT NUMBER: E04A24061049F01301

ISSUE DATE: August 20, 2024

FCC ID: 2APRE-JH-803L2

Prepared for

SHENZHEN JIUHU TECHNOLOGY CO., LTD

4F, HE Sheng Teng Tech Industrial Park, HuanGuan South Road.10 Guanlan, LongHua, ShenZhen, 518110 China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24061049F01301 Page 2 of 111

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	August 20, 2024	Initial Issue	

REPORT NO.: E04A24061049F01301 Page 3 of 111

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Complianc e
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	LIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAXIMUM EIRP	9
5.4.	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	EUT ACCESSORY	10
5.8.	SUPPORT UNITS FOR SYSTEM TEST	11
5.9.	SETUP DIAGRAM	11
6. ME	ASURING EQUIPMENT AND SOFTWARE USED	12
7. AN	TENNA PORT TEST RESULTS	14
7.1.	Conducted Output Power	14
7.2.	20 dB Bandwidth	15
7.3.	Carrier Hopping Channel Separation	16
7.4.	Number of Hopping Frequency	18
7.5.	Time of Occupancy (Dwell Time)	19
7.6.	Conducted Bandedge and Spurious Emission	21
7.7.	Duty Cycle	23
8. RA	DIATED TEST RESULTS	24
8.1.	Radiated Band edge and Spurious Emission	30
9. AN	TENNA REQUIREMENT	42
10.	AC POWER LINE CONDUCTED EMISSION	43
11.	TEST DATA - Appendix A	46
APPEN	DIX: PHOTOGRAPHS OF TEST CONFIGURATION	101
APPEN	DIX: PHOTOGRAPHS OF THE EUT	103

REPORT NO.: E04A24061049F01301 Page 5 of 111

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: SHENZHEN JIUHU TECHNOLOGY CO., LTD

Address: 4F, HE Sheng Teng Tech Industrial Park, HuanGuan South

Road.10 Guanlan, LongHua, ShenZhen, 518110 China

Manufacturer Information

Company Name: SHENZHEN JIUHU TECHNOLOGY CO., LTD

Address: 4F, HE Sheng Teng Tech Industrial Park, HuanGuan South

Road.10 Guanlan, LongHua, ShenZhen, 518110 China

EUT Information

Product Description: Headphone Model: JH-803L2

Series Model: JH-803L2-BT, JH-803, EMBT-01

Brand:

Sample Received Date: August 8, 2024

Sample Status: Normal

Sample ID: A24061049 004

Date of Tested: August 8, 2024 to August 20, 2024

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C(DSS)	Pass				

Prepared By:

Win Huang

Shawa Wen
Laboratory Manager

Project Engine

Alan He

Checked By:

Laboratory Leader

REPORT NO.: E04A24061049F01301 Page 6 of 111

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been assessed and proved to be in compliance with A2LA.		
	FCC (FCC Designation No.: CN1343)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been recognized to perform compliance testing on equipment		
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and		
	Certification rules		
	ISED (Company No.: 30714)		
	Guangdong Global Testing Technology Co., Ltd.		
	has been registered and fully described in a report filed with ISED.		
	The Company Number is 30714 and the test lab Conformity		
	Assessment Body Identifier (CABID) is CN0148.		

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24061049F01301 Page 7 of 111

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
		9 kHz-30 MHz: ± 0.95 dB
Conducted Spurious Emission	1.96	30 MHz-1 GHz: ± 1.5 dB
Conducted Spunous Emission	1.90	1GHz-12.75GHz: ± 1.8 dB
		12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24061049F01301 Page 8 of 111

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Headphone		
Model		JH-803L2		
Series Model		JH-803L2-BT, JH-803, EMBT-01		
Model Difference		Note: Name differences only.		
Hardware Version		V1.0		
Software Version	ı	V1.0		
Ratings		DC 5V 0.5A		
	DC	5V		
Power Supply	Battery	DC 3.7V 400mA		

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth V5.3
Bluetooth Mode:	Bluetooth BR + EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, π/4-DQPSK, 8DPSK
Number of Channels:	79
Channel Separation:	1 MHz
Maximum Peak Power:	3.43 dBm
Antenna Type:	PCB Antenna
Antenna Gain:	-0.58 dBi
Normal Test Voltage:	3.7 Vdc
EUT Test software:	FCC_assist_1.0.2
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472

REPORT NO.: E04A24061049F01301 Page 9 of 111

11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM EIRP

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
GFSK	2402 ~ 2480	0-78[79]	2.06	/
π/4-DQPSK	2402 ~ 2480	0-78[79]	3.02	/
8DPSK	2402 ~ 2480	0-78[79]	3.43	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency	
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz	
π/4-DQPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz	
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz	

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)	
	DH1	27	
GFSK	DH3	183	
	DH5	339	
	2-DH1	54	
π/4-DQPSK	2-DH3	367	
	2-DH5	679	
	3-DH1	83	
8DPSK	3-DH3	552	
	3-DH5	1021	

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation	Madulation Type	Data Rate
Bluetooth wode	Technology	Modulation Type	(Mbps)

REPORT NO.: E04A24061049F01301 Page 10 of 111

BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	π/4-DQPSK	2Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test So	oftware	FCC_assist_1.0.2			
Modulation Type	Transmit Antenna	Test Software setting value			
iviodulation Type	Number	CH 00	CH 39	CH 78	
GFSK	1	10	10	10	
π/4-DQPSK	1	10	10	10	
8DPSK	1	10	10	10	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2402-2480	PCB	-0.58	

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
π/4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
Note:		

5.7. EUT ACCESSORY

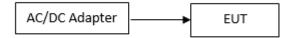
	Cable				
Accessory:	USB cable				
Model No.:	N/A				
Description:	USB Type-C Plug Cable				
Cable Type:	Unshielded without ferrite; Unshielded with two ferrite				
Length:	0.5 Meter				
Accessory:	AUX cable				
Model No.:	N/A				
Description:	AUX Cable				

REPORT NO.: E04A24061049F01301 Page 11 of 111

Cable Type:	Unshielded without ferrite; Unshielded with two ferrite
Length:	1.3 Meter

5.8. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Mfr/Brand Model/Type No.		Series No.	Note
E-1	Laptop	Lenovo	Thinkpad T14	PF-3EAKYR	GTG Support
E-2	Adapter	Adapter Xiaomi		N/A	GTG Support

5.9. SETUP DIAGRAM

Radiated emissions:

AC Power Line Conducted Emission:

REPORT NO.: E04A24061049F01301 Page 12 of 111

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17	
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17	
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17	
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17	
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17	
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17	
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A	

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29	
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17	
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17	
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09	
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22	
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29	
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17

REPORT NO.: E04A24061049F01301 Page 13 of 111

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

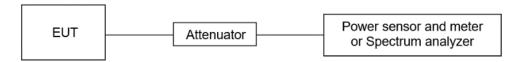
Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

REPORT NO.: E04A24061049F01301 Page 14 of 111

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 15 of 111

7.2. 20 DB BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 16 of 111

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

REPORT NO.: E04A24061049F01301 Page 17 of 111

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 18 of 111

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C				
Section Test Item Limit				
CFR 47 15.247 (a) (1) III	at least 15 hopping channels			

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 19 of 111

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III Time of Occupancy (Dwell Time)		The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

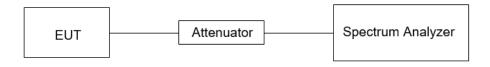
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	1 MHz	
VBW	≥RBW	
Span	Zero span, centered on a hopping channel	
Trace	Max hold	
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel	

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

REPORT NO.: E04A24061049F01301 Page 20 of 111

TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 21 of 111

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

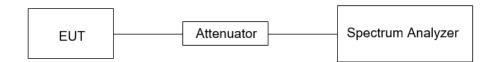
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

REPORT NO.: E04A24061049F01301 Page 22 of 111

TEST SETUP

TEST ENVIRONMENT

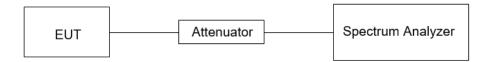
Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 23 of 111

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24061049F01301 Page 24 of 111

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
(1411 12)	(a v/m) at o m	Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43	.5
216 - 960	200	46	ô
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

REPORT NO.: E04A24061049F01301 Page 25 of 111

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

REPORT NO.: E04A24061049F01301 Page 26 of 111

Below 1 GHz and above 30 MHz

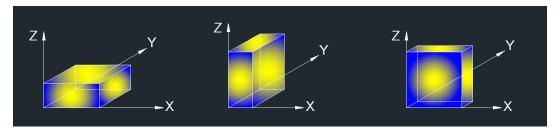
The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

REPORT NO.: E04A24061049F01301 Page 27 of 111

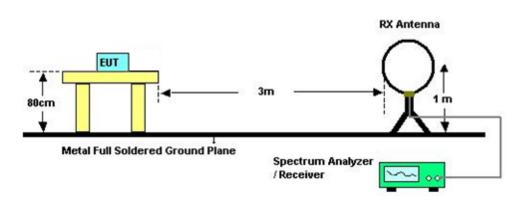
Above 1 GHz

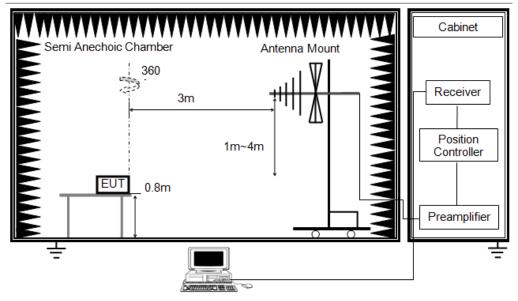

The setting of the spectrum analyser

RBW	1 MHz
1\/B\/\/	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

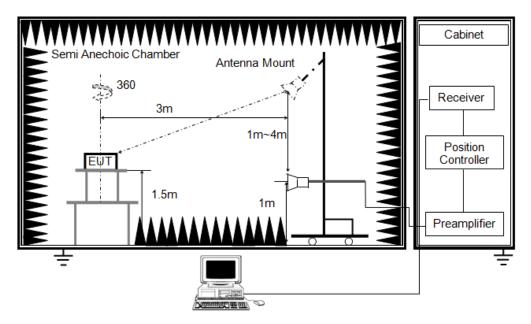
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

REPORT NO.: E04A24061049F01301 Page 28 of 111


X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

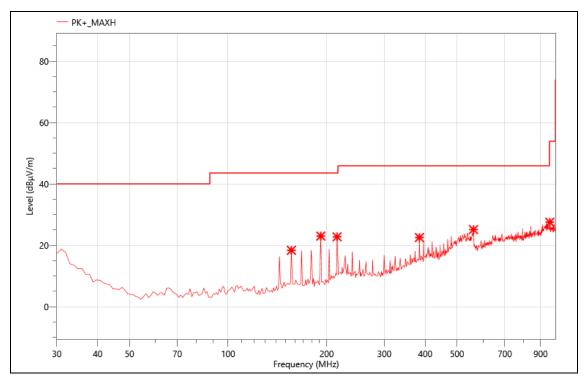

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

REPORT NO.: E04A24061049F01301 Page 29 of 111

TEST ENVIRONMENT

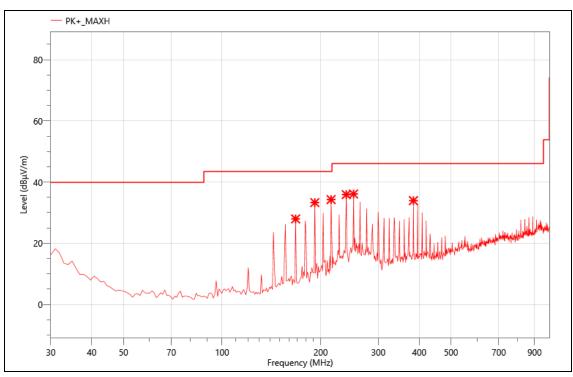
Temperature	23.9°C	Relative Humidity	51%
Atmosphere Pressure	101kPa		


TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

30MHz to 1GHz

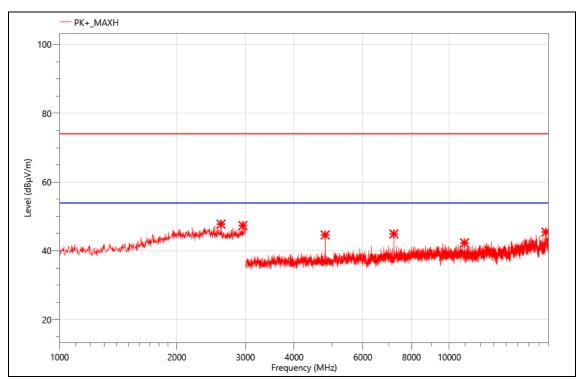
The worst result as bellow:


Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

Critical_Freqs

.	Freq.	Reading	Corr.	Meas.	Limit	Margin	Б.	Б.
No.	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Det.	Pol.
1	156.100	39.63	-21.24	18.39	43.50	25.11	PK+	V
2	191.990	45.59	-22.57	23.02	43.50	20.48	PK+	V
3	215.270	43.78	-21	22.78	43.50	20.72	PK+	V
4	384.050	37.24	-14.68	22.56	46.00	23.44	PK+	V
5	561.560	35.58	-10.43	25.15	46.00	20.85	PK+	V
6	960.230	31.37	-3.82	27.55	53.90	26.35	PK+	V

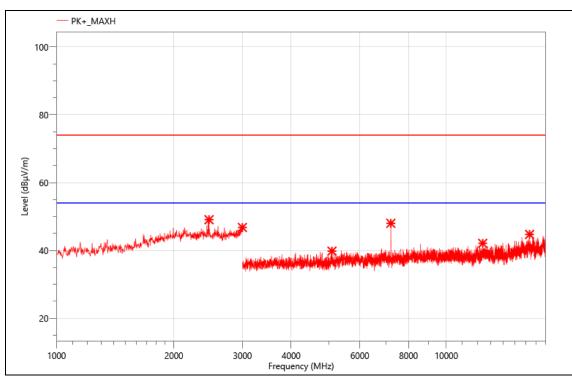
Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa



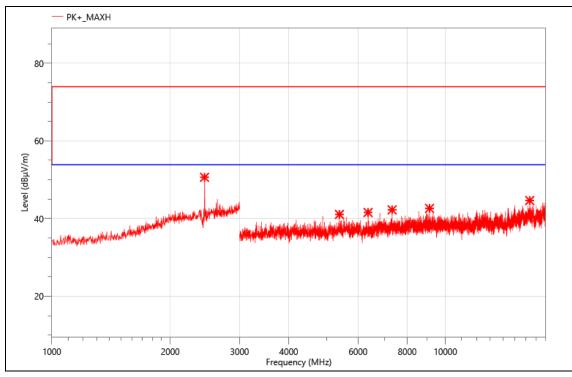
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	167.740	50.66	-22.7	27.96	43.50	15.54	PK+	Н
2	191.990	55.86	-22.57	33.29	43.50	10.21	PK+	Н
3	215.270	55.27	-21	34.27	43.50	9.23	PK+	Н
4	239.520	55.56	-19.66	35.90	46.00	10.10	PK+	Н
5	252.130	55.10	-18.99	36.11	46.00	9.89	PK+	Н
6	384.050	48.61	-14.68	33.93	46.00	12.07	PK+	Н

Above 1GHz

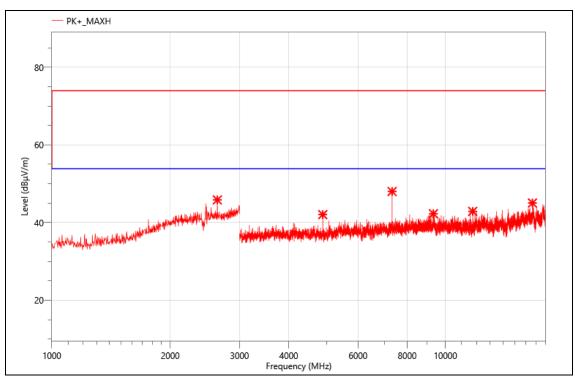
The worst result as bellow:


Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

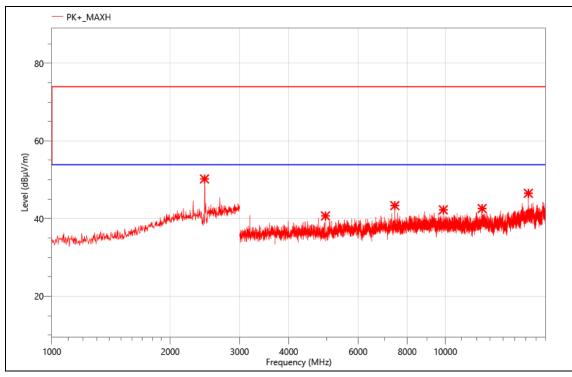
Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2596.000	55.87	-8.13	47.74	74.00	26.26	PK+	Н
2	2954.000	54.75	-7.41	47.34	74.00	26.66	PK+	Н
3	4804.500	55.95	-11.34	44.61	74.00	29.39	PK+	Н
4	7206.000	52.89	-8	44.89	74.00	29.11	PK+	Н
5	10938.000	47.10	-4.8	42.30	74.00	31.70	PK+	Н
6	17686.500	45.21	0.25	45.46	74.00	28.54	PK+	Н

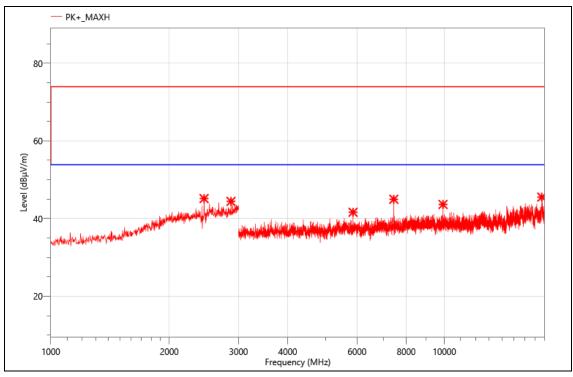
Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2462.000	57.54	-8.46	49.08	74.00	24.92	PK+	V
2	2998.000	53.80	-7.01	46.79	74.00	27.21	PK+	V
3	5088.000	50.21	-10.4	39.81	74.00	34.19	PK+	V
4	7206.000	56.01	-8	48.01	74.00	25.99	PK+	V
5	12396.000	46.75	-4.64	42.11	74.00	31.89	PK+	V
6	16354.500	46.40	-1.67	44.73	74.00	29.27	PK+	V

Mode:	3-DH5 2441
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2444.000	59.12	-8.48	50.64	74.00	23.36	PK+	V
2	5380.500	50.13	-9.06	41.07	74.00	32.93	PK+	V
3	6363.000	49.47	-7.9	41.57	74.00	32.43	PK+	V
4	7323.000	50.20	-7.95	42.25	74.00	31.75	PK+	V
5	9115.500	49.93	-7.3	42.63	74.00	31.37	PK+	V
6	16381.500	46.10	-1.45	44.65	74.00	29.35	PK+	V

Mode:	3-DH5 2441
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

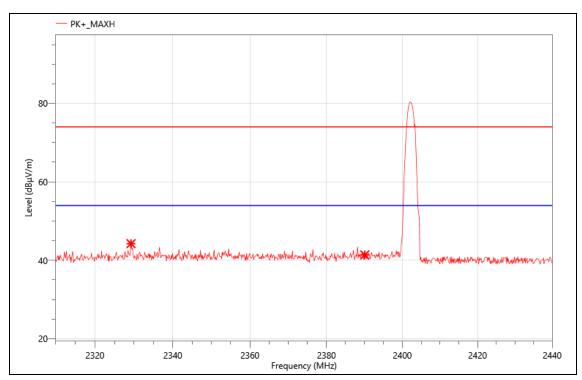

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2634.000	54.47	-8.63	45.84	74.00	28.16	PK+	Н
2	4881.000	53.20	-11.14	42.06	74.00	31.94	PK+	Н
3	7323.000	55.96	-7.95	48.01	74.00	25.99	PK+	Н
4	9324.000	49.45	-7.17	42.28	74.00	31.72	PK+	Н
5	11734.500	47.98	-5.1	42.88	74.00	31.12	PK+	Н
6	16642.500	46.04	-0.99	45.05	74.00	28.95	PK+	Н

Mode:	3-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2444.000	58.70	-8.48	50.22	74.00	23.78	PK+	Н
2	4959.000	52.04	-11.35	40.69	74.00	33.31	PK+	Н
3	7440.000	51.30	-7.96	43.34	74.00	30.66	PK+	Н
4	9882.000	49.06	-6.8	42.26	74.00	31.74	PK+	Н
5	12405.000	47.30	-4.71	42.59	74.00	31.41	PK+	Н
6	16252.500	47.15	-0.64	46.51	74.00	27.49	PK+	Н

Mode:	3-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

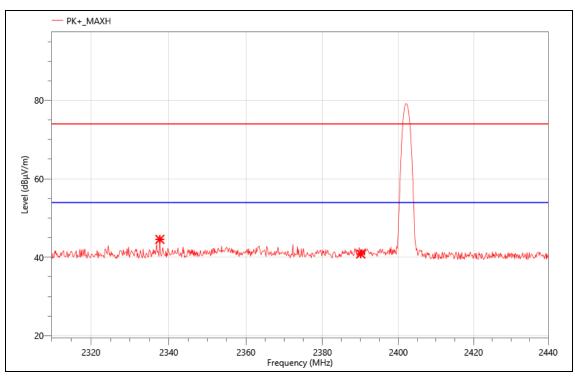
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2452.000	53.63	-8.47	45.16	74.00	28.84	PK+	V
2	2870.000	52.69	-8.26	44.43	74.00	29.57	PK+	V
3	5862.000	50.69	-9.06	41.63	74.00	32.37	PK+	V
4	7440.000	52.93	-7.96	44.97	74.00	29.03	PK+	V
5	9921.000	49.98	-6.34	43.64	74.00	30.36	PK+	V
6	17680.500	45.23	0.29	45.52	74.00	28.48	PK+	V


Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

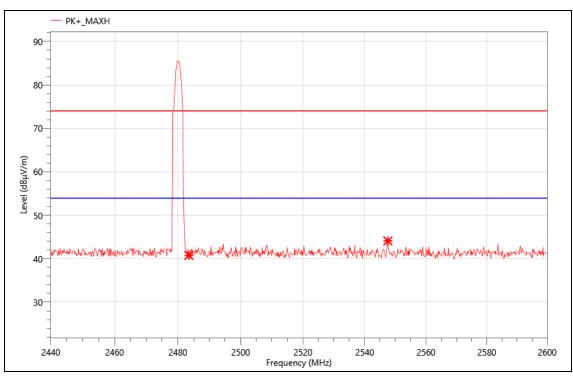
For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

Band Edge

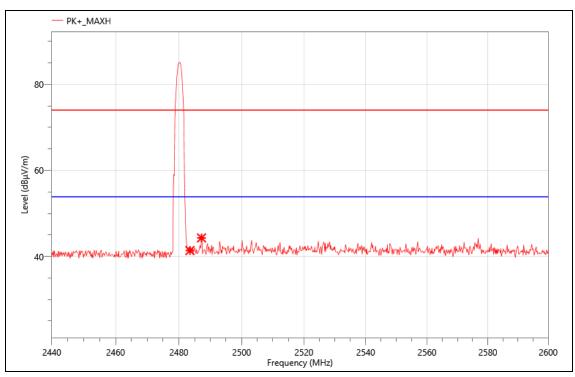
The worst result as bellow:


Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2329.240	21.67	22.56	44.23	74.00	29.77	PK+	V
2	2390.080	18.63	22.72	41.35	74.00	32.65	PK+	V

Mode:	3-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2337.690	21.93	22.63	44.56	74.00	29.44	PK+	Н
2	2390.080	18.13	22.72	40.85	74.00	33.15	PK+	Н

Mode:	3-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.520	17.62	23.15	40.77	74.00	33.23	PK+	V
2	2547.520	20.86	23.24	44.10	74.00	29.90	PK+	V

Mode:	3-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/8/11
T/A/P	23.9°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.520	18.21	23.15	41.36	74.00	32.64	PK+	Н
2	2487.200	21.16	23.14	44.30	74.00	29.70	PK+	Н

REPORT NO.: E04A24061049F01301 Page 42 of 111

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Compliance.

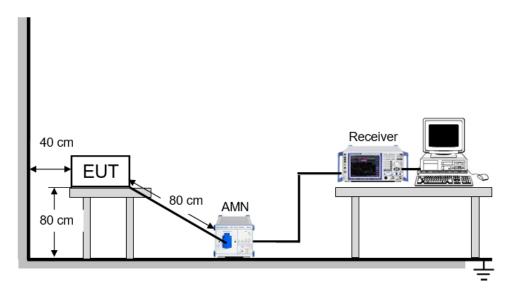
REPORT NO.: E04A24061049F01301 Page 43 of 111

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

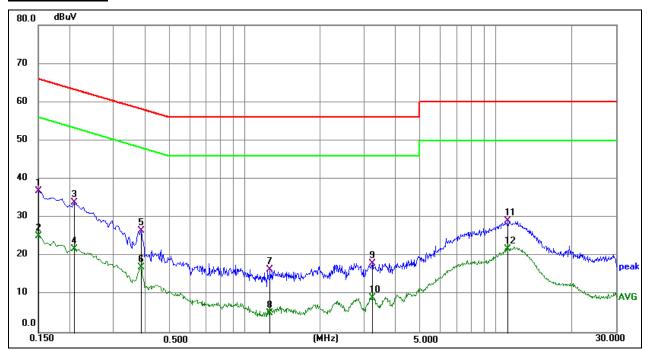

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

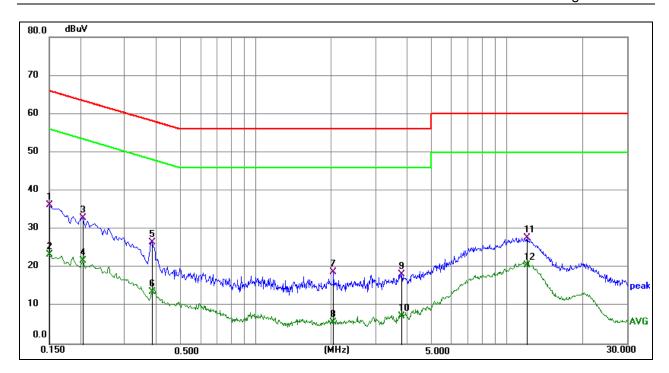
TEST SETUP



TEST ENVIRONMENT

Temperature	26°C	Relative Humidity	54%
Atmosphere Pressure	100kPa		

REPORT NO.: E04A24061049F01301 Page 44 of 111


TEST RESULTS

Phase: N Mode: 3DH5 2402MHz

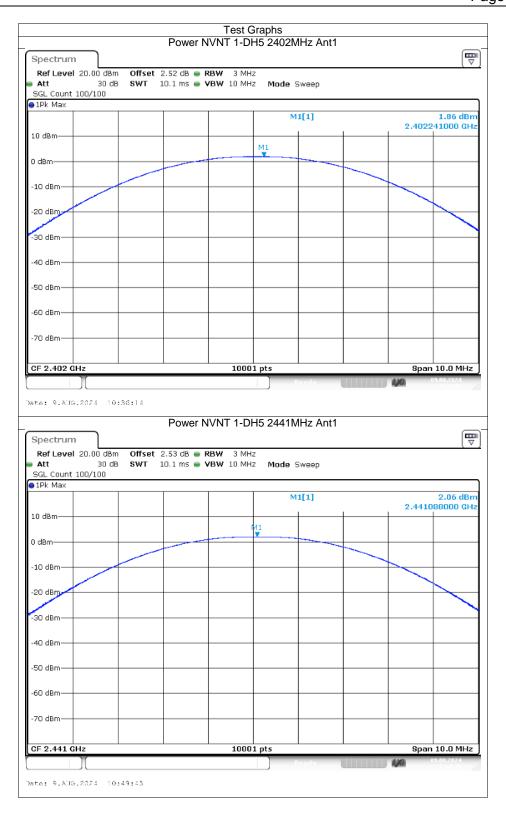
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	26.94	9.91	36.85	66.00	-29.15	QP
2	0.1500	15.28	9.91	25.19	56.00	-30.81	AVG
3	0.2085	23.92	9.87	33.79	63.26	-29.47	QP
4	0.2085	11.92	9.87	21.79	53.26	-31.47	AVG
5	0.3840	16.70	9.81	26.51	58.19	-31.68	QP
6	0.3840	7.11	9.81	16.92	48.19	-31.27	AVG
7	1.2615	6.39	9.95	16.34	56.00	-39.66	QP
8	1.2615	-4.83	9.95	5.12	46.00	-40.88	AVG
9	3.2235	8.03	9.99	18.02	56.00	-37.98	QP
10	3.2235	-1.05	9.99	8.94	46.00	-37.06	AVG
11	11.1750	17.58	11.57	29.15	60.00	-30.85	QP
12	11.1750	10.22	11.57	21.79	50.00	-28.21	AVG

REPORT NO.: E04A24061049F01301 Page 45 of 111

Phase: L1	Mode: 3DH5 2402MHz

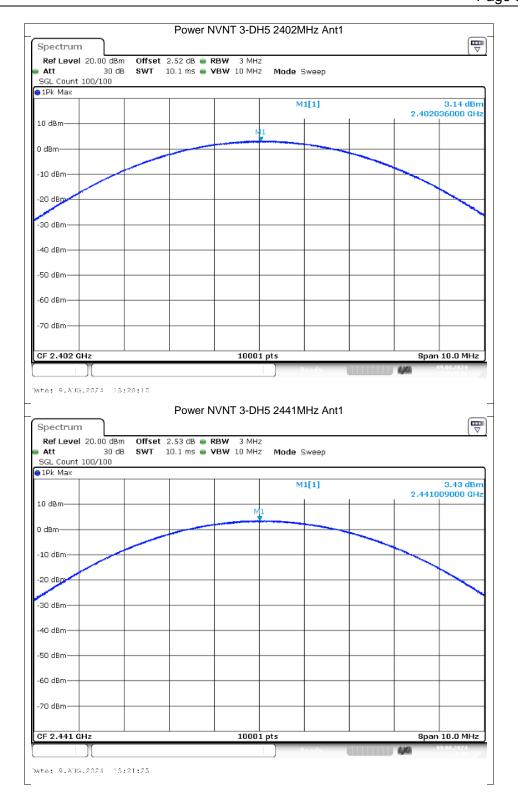
No.	Frequency	Reading	Reading Correct Result		Limit Margin		Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	26.34	9.86	36.20	66.00	-29.80	QP
2	0.1500	13.44	9.86	23.30	56.00	-32.70	AVG
3	0.2040	23.03	9.79	32.82	63.45	-30.63	QP
4	0.2040	12.00	9.79	21.79	53.45	-31.66	AVG
5	0.3840	16.79	9.78	26.57	58.19	-31.62	QP
6	0.3840	3.83	9.78	13.61	48.19	-34.58	AVG
7	2.0400	8.93	9.83	18.76	56.00	-37.24	QP
8	2.0400	-4.10	9.83	5.73	46.00	-40.27	AVG
9	3.8040	8.38	9.81	18.19	56.00	-37.81	QP
10	3.8040	-2.58	9.81	7.23	46.00	-38.77	AVG
11	12.0480	17.81	9.86	27.67	60.00	-32.33	QP
12	12.0480	10.78	9.86	20.64	50.00	-29.36	AVG

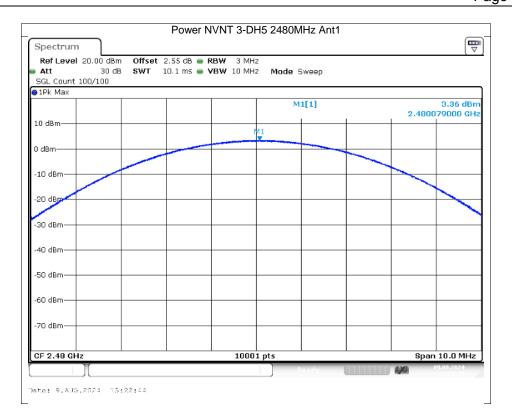
Note: 1. Result = Reading + Correct Factor.

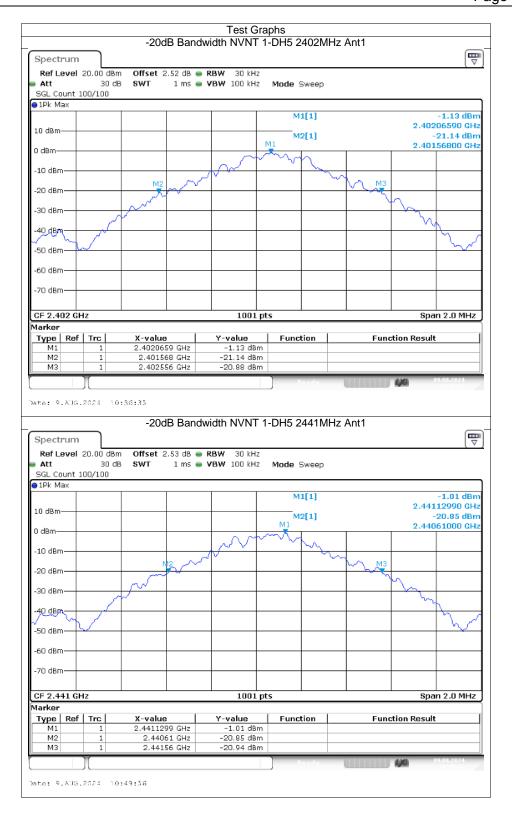

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

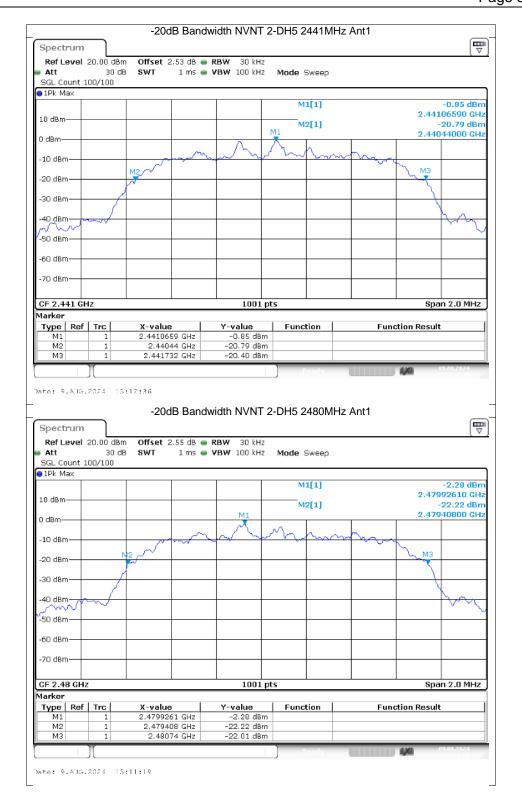
REPORT NO.: E04A24061049F01301 Page 46 of 111

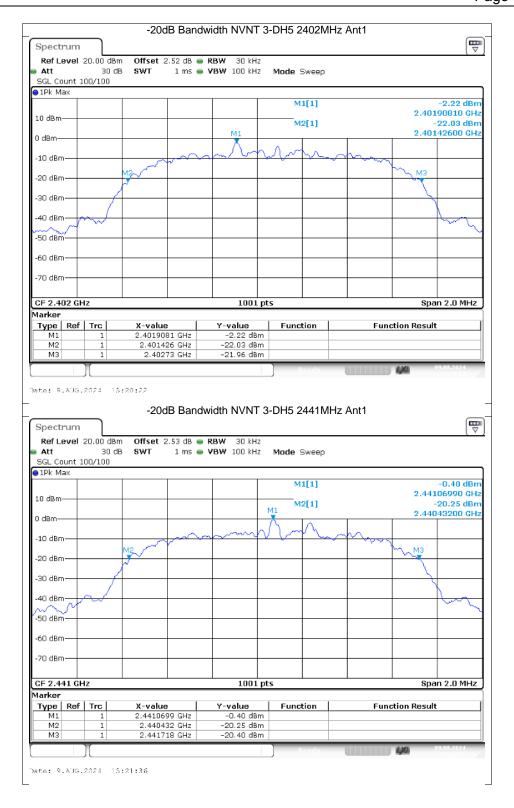
11. TEST DATA - Appendix A

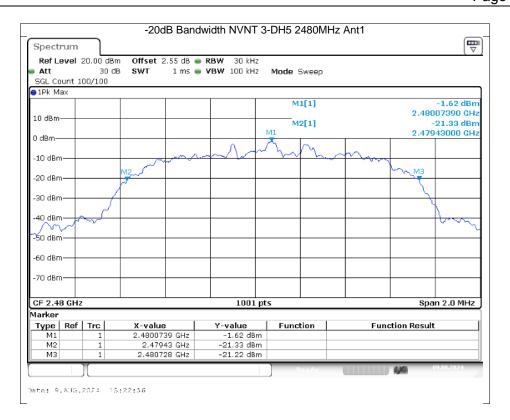

Maximum Conducted Output Power

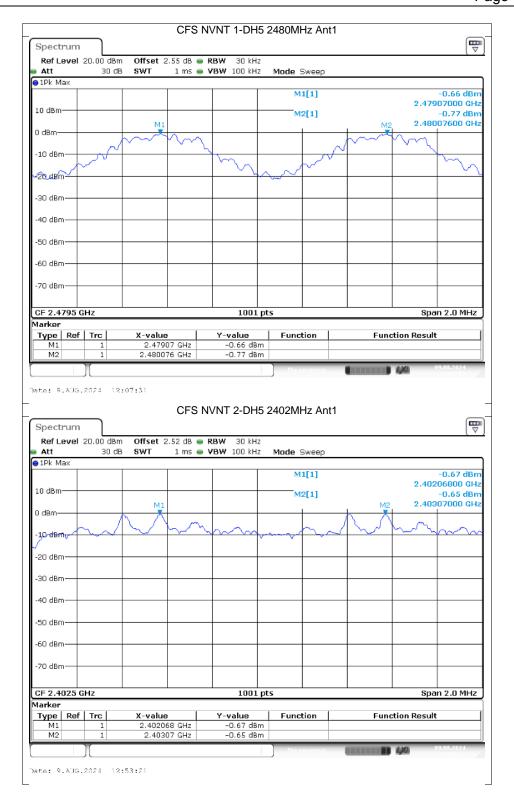

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1- DH5	2402	Ant1	1.86	0	1.86	21	Pass
NVNT	1- DH5	2441	Ant1	2.06	0	2.06	21	Pass
NVNT	1- DH5	2480	Ant1	2.03	0	2.03	21	Pass
NVNT	2- DH5	2402	Ant1	2.74	0	2.74	21	Pass
NVNT	2- DH5	2441	Ant1	3.02	0	3.02	21	Pass
NVNT	2- DH5	2480	Ant1	2.93	0	2.93	21	Pass
NVNT	3- DH5	2402	Ant1	3.14	0	3.14	21	Pass
NVNT	3- DH5	2441	Ant1	3.43	0	3.43	21	Pass
NVNT	3- DH5	2480	Ant1	3.36	0	3.36	21	Pass

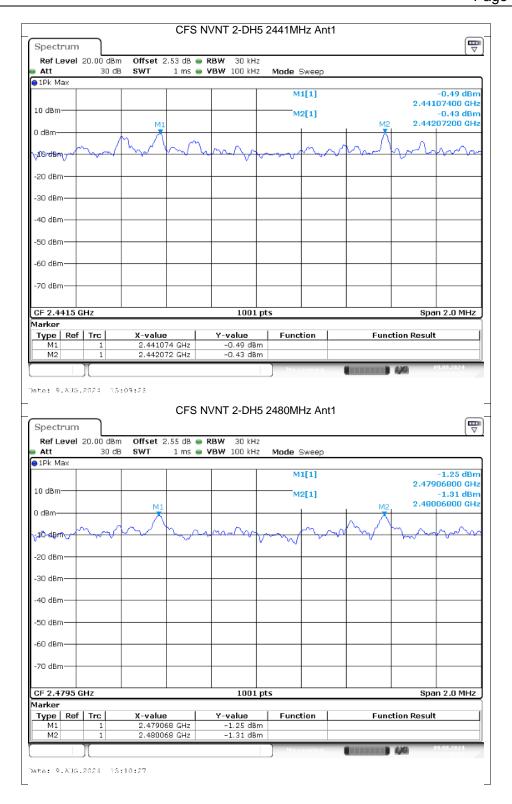


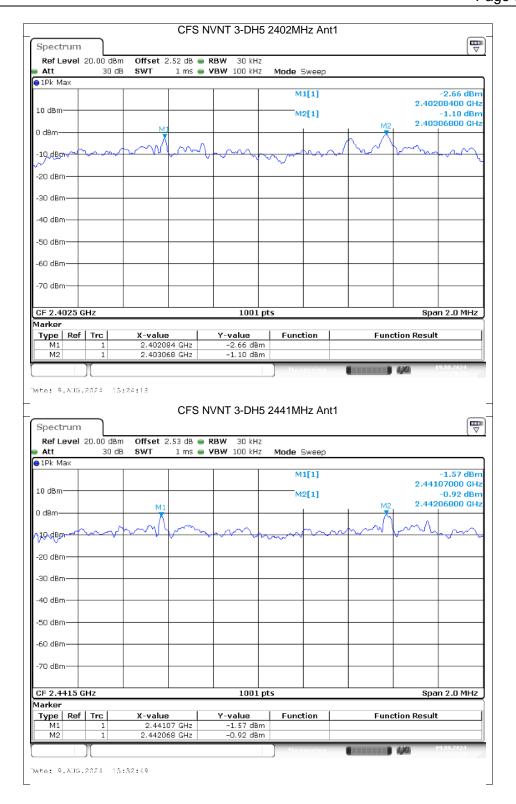

REPORT NO.: E04A24061049F01301 Page 52 of 111

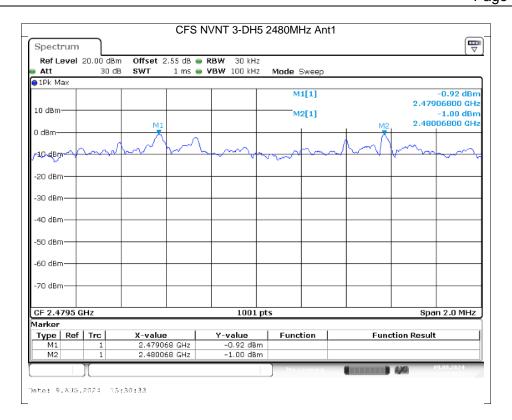

-20dB Bandwidth

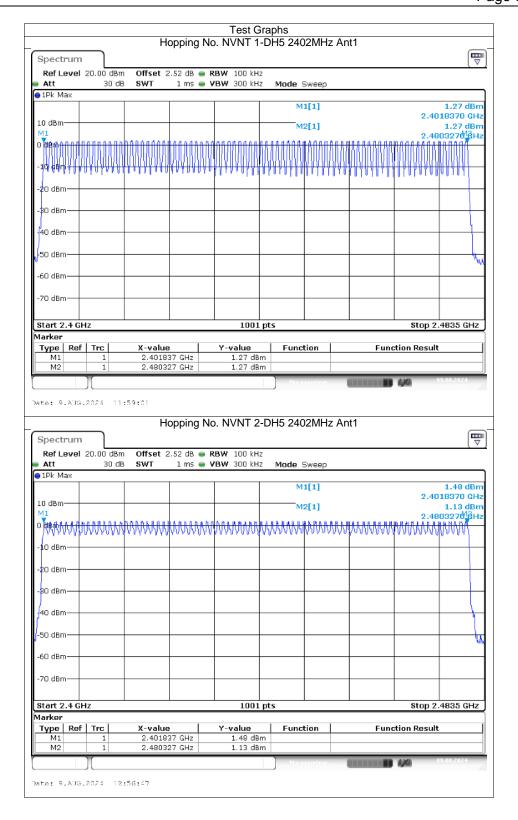

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.99	N/A	N/A
NVNT	1-DH5	2441	Ant1	0.95	N/A	N/A
NVNT	1-DH5	2480	Ant1	0.99	N/A	N/A
NVNT	2-DH5	2402	Ant1	1.29	N/A	N/A
NVNT	2-DH5	2441	Ant1	1.29	N/A	N/A
NVNT	2-DH5	2480	Ant1	1.33	N/A	N/A
NVNT	3-DH5	2402	Ant1	1.3	N/A	N/A
NVNT	3-DH5	2441	Ant1	1.29	N/A	N/A
NVNT	3-DH5	2480	Ant1	1.3	N/A	N/A

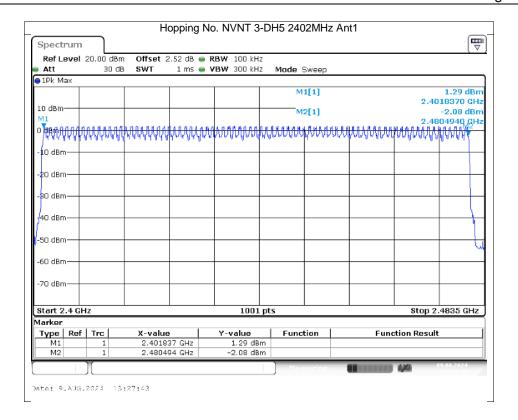



REPORT NO.: E04A24061049F01301 Page 58 of 111


Carrier Frequencies Separation


Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2402.07	2403.066	0.996	0.66	Pass
NVNT	1-DH5	Ant1	2441.074	2442.066	0.992	0.633	Pass
NVNT	1-DH5	Ant1	2479.07	2480.076	1.006	0.66	Pass
NVNT	2-DH5	Ant1	2402.068	2403.07	1.002	0.025	Pass
NVNT	2-DH5	Ant1	2441.074	2442.072	0.998	0.025	Pass
NVNT	2-DH5	Ant1	2479.068	2480.068	1	0.025	Pass
NVNT	3-DH5	Ant1	2402.084	2403.068	0.984	0.867	Pass
NVNT	3-DH5	Ant1	2441.07	2442.068	0.998	0.86	Pass
NVNT	3-DH5	Ant1	2479.068	2480.068	1	0.867	Pass

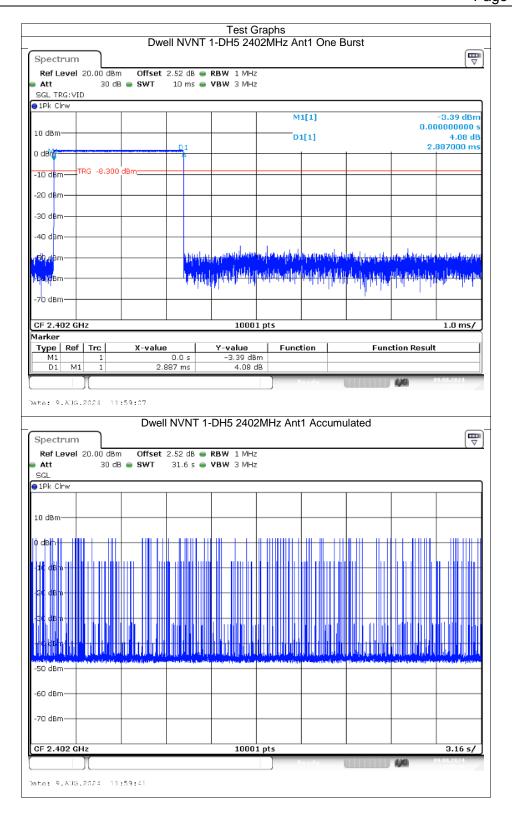


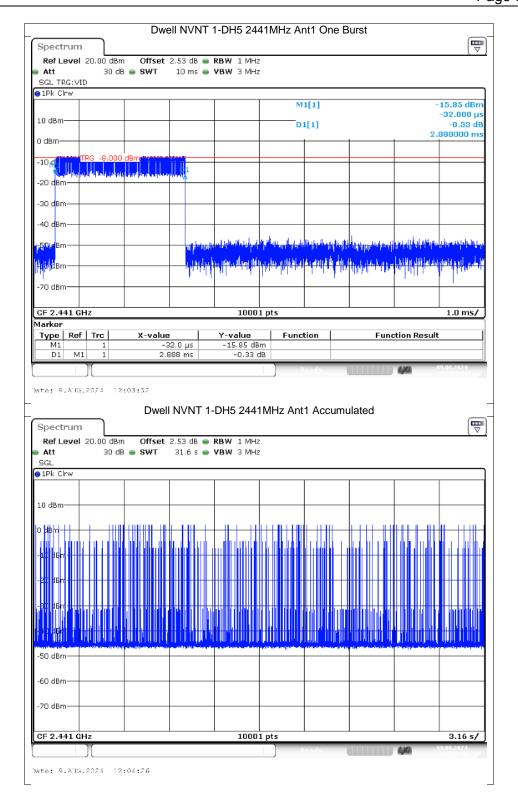


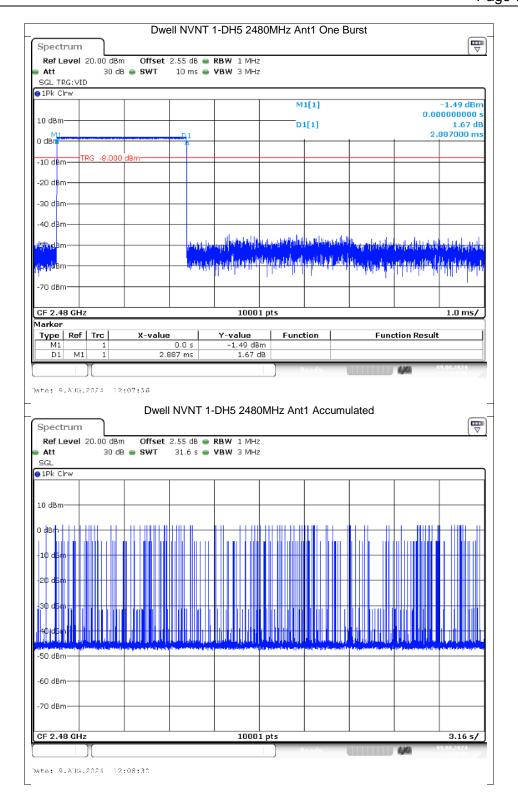
REPORT NO.: E04A24061049F01301 Page 64 of 111

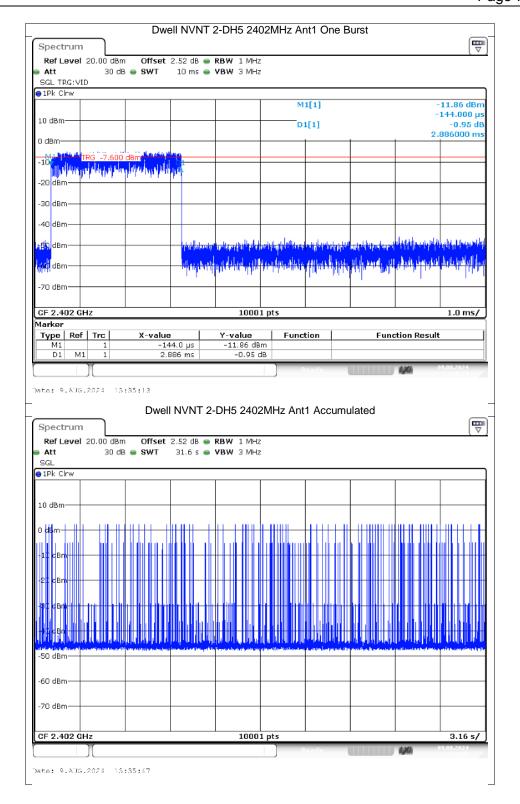
Number of Hopping Channel

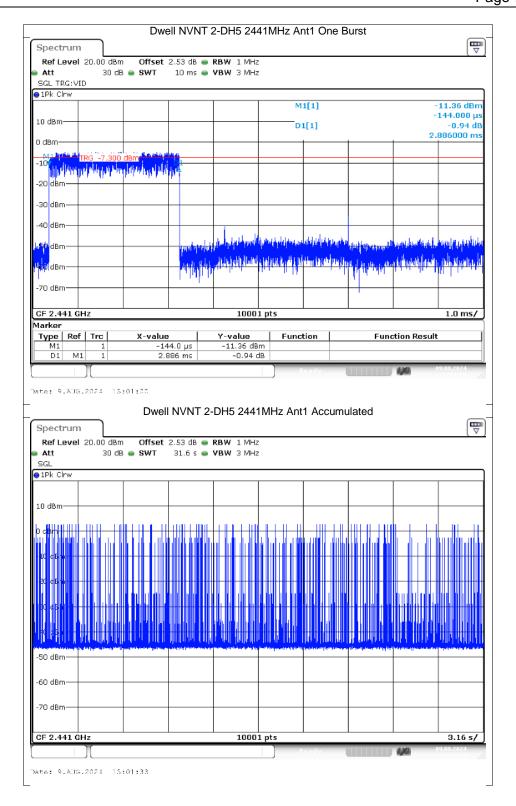
		•			
Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

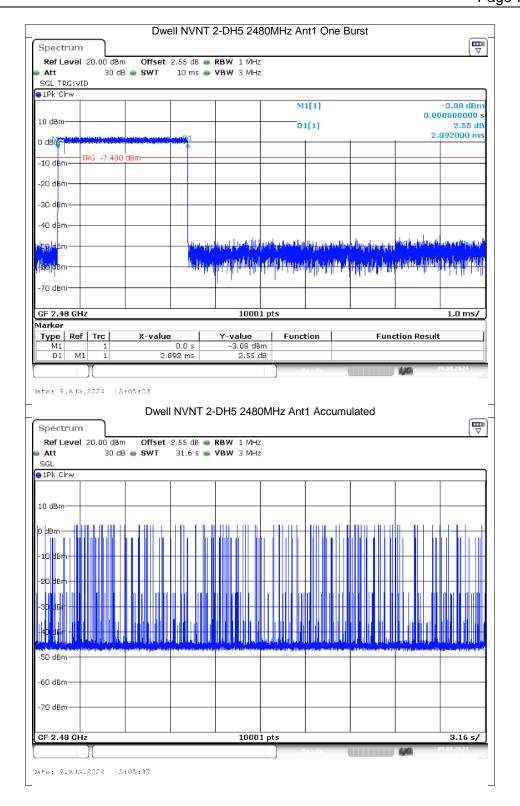


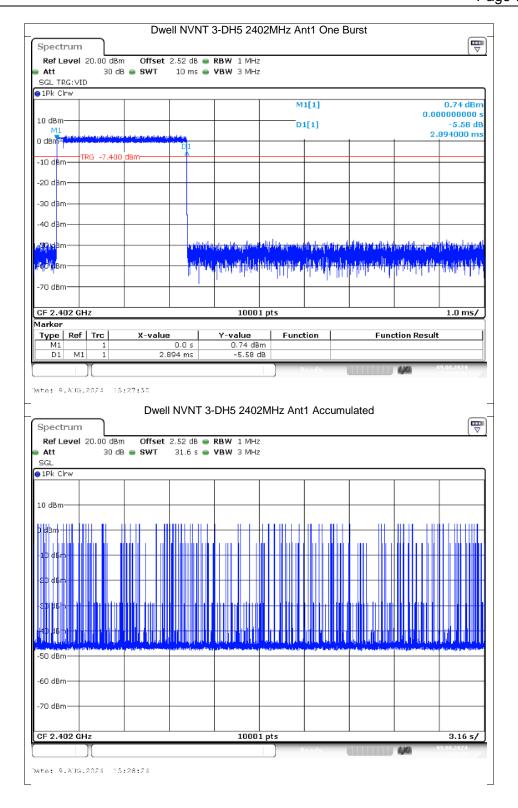


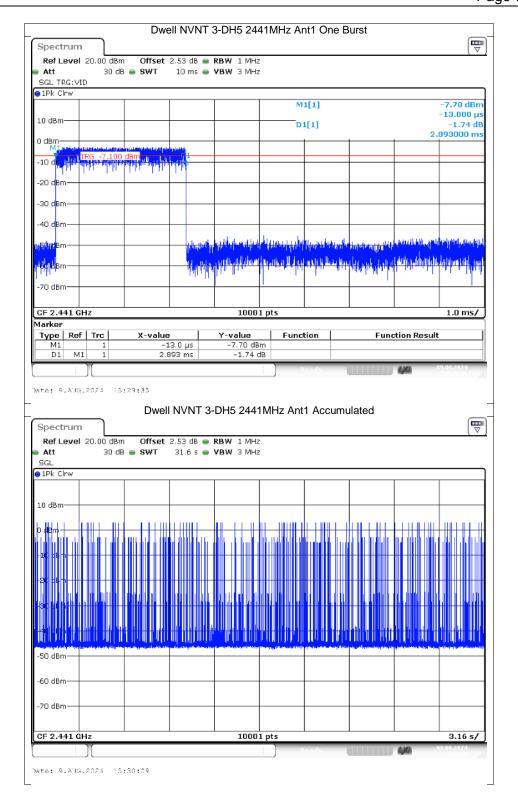

REPORT NO.: E04A24061049F01301 Page 67 of 111

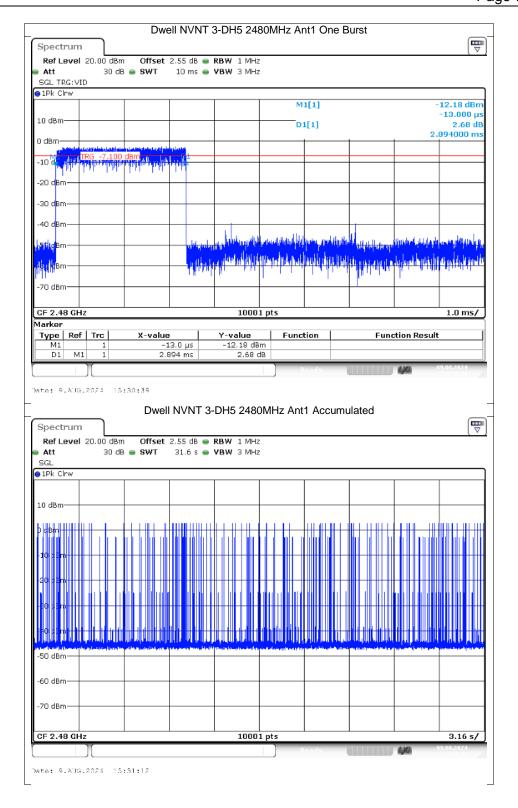

Dwell Time

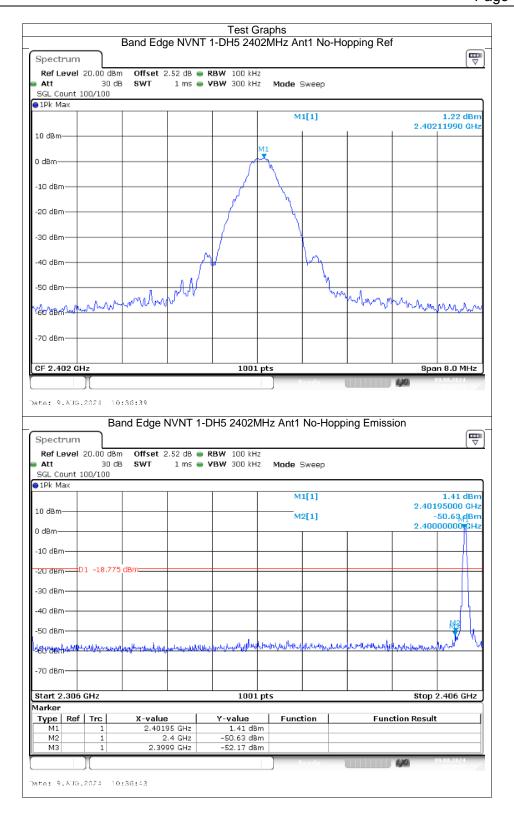

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1- DH5	2402	Ant1	2.887	303.135	105	31600	400	Pass
NVNT	1- DH5	2441	Ant1	2.888	297.464	103	31600	400	Pass
NVNT	1- DH5	2480	Ant1	2.887	274.265	95	31600	400	Pass
NVNT	2- DH5	2402	Ant1	2.886	294.372	102	31600	400	Pass
NVNT	2- DH5	2441	Ant1	2.886	303.03	105	31600	400	Pass
NVNT	2- DH5	2480	Ant1	2.892	277.632	96	31600	400	Pass
NVNT	3- DH5	2402	Ant1	2.894	286.506	99	31600	400	Pass
NVNT	3- DH5	2441	Ant1	2.893	295.086	102	31600	400	Pass
NVNT	3- DH5	2480	Ant1	2.894	327.022	113	31600	400	Pass

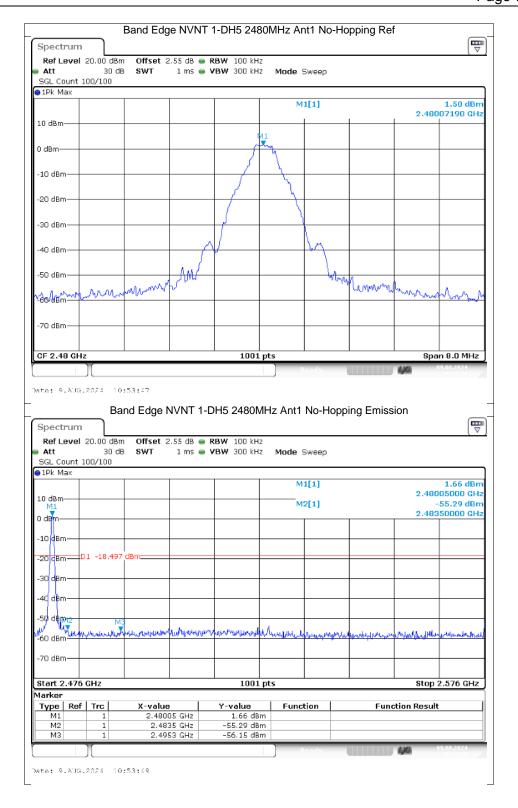


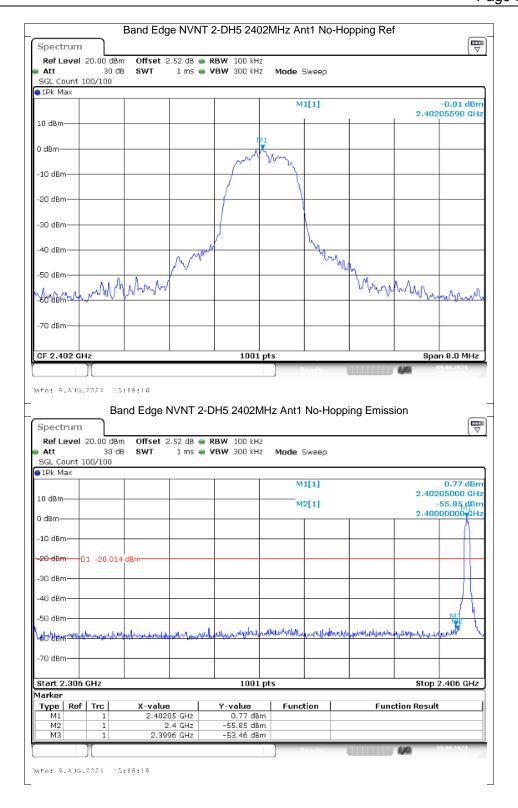


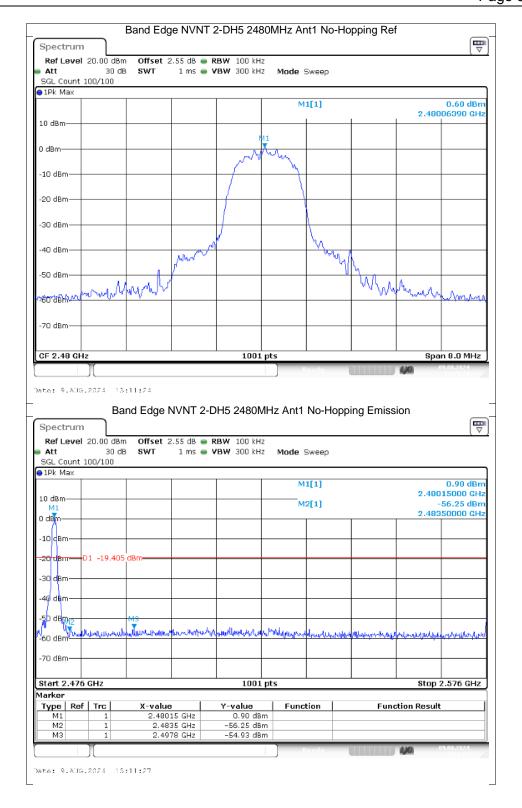


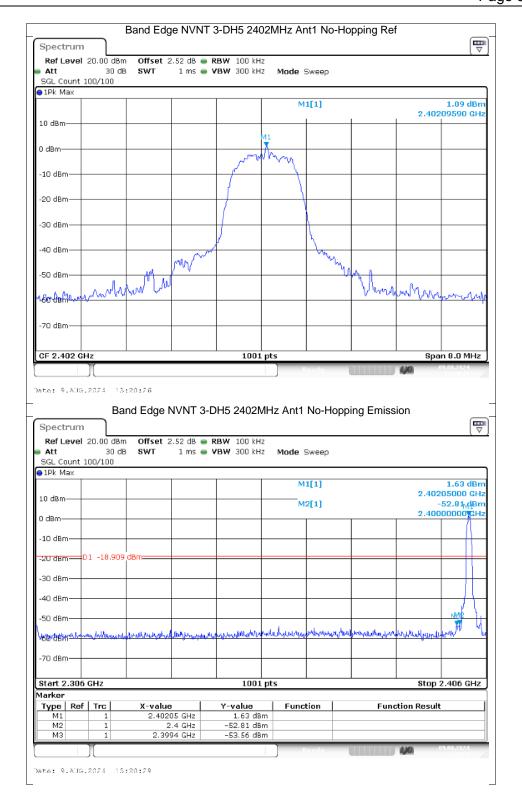


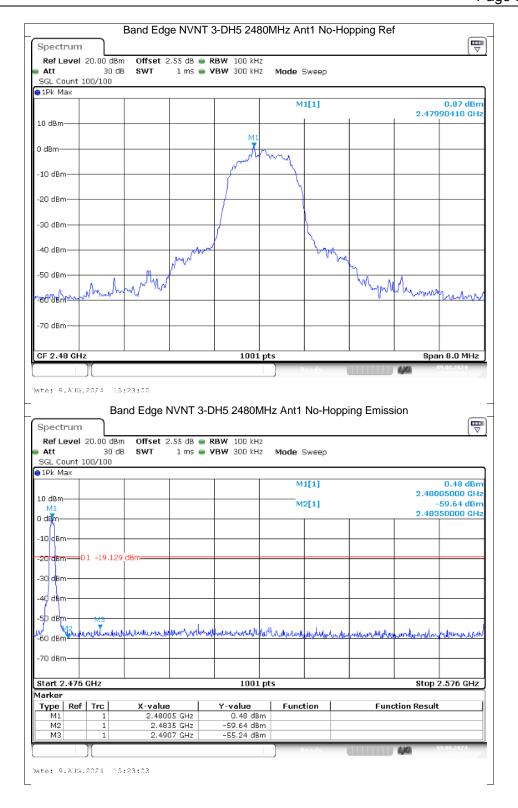


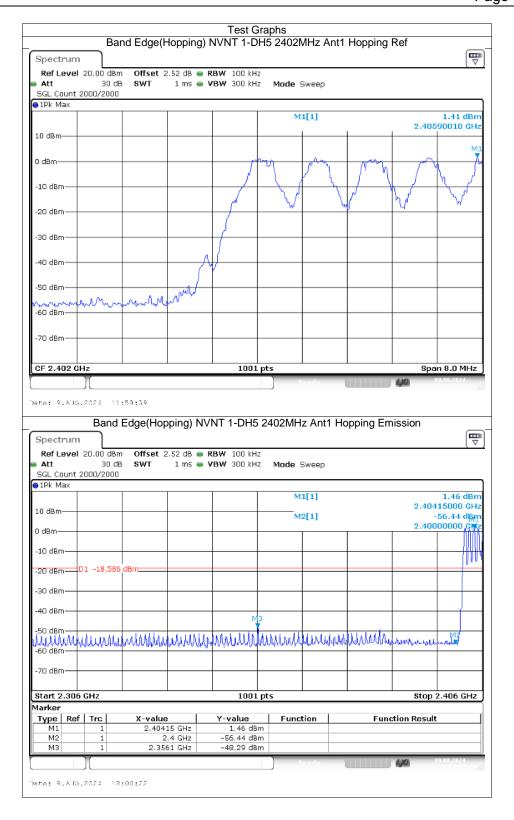

REPORT NO.: E04A24061049F01301 Page 77 of 111


Band Edge

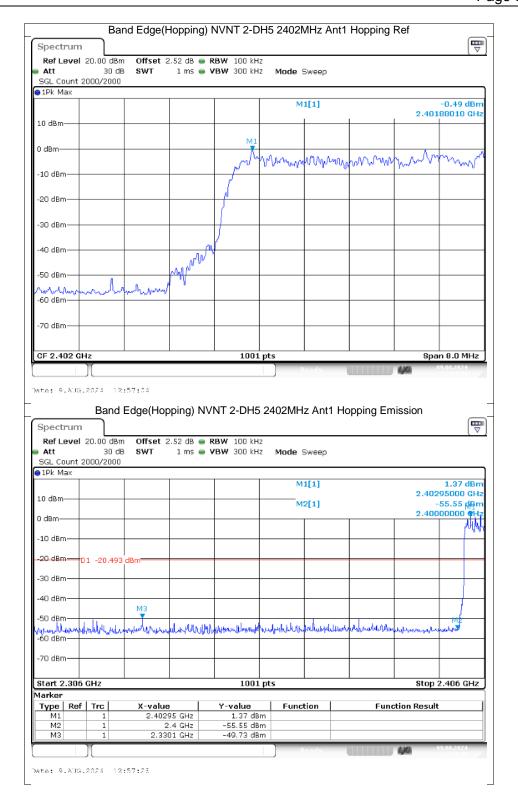

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-51.85	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-56.79	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-53.45	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-55.53	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-53.9	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-56.11	-20	Pass


TRF No.: 04-E001-0B





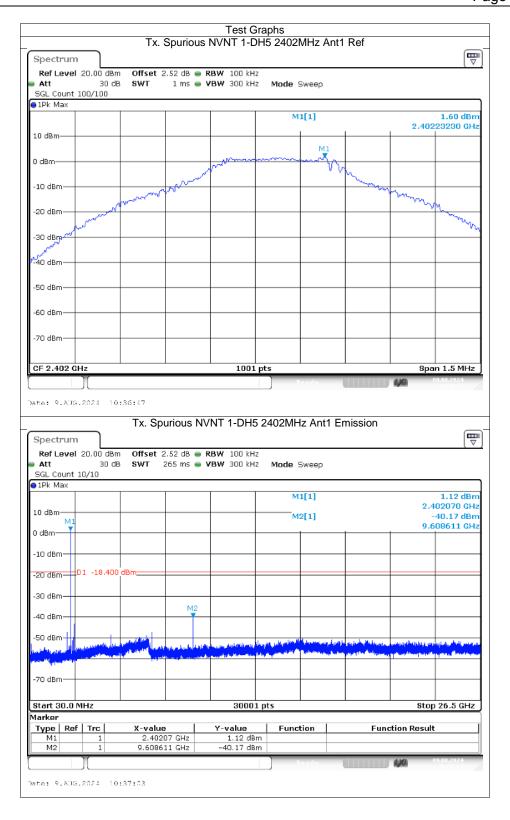
REPORT NO.: E04A24061049F01301 Page 84 of 111

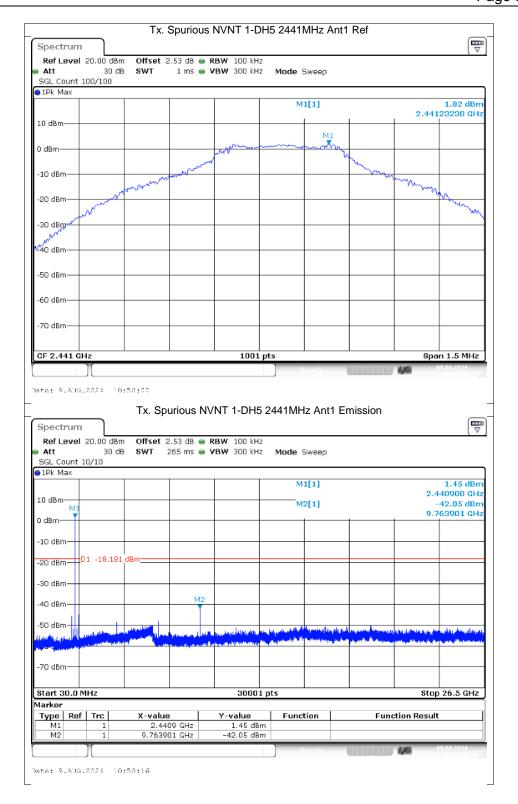

Band Edge(Hopping)

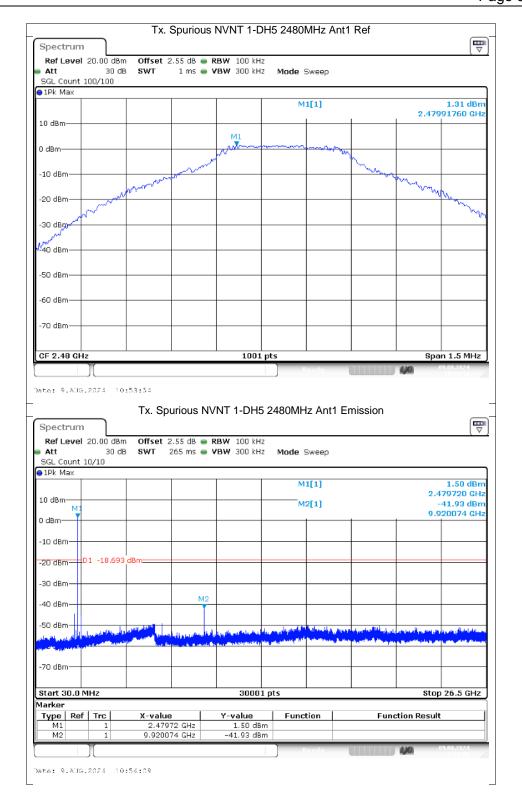

	_	\ II \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-49.7	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-51.91	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-49.24	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-52.3	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-51.03	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-52.62	-20	Pass

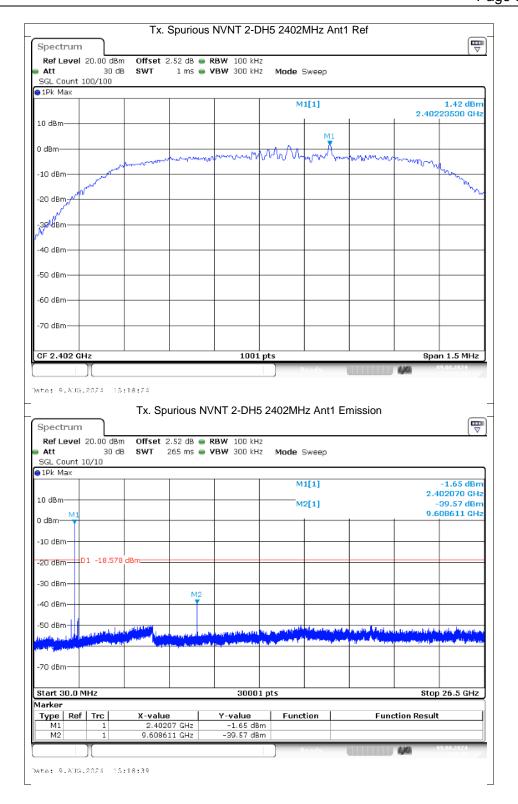

TRF No.: 04-E001-0B

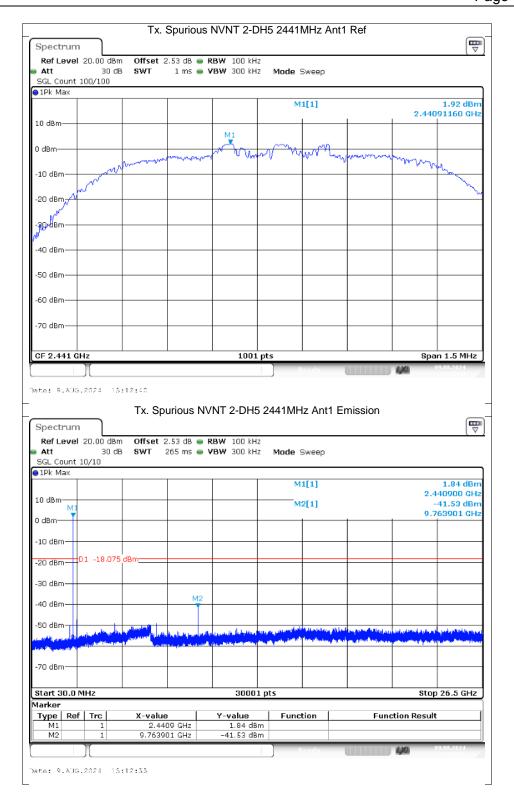


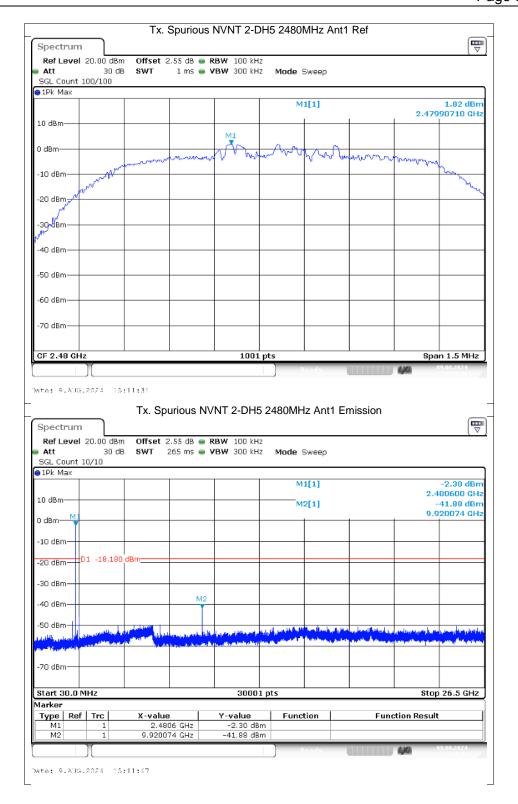


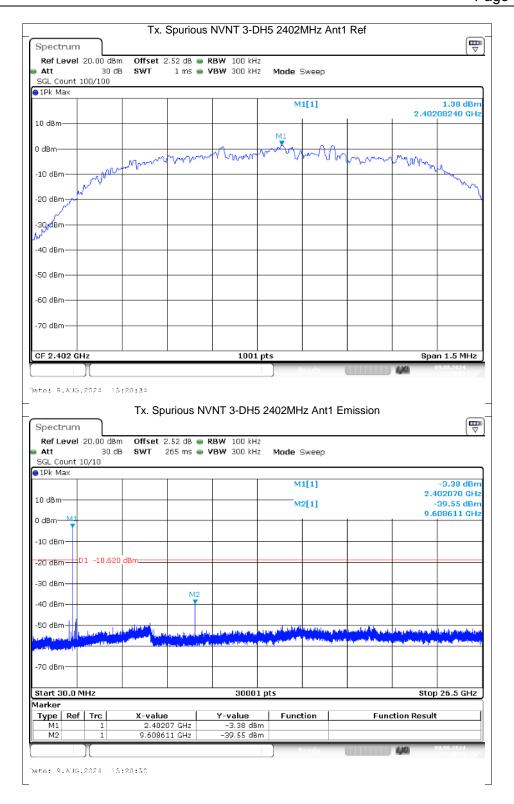


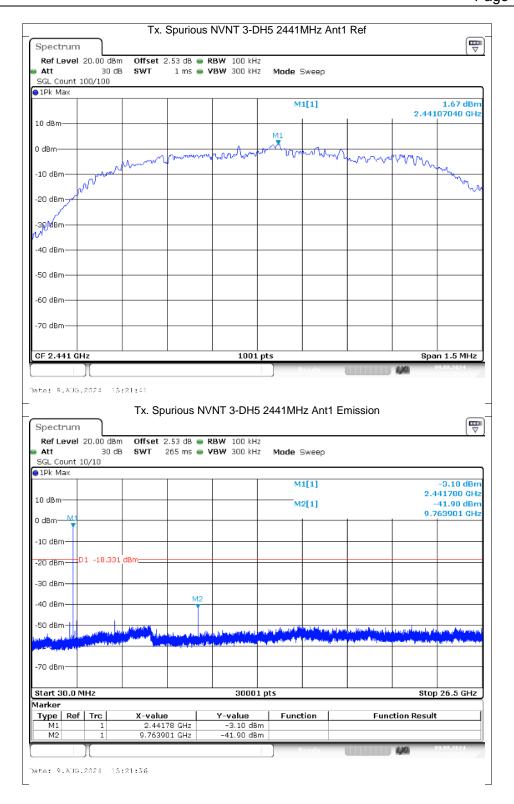

REPORT NO.: E04A24061049F01301 Page 91 of 111

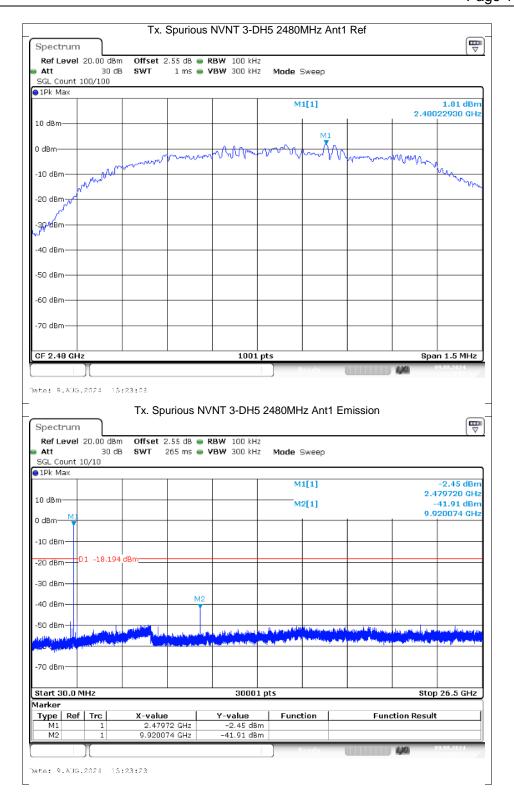

Conducted RF Spurious Emission

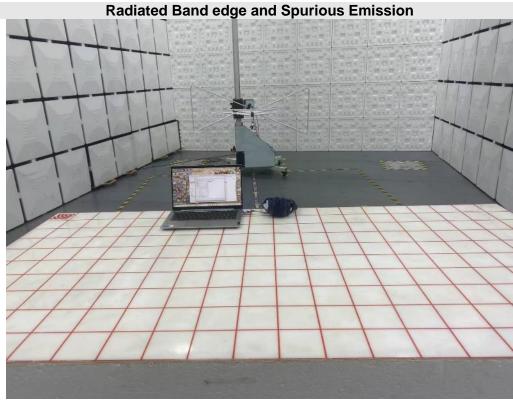

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-41.77	-20	Pass
NVNT	1-DH5	2441	Ant1	-43.87	-20	Pass
NVNT	1-DH5	2480	Ant1	-43.24	-20	Pass
NVNT	2-DH5	2402	Ant1	-40.99	-20	Pass
NVNT	2-DH5	2441	Ant1	-43.45	-20	Pass
NVNT	2-DH5	2480	Ant1	-43.7	-20	Pass
NVNT	3-DH5	2402	Ant1	-40.93	-20	Pass
NVNT	3-DH5	2441	Ant1	-43.57	-20	Pass
NVNT	3-DH5	2480	Ant1	-43.72	-20	Pass

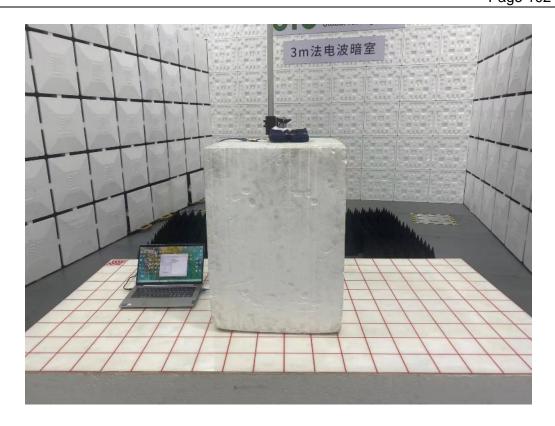










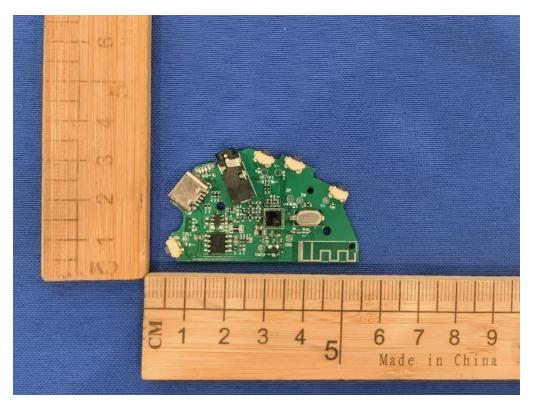


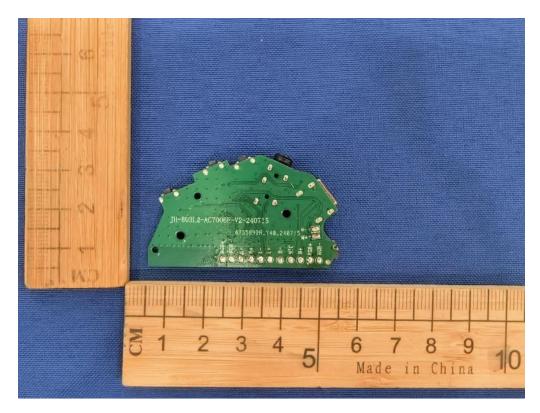
REPORT NO.: E04A24061049F01301 Page 101 of 111

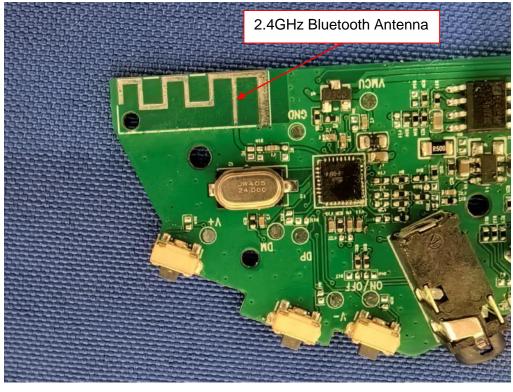
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

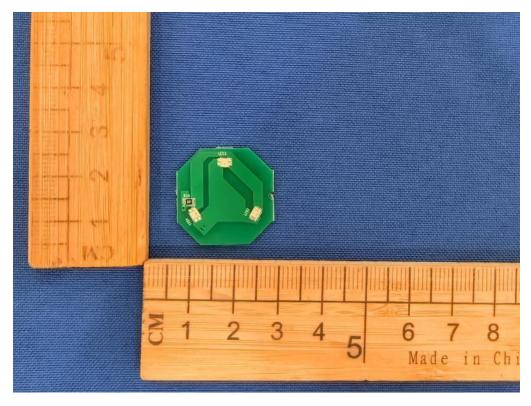
REPORT NO.: E04A24061049F01301 Page 103 of 111

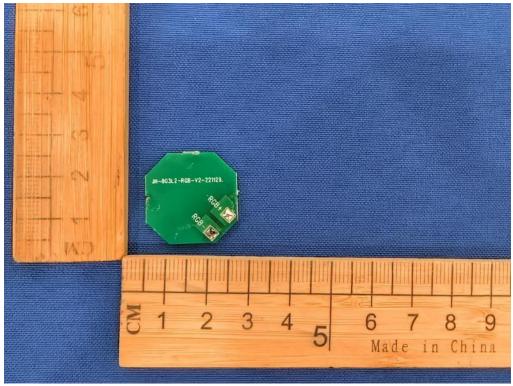
APPENDIX: PHOTOGRAPHS OF THE EUT

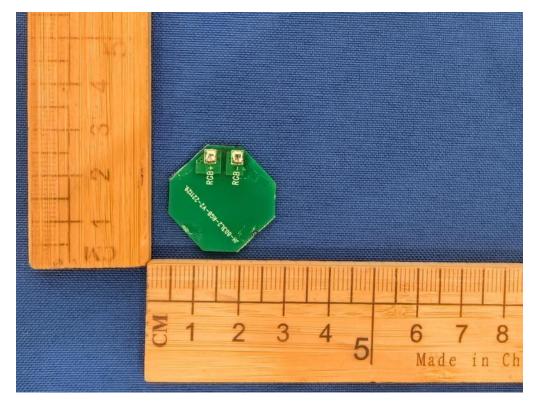


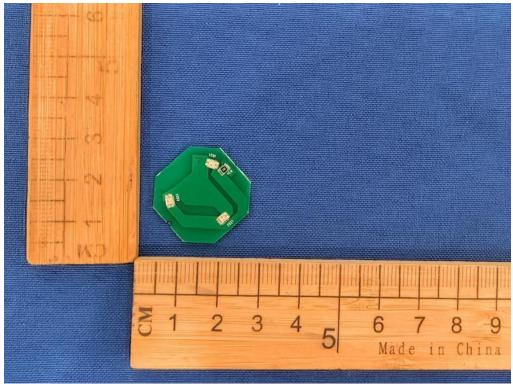


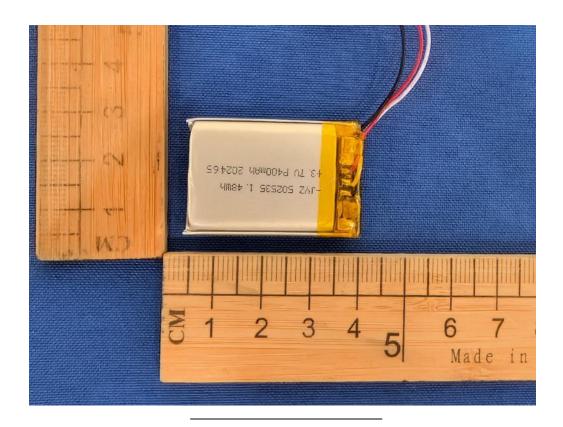












END OF REPORT