

TEST REPORT

FCC ID: 2AIZN-X6857

Product: Mobile Phone 5

WSCT

Model No.: X6857

Trade Mark: Infinix

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

Issued Date: 14 February 2025

WSE

Issued for:

WSE

INFINIX MOBILITY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET **FOTAN NT HONGKONG**

WS CT

Issued By:

W5 17 World Standardization Certification & Testing Group(Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

WSET

WSCT

WSET

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only

WSET

W5 C1

apply to the tested sample.

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

Page 1 of 231

WSET

World Standardization Certification & Testing Group (Shenzhen) Co..ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

TABLE OF CONTENTS WSCT WSC 1 TEST CERTIFICATION 3 2 EUT DESCRIPTION 4 W5 C/3 TEST DESCRIPTION WS CI 3.1 **MEASUREMENT UNCERTAINTY** 5 6 3.2 **TEST ENVIRONMENT AND MODE** 3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 7 **DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)** 8 4 SUMMARY OF TEST RESULTS 9 5 MEASUREMENT INSTRUMENTS 10 6 FACILITIES AND ACCREDITATIONS 11 6.1 **FACILITIES** 11 WSE. -11 6.2 **ACCREDITATIONS** 7 TEST RESULTS AND MEASUREMENT DATA 12 CONDUCTED EMISSION MEASUREMENT 12 7.2 DEVIATION FROM TEST STANDARD 13 7.3 RADIATED EMISSION MEASUREMENT 16 7.4 ANTENNA REQUIREMENT 39 7.5 **EMISSION BANDWIDTH** 40 MAXIMUM CONDUCTED OUTPUT POWER 78 7.6 POWER SPECTRAL DENSITY 113 7.7 WS CT WSE. 7.8 FREQUENCY STABILITY 148 7.9 BAND EDGE EMISSIONS 183 7.10 DYNAMIC FREQUENCY SELECTION (DFS) 219 **8 TEST SETUP PHOTOGRAPHS** 231

WSCI

WSEI

WS CI NS CI WS CI WSEI

深圳世标检测认证股份有限公司

WS CI

Page 2 of 231

W5 C1

WSC

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

Test Certification 1

> **Product:** Mobile Phone

Model No.: X6857

Additional W Model:

WSIT

Infinix

INFINIX MOBILITY LIMITED Applicant:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Manufacturer: INFINIX MOBILITY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Date of Test: 10 December 2024 to 13 February 2025

Applicable Standards:

FCC CFR Title 47 FCC Part 15 Subpart E

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

(Qin Shuiquan)

Approved By:

(Li Huaibi)

WSET

WSET

深圳世标检测认证股份有限公司 World Standardization Certification& Testing Group (Shenzhen) Co.,Ltd

Page 3 of 231

W5 C1

Mahalala

W5 CT

WS ET

WS ET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

EUT Description

	WSTT WS	CT WSCT WSCT W	SET°
	Product:	Mobile Phone	
	Model No.:	X6857	
	Trade Mark:	Infinix WSCT WSCT WSCT	/
/	Operation Frequency:	Band 1: 5180-5240 MHz Band 2: 5260-5320 MHz Band 3: 5500-5700 MHz Band 4: 5745-5825 MHz	LT
	Modulation type:	IEEE 802.11a/n/ac/ax: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)	
	Antenna Type:	Integral Antenna	/
	Antenna Gain	-1.65dBi	X
	Operating Voltage:	Adapter: U450XSB Input: 100-240V~50/60Hz 1.8A Output: 5.0V::3.0A 15W or 5.0-10.0V::4.5A or 11.0V::4.1A 45.0W MAX Rechargeable Li-ion Polymer Battery Model: BL-54BX Rated Voltage: 3.91V Rated Capacity: 5100mAh Nominal Energy: 19.95Wh Typical Capacity: 5200mAh Limited Charge Voltage: 4.50V	707
	Remark:	N/A.	

Note: 1. N/A stands for no applicable.

2. The antenna gain is provided by the customer. For any reported data issues caused by the antenna gain, World Standardization Certification&Testing Group (Shenzhen) Co., Ltd assumes no responsibility.

W5 CT

WS ET

WS CT

W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

Well

3 TEST DESCRIPTION

3.1 MEASUREMENT UNCERTAINTY

WSET[®]

W5CT°

W5C

	No.	Item	Uncertainty	/
	1 W	Conducted Emission Test	±3.2dB5	W
	2	RF power, conducted	±0.16dB	
	3	Spurious emissions, conducted	±0.21dB	
V5 L	4	All emissions, radiated(<1GHz)	±4.7dB W5 [7]	
	5	All emissions, radiated(>1GHz)	±4.7dB	
	6	Temperature	±0.5°C	
	7 W	-Humidity W5.7	±2% / 5 / 7	W
	8	Receiver Spurious Emissions	±2.5%	
>	9	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	
V5.	10	Transmitter Unwanted Emission in the out-of Band	±1.3% W5 CT	
	11	Occupied Channel Bandwidth	±2.4%	
4 7		and the annual state of the annual transfer to the	unde a man source and a district of the district of	. 1.13

NOTE:1. The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

2. The Ulab is less than Ucispr, compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

3. For conducted emission test of laboratory have a measurement uncertainty greater than that specified in harmonized standard, this equipment can still be used provided that an adjustment is made follows: any additionan uncertainty in the test system over and above that specified in harmonized standard should be used to tighter the test requirements-making the test harder to pass. This procedure will ensure that a test system not comliant with harmonized standard does not increase the probability of passing a EUT that would otherwise have failed a test if a test system comliant with harmonized standard had been used.

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi

Page 5 of 231

深圳世标检测认证股份有限公司 World Standard Zation Certification& Testing

WELT

V5 CT

WSEI

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

3.2 TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure: W5.57	1010 mbar <i>W5 LT W5 LT</i>

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by; having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

			1
	Test Mode	Description	ľ
	Mode 1	802.11a	
	Mode 2	802.11n20	
1	Mode 3	802.11n40	_
	Mode 4	802.11ac20	
	Mode 5	802.11ac40	
	Mode 6 5 CT	W5 ET 802.11ac80 W5 ET	Ľ

15 C

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 6 of 231

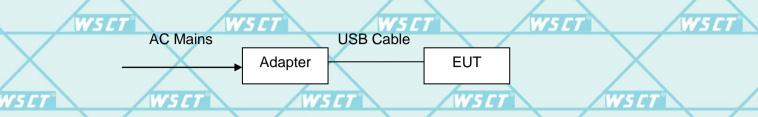
W5CT

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

A	F PARAMETER		EXT SO			TING	/				
W5CT*	W	5 C T		/W	SET"	\		NS ET		W5 L	7.4
X	Test program			*#	*#3646	633#*#	*			×	
AME CT.	Mode		A	Test	Freque	ncy (M	Hz)		<i></i>	CT	
WSET	iviode		aws L		NCB: 2	<u>OMHz</u>				CT.	/
X	802.11a	5180	5240	5260	5320	5500	5700	5745	5825	X	
Wee CT	802.11n	5180	5240	5260	5320	5500	5700	5745	5825	Aug and a second	-
WS ET	802.11ac	5180	5240	5260	5320	5500	5700	5745	5825	W51	
X	X		X		NCB: 4	0MHz				X	
	802.11n	5190	5230	5270	5310	5510	5670	5755	5795		
WSET	802.11ac	5190	5230	5270	5310	5510	5670	5755	5795	CT °	/
\times		\times	ı		NCB: 8	0MHz		X		\rightarrow	
	802.11ac	5210	5290	5530	5610	5775			_		
WSET	W	SET	\	W	5 C T	\	_/	V5 CT		W5.	
\times	\times		\times			\rightarrow				X	
							7		\angle		
WSET	W5 CT	-/	1W5 C			W5			W	ET	/
\times		\times			X			\times		\rightarrow	
									_		
W5 ET	W	SET N		W	'S ET'	$\overline{}$	_/	W5 CT		W5 L	
\times	\times		X							X	
									\angle		
WSET	WSCT	_/	W5 C			W5			W	ET	/
\times		\times			\times			X		\rightarrow	
				/							
WSET	W	SET .		W	SET	_		W5 CT		W5	7
\sim	\times		\times							\times	
									/		
W5 CT	W5 LT		W5C			W5	47		W	ET	/
X		X		1	X			V		X	
				/				/\			1

FAX: 0086-755-86376605

Page 7 of 231



WS CI

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

CONFIGURATION OF SYSTEM UNDER TEST

WSEI

(EUT: Mobile Phone)

3.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note	
1	Adapter	WSCT / W	U900XSA	WSCT	1	4

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- For detachable type I/O cable should be specified the length in cm in Length column.
 - (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
 - (4) The adapter supply by the applicant.

(4) The adapter supply	y by the applicant.			
	WSET	WS ET	WSET	WSET	WSET
WSET	WSET	WSCT	WSE	7 W5	CT*
	X	WSCT	WSLT	WSET	WSCT
WSET	WSET	WSCT	WSE		CT*
	X	WSET	WSET	\times	\times
X	X	X	\rightarrow	ardization C	WS CT Shenzh

WSCT WSCT

lding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue

WSET

Page 8 of 231

WS ET WS ET

W5CT

WSEI

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

7.		FCC Part15 Subpart C&E		
	Standard Section	Test Item	Judgment	Remark
	2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies
	15.407(e)	6dB Spectrum Bandwidth	PASS	Complies
X	15.407(a)	Maximum Conducted Output Power	PASS	Complies
561	15.407(a)	Power Spectral Density	PASS	Complies
	15.407(b)	Unwanted Emissions	PASS	Complies
	15.2075 <i>ET</i>	AC Conducted Emission W5 [7]	PASS W5	Complies
X	15.407(g)	Frequency Stability	PASS	Complies
5 <i>C 1</i>	15.407(c) W5 C	Automatically Discontinue Transmission	PASS	Complies
	15.203 & 15.407(a)	X '	PASS	Complies
	15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

W5 C1 WS ET WS CT W5 C1

Page 9 of 231

W5 E1

W5 C1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5CT

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

5 MEASUREMENT INSTRUMENTS

J	WSCT	WELL	WELT		V5 CT	W5	
7	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
7	Test software	- /ws	EZ-EMC	CON-03A	-/WS	ET°	
	Test software		MTS8310	-	\-	- \	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025	
_	W5 LISN	W-AFJ	LS16 ⁵ [7]	16010222119	11/05/2024	11/04/2025	C I
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2024	11/04/2025	
	Universal Radio Communication Tester	R&S WS	CMU 200	1100.0008.02	11/05/2024	11/04/2025	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2024	11/04/2025	
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025	
-	Spectrum Analyzer	R&S	FSU ⁵ ET	100114	11/05/2024	11/04/2025	<u>C</u>
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2024	11/04/2025	
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2024	11/04/2025	
7	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2024	7/28/2025	
	9*6*6 Anechoic	X	X		11/05/2024	11/04/2025	<
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	- /	11/05/2024	11/04/2025	<u> </u>
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025	
7 °	System-Controller	ccs	CT N/A	W N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	/
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
7	RF cable	Murata	MXHQ87WA300 0		11/05/2024	11/04/2025	<u>C1</u>
	Loop Antenna	EMCO	6502	00042960	11/05/2024	11/04/2025	
7	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025	/
	Power sensor	Anritsu	MX248XD		11/05/2024	11/04/2025	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	Gi

WELT

W5 CI

W5 C7

WSCT

IWS CT

-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世标检测认证股份有限公司 5996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com World Standard zation Certification& Testing Group(Shenzhen) C

Member of the WSCT Group (WSCT SA)

Page 10 of 231

W5CT W

W5 C

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WJLI

6 Facilities and Accreditations

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China of the World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

	WSET	WSET	WSET	WSET	W5 CT
WSCT	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$		$\langle \ \ \rangle$	TIT I
	WSCT	W5 ET	WSCT	WSET	WSCT
WSCI	$\langle \hspace{0.1cm} \rangle$	$\langle \hspace{0.1cm} \rangle$		$\langle \hspace{0.1cm} \rangle$	TT .
	WSCT	WSET	WSCT	WSET	WSET
WSCI	$\langle \hspace{0.1cm} \hspace{0.1cm}$	$\langle \hspace{0.1cm} \rangle$		$\langle \hspace{0.1cm} \rangle$	ET /
	WSET	WSET	WSET	\times	X
X	$\langle \hspace{0.2cm} \rangle$	$\langle \rangle$		Socialization,	WSLT° Shenzho

VS CT WS C

ding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Aver

Page 11 of 231

W5 ET WS ET

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5 C1

7 Test Results and Measurement Data

W5CT

W5 CT

7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

_						
Ž	FREQUENCY (MHz)	Class A	(dBuV)	Class B	(dBuV)	Standard
	FREQUENCT (IVITIZ)	Quasi-peak	Average	Quasi-peak	Average	Statiuatu
	0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
	0.50 -5.0	73.00	60.00	56.00	46.00	FCC
	5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

W51

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

_____W5CT

	Receiver Parameters	Setting
	Attenuation	10 dB
1	Start Frequency	0.15 MHz
Ż	Stop Frequency W5 ET	<i>W5 [</i> 30 MHz <i>W5 [T</i>]
	IF Bandwidth	9 kHz

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

WSCT WSCT WSCT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin IEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standardization Certification& Testing Group(Shenzhen) Co.

SCT WSC

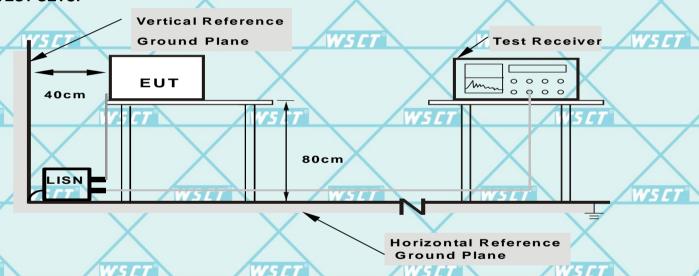
WSCT

Page 12 of 231

WSCT

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.1.1 TEST PROCEDURE


- a The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected WS/ to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- h Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.2 DEVIATION FROM TEST STANDARD

No deviation

TEST SETUP

WS CI

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

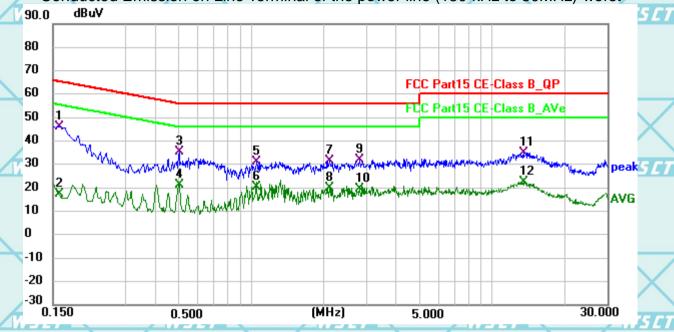
EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

ing A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue

Page 13 of 231



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSCT

7.2.2 TEST RESULTS

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)-worst

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
	1 *	0.1590	25.51	20.72	46.23	65.52	-19.29	QP	
	2	0.1590	-3.34	20.72	17.38	55.52	-38.14	AVG	
	3	0.5010	14.71	20.51	35.22	56.00	-20.78	QP	
E	4	0.5010	0.55	20.51	21.06	46.00	-24.94	AVG	4
	5	1.0545	10.53	20.67	31.20	56.00	-24.80	QP	
	6	1.0545	-0.21	20.67	20.46	46.00	-25.54	AVG	
	7	2.1210	10.83	20.61	31.44	56.00	-24.56	QP	
	8	2.1210	-0.86	20.61	19.75	46.00	-26.25	AVG	
\langle	9	2.8275	11.26	20.60	31.86	56.00	-24.14	QP	
_	10	2.8275	-1.28	20.60	19.32	46.00	-26.68	AVG	
Ľ	11	13.5330	14.76	20.25	35.01	60.00	-24.99	QP	4
	12	13.5330	2.12	20.25	22.37	50.00	-27.63	AVG	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

W5CT°

W5

WSET

W5 CT

W5 CT

WSLT (Serional Testing Group (Shenzile)

WSCT

IWS CT

WELT

IWS CT

DD: Building A-B,Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com World Standard Chile

深圳世标检测认证股份有限公司
World Standard String Crown Sherzhen Co. Lt.

Page 14 of 231

WSET

WSCT

-10 -20 -30

0.150

World Standardization Certification & Testing Group (Shenzhen) Co..ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSC

5.000

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) dBuV 90.0 5 [80 70 FCC Part15 CE-Class B QP 60 FCC Part15 CE-Class B AVe 50 40 11 30 peak 20 AVG 10 0

(MHz)

Margin Frequency Reading Factor Level Limit No. Detector (MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) 1 * QP 0.168025.69 20.72 46.41 65.06 -18.652 -0.8420.72 19.88 55.06 -35.18AVG 0.16803 0.2130 19.08 20.68 39.76 63.09 -23.33QP 4 0.2130 0.67 20.68 21.35 53.09 -31.74AVG 5 0.5595 -23.73QΡ 11.75 20.52 32.27 56.00 -31.21 6 0.5595 -5.7320.52 14.79 46.00 AVG 7 12.34 QP 0.649520.53 32.87 56.00 -23.138 0.6495 -7.77 20.53 12.76 46.00 -33.24 AVG 9 2.4045 9.25 20.60 29.85 56.00 -26.15QP 10 2.4045 -5.3615.24 46.00 -30.76AVG 20.60 WS. 11 4.2990 10.85 20.58 31.43 56.00 -24.57QP 12 4.2990 -3.2820.58 17.30 -28.70AVG 46.00

Note1:

Freq. = Emission frequency in MHz

30.000

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

0.500

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 15 of 231

WSET

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.3 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

W5C1

W5 CT

	Frequencies	Field Strength	Measurement Distance
N	(MHz)	(micorvolts/meter)	(meters)
	0.009~0.490	2400/F(KHz)	300
	0.490~1.705	24000/F(KHz)	30
V	/5 <i>CT</i> 1.705~30.0 <i>W5C</i>	30 W5 FT	30
	30~88	100	3
	88~216	150	3
_	216~960	W5 E 7200	W5 [1] 3 W5 [
	Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

 FREQUENCY (MHz)
 Limit (dBuV/m) (at 3M)

 PEAK
 AVERAGE

 Above 1000
 W5 7 74
 54
 W5 7

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

AWS ET

		4
Spectrum Parameter	Setting	
Attenuation	5 CT W5 C Auto W5 CT	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	X
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	, Ci
band)		

W5CT

	Receiver Parameter	Setting				
	Attenuation	5 ET W5 Auto W5 ET				
	Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
	Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
1	W5 / Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

/W5ET

WSCT

WSCT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

August

Page 16 of 231

WSET

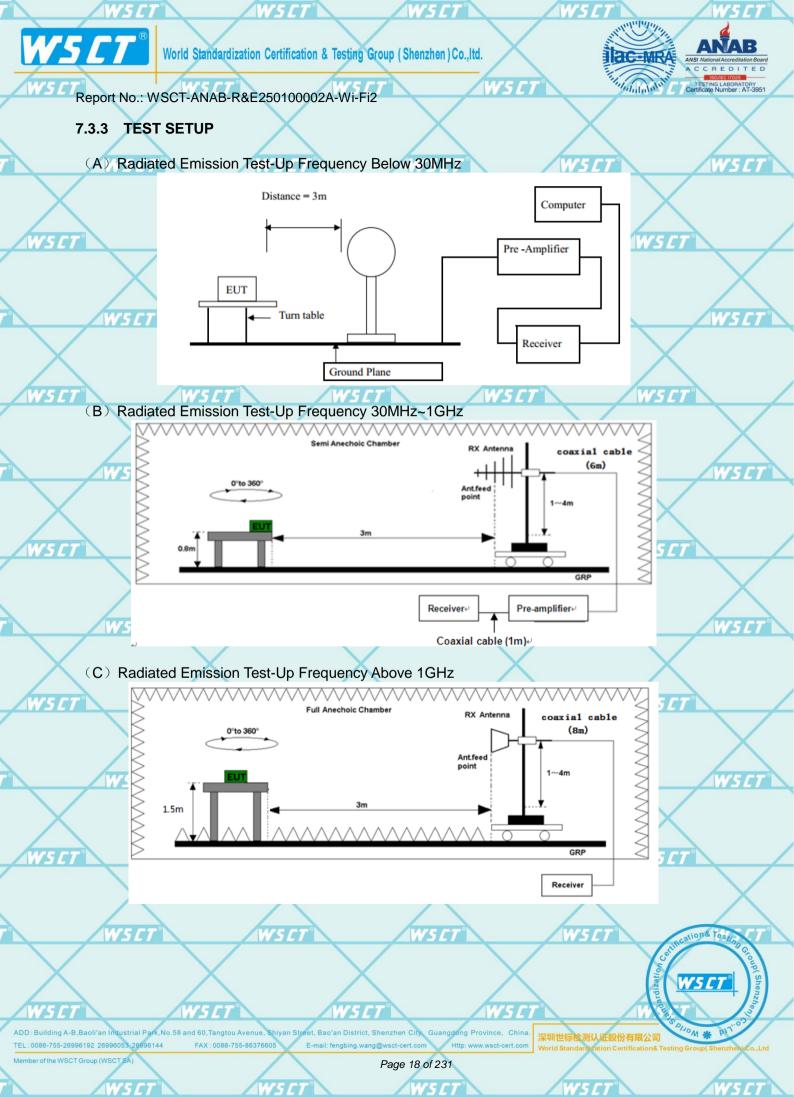
WSET

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.3.1 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

 Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

	orthogonal axis. The wo	rst case emissions were rep	ported	X	
	7.3.2 DEVIATION FROM	TEST STANDARD	SET WS	ET WS C	7
\times	No deviation		X		
W5C	WSET	W5 ET	WS ET	W5 CT	
	W. C.	WSCT W	SCT W	SET WSE	
WSE		WSET	WSET	WSET WSE	
		\times	$\langle \ \rangle$	SET WSE	7
WSE		WSET	WSCT	WSCT	
	WSET	\times	\times	$\langle \hspace{0.1cm} \rangle$	7
X			X	Till 80	Shenzh

VSCT WSCT

WSET

WS CT WS C

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WS CT

7.3.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.3.5 RESULTS (BELOW 30 MHZ)

_					
	Freq.	Reading	Limit	Margin	State
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	AWOLIE				
	\	_			Р
	X	X	X	X	Р

Note 1: The symbol of "--" in the table which means not application.

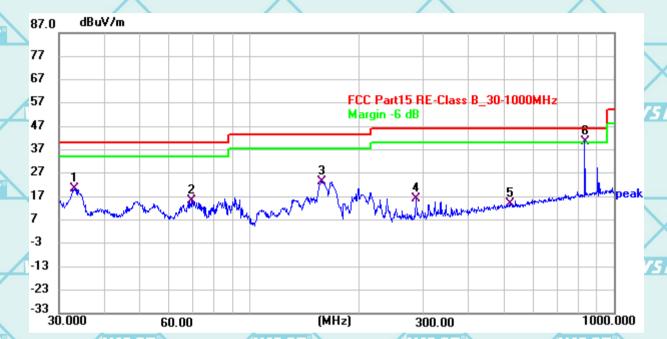
- For the test data above 1 GHz, According the ANSI C63.10-2013, where limits are specified for both Note 2: average and peak (or quasi-peak) detector functions, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement.
- Note 3: The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.
- Note 4: The EUT is working in the Normal link mode below 1 GHz. All modes have been tested and normal link mode is worst.

WSCT	W5CT	W5 ET	WSLT	W5 CT h	
WSI	T WS	CT W	SET	WSCT	WSET
WSCT	WSET	WSLT	WSET	WSCT	
WSI				WSCT	WSCT
WSET	WSET	WSCT	WSET	WSCT	
					X

ding A-B, Baoli'an Industrial Park, No.58 ar

Page 19 of 231

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2


7.3.6 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

Please refer to following diagram for individual

Below 1GHz

W5CT

Horizontal:

WSCT WSCT WSCT WSCT

×	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
- 7	1	33.1967	39.68	-19.53	20.15	40.00	-19.85	QP	
Ľ	2	69.8143	37.61	-22.31	15.30	40.00	-24.70	QP	Ī
	3	157.4207	42.92	-19.49	23.43	43.50	-20.07	QP	Ī
	4	286.9823	36.89	-20.70	16.19	46.00	-29.81	QP	Ī
	5	520.4318	29.10	-15.13	13.97	46.00	-32.03	QP	Ī
X	6 *	832.5869	51.18	-10.55	40.63	46.00	-5.37	QP	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

IWS CT

WSET WSET WSET WSET WSET

1W5 CT"

WSET

WELT

W5ET

Solutions Testing Couple Shenz

WSCT

4W5CT

WELT

AWS CT

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhea)

ding A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi 755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

Page 20 of 231

WSET

1 age 20 01 231

SET WSET

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5 CT

Vertical: dBuV/m 87.0 77 67 FCC Part15 RE-Class B_30-1000MHz 57 Margin -6 dB 47 37 27 17 7 -3 -13 -23 -33 30.000 1000.000 (MHz) 60.00 300.00

V 5 L	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	7
	1 *	33.2347	54.74	-19.54	35.20	40.00	-4.80	QP	
	2	48.5441	49.14	-18.98	30.16	40.00	-9.84	QP	00
	3	85.5977	53.66	-23.91	29.75	40.00	-10.25	QP	
X	4	171.0174	40.12	-20.77	19.35	43.50	-24.15	QP	
W 5 L	5	287.1082	37.57	-20.70	16.87	46.00	-29.13	QP	
	6	630.3055	29.28	-13.05	16.23	46.00	-29.77	QP	7

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Page 21 of 231

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.3.7 TEST RESULTS (ABOVE 1GHZ)

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Report and only recorded the worst-case scenario 802.11a.

W5 ET

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT H

W5 CT

W5 CT

	Suspu	ted Data Lis	t								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2808.7500	46.14	27.97	18.17	74	-27.86	85.8	Horizontal	PK	Pass
	1	2808.7500	35.91	27.97	7.94	54	-18.09	85.8	Horizontal	AV	Pass
W5 C1	2	3928.7500	49.79	29.53	20.26	74	-24.21	0	Horizontal	PK	Pass
	2	3928.7500	40.51	29.53	10.98	54	-13.49	0	Horizontal	AV	Pass
	3	5247.5000	57.97	31.8	26.17	74	-16.03	138.4	Horizontal	PK	Pass
	3	5247.5000	43.93	31.8	12.13	54	-10.07	138.4	Horizontal	AV	Pass
	4	11511.0000	46.67	16.16	30.51	74	-27.33	233.6	Horizontal	PK	Pass
	4	11511.0000	39.58	16.16	23.42	54	-14.42	233.6	Horizontal	AV	Pass
\sim	5	13999.5000	49.23	19.12	30.11	74	-24.77	1.2	Horizontal	PK	Pass
	5	13999.5000	42.5	19.12	23.38	54	-11.5	1.2	Horizontal	AV	Pass
W5C1	6	17907.0000	54.42	23.31	31.11	74	-19.58	158.3	Horizontal	PK	Pass
IIP 14	6	17907.0000	46.45	23.31	23.14	54	-7.55	158.3	Horizontal	AV	Pass

WSET WSET WSET WSET WSET

W5CT

WS CT

WSET

AWS CT

WSET South Callone Testing Group (Shenzha)

WSET WSE

WSIT

WS CT

ina. 深圳世际检测认证股份有限公司 World Standard Zation Certification& Testing Group(Shenzhen

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

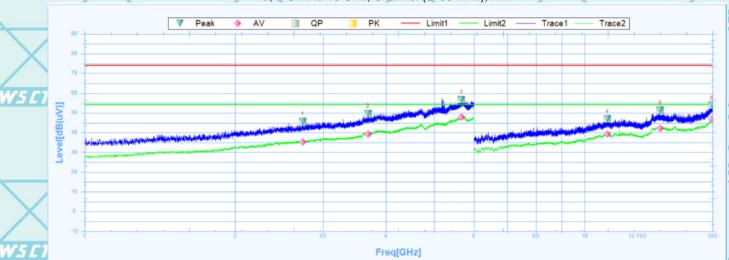
Member of the WSCT Group (WSCT SA)

Page 22 of 231

WSCT

WSCT

VS CT W



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT V

	Suspu	ted Data Lis	st	Unique Vardict							
	NO.	Freq. [MHz]	Reading [dB(uV)]						Polarity	Trace	Verdict
	1	2728.1250	45.57	27.87	17.7	74	-28.43	95.3	Vertical	PK	Pass
/	1	2728.1250	35.21	27.87	7.34	54	-18.79	95.3	Vertical	AV	Pass
C)	2	3686.8750	49.7	28.95	20.75	74	-24.3	341.8	Vertical	PK	Pass
	2	3686.8750	39.38	28.95	10.43	54	-14.62	341.8	Vertical	AV	Pass
	3	5670.0000	56.68	32.27	24.41	74	-17.32	359.6	Vertical	PK	Pass
	3	5670.0000	47.79	32.27	15.52	54	-6.21	359.6	Vertical	AV	Pass
	4	11098.5000	46.94	15.87	31.07	74	-27.06	191.8	Vertical	PK	Pass
	4	11098.5000	39.26	15.87	23.39	54	-14.74	191.8	Vertical	AV	Pass
	5	14148.0000	51.44	18.98	32.46	74	-22.56	24.4	Vertical	PK	Pass
	5	14148.0000	42.24	18.98	23.26	54	-11.76	24.4	Vertical	AV	Pass
	6	17962.5000	53.88	23.66	30.22	74	-20.12	201.3	Vertical	PK	Pass
1	6	17962.5000	46.79	23.66	23.13	54	-7.21	201.3	Vertical	AV	Pass

	WSCT	WSCT	WSET	W5 ET	WSCT
\times		X	\times	X	X

WSET WSET WSET

W5 CT

W5 CT

ADD: Building A-B,Baoli'an Intustrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

□ 深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co.,

Page 23 of 231

FAX: 0086-755-86376605

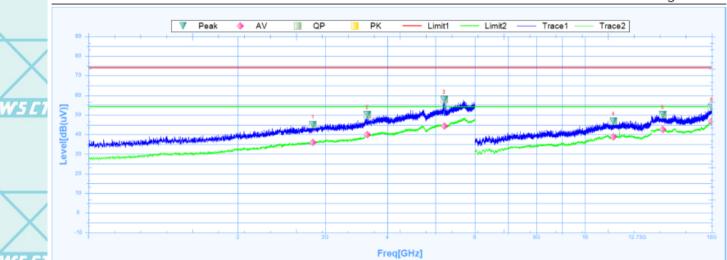
AWSET"

WSET

WSET

WS CT WS CT

W5ET



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT H

W5 E

W5 E

	Suspu	ited Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2831.8750	45.01	28	17.01	74	-28.99	265	Horizontal	PK	Pass
	1	2831.8750	36.01	28	8.01	54	-17.99	265	Horizontal	AV	Pass
	2	3645.0000	50.16	28.85	21.31	74	-23.84	315.3	Horizontal	PK	Pass
	2	3645.0000	39.84	28.85	10.99	54	-14.16	315.3	Horizontal	AV	Pass
7	3	5203.7500	57.73	31.76	25.97	74	-16.27	265	Horizontal	PK	Pass
í	3	5203.7500	44.45	31.76	12.69	54	-9.55	265	Horizontal	AV	Pass
	4	11407.5000	46.86	15.87	30.99	74	-27.14	0.4	Horizontal	PK	Pass
	4	11407.5000	38.82	15.87	22.95	54	-15.18	0.4	Horizontal	AV	Pass
	5	14331.0000	50.11	18.79	31.32	74	-23.89	129.6	Horizontal	PK	Pass
	5	14331.0000	42.67	18.79	23.88	54	-11.33	129.6	Horizontal	AV	Pass
1	6	17994.0000	53.75	23.89	29.86	74	-20.25	299.4	Horizontal	PK	Pass
	6	17994.0000	46.8	23.89	22.91	54	-7.2	299.4	Horizontal	AV	Pass

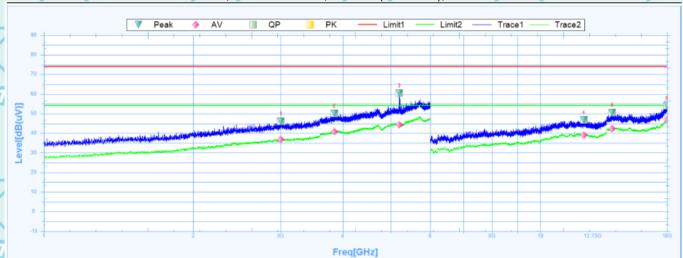
X	6	17994.0000	46.8	23.89	22.91	54	-7.2	299.4	Horizontal	AV	Pass	
WSET			WSET		WSET		W5 E		/	WSCT		
				$ egthinspace{-1mm} olimits = -1mm or -1mm or$								
_	_			\triangle				_	\triangle			
	W	SET		WS CT®		WSET [®]		W	SET		<u> W5C</u>	7 L
X			X		X		X			X		

W5 CT W5 CT W5 ET W5 E1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 24 of 231



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT°

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT V

W5 C1

W5L

....

	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	3003.1250	46.12	28.2	17.92	74	-27.88	341.8	Vertical	PK	Pass
/	1	3003.1250	36.86	28.2	8.66	54	-17.14	341.8	Vertical	AV	Pass
\	2	3848.7500	50.04	29.34	20.7	74	-23.96	145.5	Vertical	PK	Pass
_	2	3848.7500	40.81	29.34	11.47	54	-13.19	145.5	Vertical	AV	Pass
L	3	5203.1250	60.37	31.76	28.61	74	-13.63	290.2	Vertical	PK	Pass
	3	5203.1250	44.32	31.76	12.56	54	-9.68	290.2	Vertical	AV	Pass
	4	12235.5000	46.75	16.49	30.26	74	-27.25	0.4	Vertical	PK	Pass
	4	12235.5000	39.13	16.49	22.64	54	-14.87	0.4	Vertical	AV	Pass
	5	13959.0000	50.57	19	31.57	74	-23.43	116.5	Vertical	PK	Pass
,	5	13959.0000	42.37	19	23.37	54	-11.63	116.5	Vertical	AV	Pass
/	6	17997.0000	54.06	23.91	30.15	74	-19.94	8	Vertical	PK	Pass
	6	17997.0000	46.94	23.91	23.03	54	-7.06	8	Vertical	AV	Pass

WELT

WSCT"

AWSLI

WSCT

WSCT

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

W5CT

ping.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard ration Certification& Testing Group(Shenzhen) Co.,Li

er of the visc i Gloup (visc i bin)

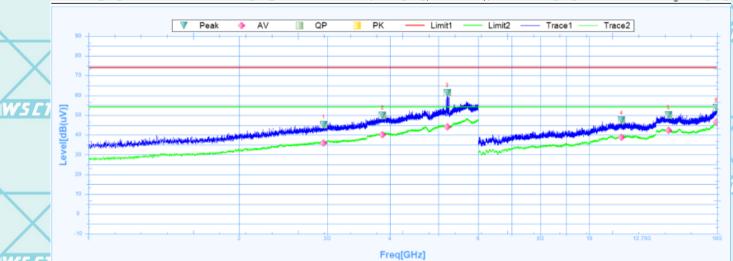
Page 25 of 231

WSC

WSET WSET

WSCT

W5CT



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5260 MHz), ANT H

W5 C1

	Suspu	ited Data Lis	it									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2947.5000	45.15	28.14	17.01	74	-28.85	158.7	Horizontal	PK	Pass	I
/	1	2947.5000	36.04	28.14	7.9	54	-17.96	158.7	Horizontal	AV	Pass	
	2	3866.8750	49.95	29.38	20.57	74	-24.05	202.9	Horizontal	PK	Pass	
1	2	3866.8750	40.22	29.38	10.84	54	-13.78	202.9	Horizontal	AV	Pass	
	3	5205.6250	61.32	31.76	29.56	74	-12.68	108.5	Horizontal	PK	Pass	
	3	5205.6250	44.1	31.76	12.34	54	-9.9	108.5	Horizontal	AV	Pass	7
	4	11598.0000	47.45	16.19	31.26	74	-26.55	1.4	Horizontal	PK	Pass	
	4	11598.0000	38.86	16.19	22.67	54	-15.14	1.4	Horizontal	AV	Pass	
	5	14395.5000	50.19	18.73	31.46	74	-23.81	123.6	Horizontal	PK	Pass	
	5	14395.5000	42.33	18.73	23.6	54	-11.67	123.6	Horizontal	AV	Pass	,
/	6	17956.5000	53.88	23.62	30.26	74	-20.12	300.5	Horizontal	PK	Pass	
1	6	17956.5000	46.65	23.62	23.03	54	-7.35	300.5	Horizontal	AV	Pass	

WSCT WSCT WSCT WSCT WSCT

WS CT WS CT WS CT WS CT

WSET WSET WSET WSET

WSET WSET WSET

W5 CT W5 CT W5 CT W5 CT ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世际检测认证股份有限公司

World Standard Zation Certifications Testing Group()

World Standard Zation Certifications Testing Group()

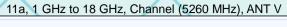
Page 26 of

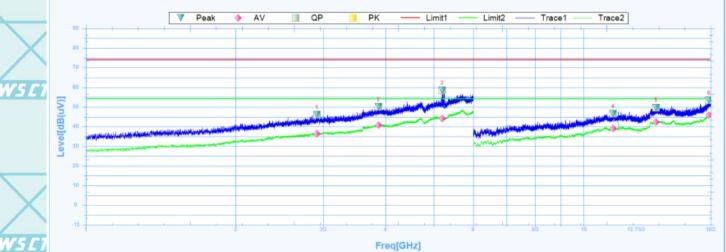
Page 26 of 231

WSET WSET

'S CT' WS CT

W5E





Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

W5 E

	Suspu	ited Data Lis	st								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2909.3750	46.13	28.09	18.04	74	-27.87	108.5	Vertical	PK	Pass
	1	2909.3750	36.51	28.09	8.42	54	-17.49	108.5	Vertical	AV	Pass
	2	3874.3750	50.02	29.4	20.62	74	-23.98	49.9	Vertical	PK	Pass
	2	3874.3750	40.88	29.4	11.48	54	-13.12	49.9	Vertical	AV	Pass
L	3	5201.8750	58.45	31.76	26.69	74	-15.55	2.4	Vertical	PK	Pass
	3	5201.8750	44.07	31.76	12.31	54	-9.93	2.4	Vertical	AV	Pass
	4	11457.0000	46.53	16.01	30.52	74	-27.47	213.2	Vertical	PK	Pass
	4	11457.0000	39.11	16.01	23.1	54	-14.89	213.2	Vertical	AV	Pass
	5	13978.5000	49.71	19.06	30.65	74	-24.29	298.1	Vertical	PK	Pass
	5	13978.5000	42.45	19.06	23.39	54	-11.55	298.1	Vertical	AV	Pass
	6	17862.0000	53.4	23.02	30.38	74	-20.6	298.1	Vertical	PK	Pass
	6	17862 0000	45.83	23.02	22.81	54	-8 17	298.1	Vertical	ΑV	Pass

W5 CI

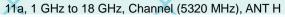
W5 CT WS ET WS CT W5 C1

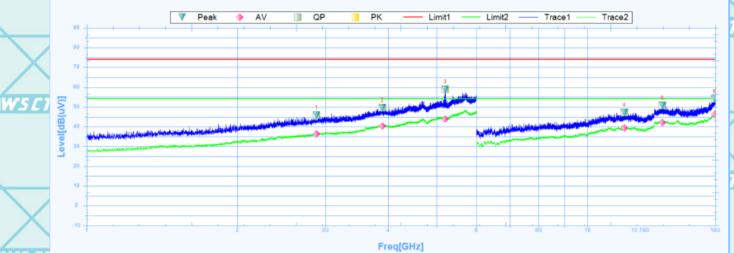
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 27 of 231

W5CT


W5CT



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

W5 E

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2877.5000	45.86	28.05	17.81	74	-28.14	335.6	Horizontal	PK	Pass	7
	1	2877.5000	36.43	28.05	8.38	54	-17.57	335.6	Horizontal	AV	Pass	
	2	3894.3750	49.64	29.45	20.19	74	-24.36	-0.1	Horizontal	PK	Pass	
1	2	3894.3750	40.43	29.45	10.98	54	-13.57	-0.1	Horizontal	AV	Pass	
	3	5201.8750	58.95	31.76	27.19	74	-15.05	339.9	Horizontal	PK	Pass	
	3	5201.8750	44.02	31.76	12.26	54	-9.98	339.9	Horizontal	AV	Pass	
	4	11851.5000	47.16	16.37	30.79	74	-26.84	38.8	Horizontal	PK	Pass	
	4	11851.5000	39.29	16.37	22.92	54	-14.71	38.8	Horizontal	AV	Pass	
	5	14107.5000	50.67	19.02	31.65	74	-23.33	1.3	Horizontal	PK	Pass	
	5	14107.5000	42.23	19.02	23.21	54	-11.77	1.3	Horizontal	AV	Pass	4
/	6	17941.5000	54	23.53	30.47	74	-20	2.4	Horizontal	PK	Pass	
	6	17941.5000	46.41	23.53	22.88	54	-7.59	2.4	Horizontal	AV	Pass	

W5 E7 W5 CI

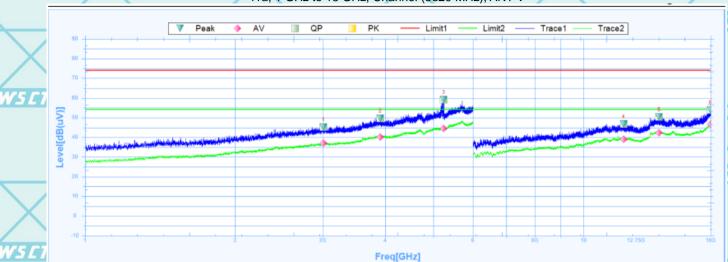
W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 28 of 231

W5CT



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSCT"

11a, 1 GHz to 18 GHz, Channel (5320 MHz), ANT V

	Suspu	ted Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
_	1	3006.2500	45.25	28.2	17.05	74	-28.75	-0.1	Vertical	PK	Pass
	1	3006.2500	37.01	28.2	8.81	54	-16.99	-0.1	Vertical	AV	Pass
	2	3910.6250	49.74	29.49	20.25	74	-24.26	358.8	Vertical	PK	Pass
<u>c 7</u>	2	3910.6250	40.26	29.49	10.77	54	-13.74	358.8	Vertical	AV	Pass
5 L	3	5245.0000	59.14	31.8	27.34	74	-14.86	267.4	Vertical	PK	Pass
	3	5245.0000	44.66	31.8	12.86	54	-9.34	267.4	Vertical	AV	Pass
	4	12034.5000	46.82	16.78	30.04	74	-27.18	8	Vertical	PK	Pass
	4	12034.5000	39.05	16.78	22.27	54	-14.95	8	Vertical	AV	Pass
	5	14182.5000	50.29	18.94	31.35	74	-23.71	38.7	Vertical	PK	Pass
/	5	14182.5000	42.47	18.94	23.53	54	-11.53	38.7	Vertical	AV	Pass
(6	17980.5000	53.88	23.79	30.09	74	-20.12	10.6	Vertical	PK	Pass
1	6	17980.5000	46.89	23.79	23.1	54	-7.11	10.6	Vertical	AV	Pass

	WSET	W5 CT	WSET	WSET	WSET
X	\rightarrow		\times	\times	\times

WSCT WSCT WSCT WSCT

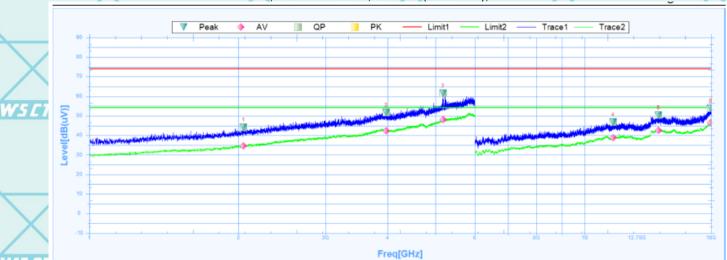
ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

(na. 深圳世标检测认证股份有限公司
world Standard Zation Certification & Testing Group(Shenzhen) Co.,Lt

WSCT

WSET

W5 CT W5 CT



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5500 MHz), ANT H

WS C

W5E

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2046.2500	44.14	26.06	18.08	74	-29.86	163.1	Horizontal	PK	Pass	7
	1	2046.2500	34.7	26.06	8.64	54	-19.3	163.1	Horizontal	AV	Pass	
	2	3974.3750	51.7	29.64	22.06	74	-22.3	251.5	Horizontal	PK	Pass	
	2	3974.3750	42.42	29.64	12.78	54	-11.58	251.5	Horizontal	AV	Pass	
7	3	5173.1250	61.56	31.74	29.82	74	-12.44	1.3	Horizontal	PK	Pass	
1	3	5173.1250	48	31.74	16.26	54	-6	1.3	Horizontal	AV	Pass	ı
	4	11412.0000	46.8	15.88	30.92	74	-27.2	302.2	Horizontal	PK	Pass	1
	4	11412.0000	38.74	15.88	22.86	54	-15.26	302.2	Horizontal	AV	Pass	
	5	14086.5000	50.32	19.04	31.28	74	-23.68	90.6	Horizontal	PK	Pass	
	5	14086.5000	42.48	19.04	23.44	54	-11.52	90.6	Horizontal	AV	Pass	4
	6	17970.0000	53.94	23.72	30.22	74	-20.06	0	Horizontal	PK	Pass	
	6	17970.0000	46.64	23.72	22.92	54	-7.36	0	Horizontal	AV	Pass	

WS CI W5 C

W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 30 of 231

W5 CT



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WS C

Susputed Data List Reading **Factor** Level Limit Margin Deg Freq. NO. **Polarity Trace** Verdict [MHz] [dB(uV)] [dB(uV)] [dB] [dB] [dB] [°] 3083.1250 48.13 28.25 19.88 74 -25.87 287.8 PΚ Pass Vertical 38.96 -15.04 3083.1250 28.25 10.71 54 287.8 Vertical ΑV Pass 4007.5000 52.45 29.71 22.74 74 -21.55 2.9 PK Vertical Pass 42.75 -11.25 4007.5000 29.71 13.04 54 2.9 Vertical ΑV Pass PK 3 62.06 31.75 74 -11.94 46.3 Pass 5181.8750 30.31 Vertical 5181.8750 48.01 31.75 16.26 54 -5.99 46.3 Vertical ΑV Pass Pass 4 11113.5000 46.65 15.86 30.79 74 -27.35 91.4 PK Vertical 11113.5000 4 38.87 15.86 23.01 54 -15.13 91.4 ΑV Pass Vertical 5 15156.0000 50.53 19.49 31.04 74 -23.47 360 PK Pass Vertical 5 15156.0000 42.54 19.49 23.05 54 -11.46 360 Vertical ΑV Pass 6 17983.5000 53.23 23.81 29.42 74 -20.77 28 Vertical PK Pass 6 17983.5000 46.88 23.81 23.07 54 -7.12 28 ΑV Vertical Pass

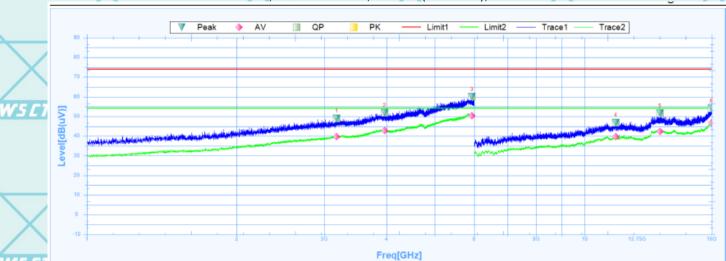
ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605 TEL: 0086-755-26996192 26996053 26996144

深圳世标检测认证股份有限公司

Page 31 of 231

ation& Tes



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSCT"

11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT H

W5 C1

W5L

	Suspu	ited Data Lis	st									1
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	3175.0000	49.08	28.3	20.78	74	-24.92	3	Horizontal	PK	Pass	
	1	3175.0000	39.76	28.3	11.46	54	-14.24	3	Horizontal	AV	Pass	
	2	3965.6250	51.94	29.62	22.32	74	-22.06	200.6	Horizontal	PK	Pass	
	2	3965.6250	42.72	29.62	13.1	54	-11.28	200.6	Horizontal	AV	Pass	
Ť,	3	5936.2500	59.94	32.7	27.24	74	-14.06	83.4	Horizontal	PK	Pass	
	3	5936.2500	50.36	32.7	17.66	54	-3.64	83.4	Horizontal	AV	Pass	
	4	11548.5000	46.89	16.22	30.67	74	-27.11	161.9	Horizontal	PK	Pass	
	4	11548.5000	39.61	16.22	23.39	54	-14.39	161.9	Horizontal	AV	Pass	-
	5	14170.5000	51.65	18.96	32.69	74	-22.35	145.1	Horizontal	PK	Pass	
	5	14170.5000	42.45	18.96	23.49	54	-11.55	145.1	Horizontal	AV	Pass	4
/	6	17979.0000	54.04	23.78	30.26	74	-19.96	1.8	Horizontal	PK	Pass	
	6	17979.0000	46.68	23.78	22.9	54	-7.32	1.8	Horizontal	AV	Pass	

WSET WSET WSET WSET WSET WSET WSET WSET

W5CT

WSET

WSET

W5 CT°

WSET State of the state of the

W5CT

WSCT

WELT

IWS CT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.
TEL: 0086-755-26996192 26996053, 28996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com World Standard Zation Certific

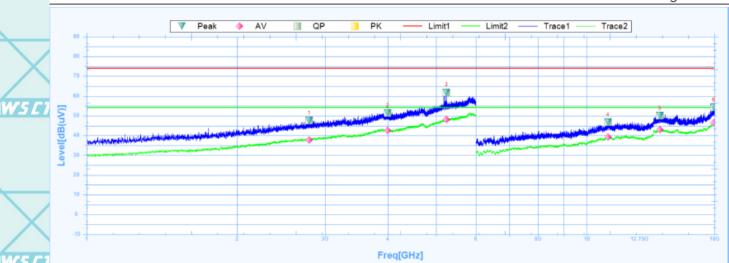
深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group(Shenzhen) Co., Lit

Member of the WSCT Group (WSCT SA)

Page 32 of 231

WSET

WSET WSET



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSCT"

11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT V

W5 C1						Freq[GHz]					
	Suspu	ted Data Lis	it								
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2785.6250	47.68	27.94	19.74	74	-26.32	6.3	Vertical	PK	Pass
	1	2785.6250	37.81	27.94	9.87	54	-16.19	6.3	Vertical	AV	Pass
X	2	3999.3750	51.46	29.7	21.76	74	-22.54	356.5	Vertical	PK	Pass
	2	3999.3750	42.49	29.7	12.79	54	-11.51	356.5	Vertical	AV	Pass
W5C1	3	5243.1250	61.9	31.79	30.11	74	-12.1	273.4	Vertical	PK	Pass
	3	5243.1250	48.08	31.79	16.29	54	-5.92	273.4	Vertical	AV	Pass
	4	11022.0000	46.71	15.69	31.02	74	-27.29	77	Vertical	PK	Pass
	4	11022.0000	39.17	15.69	23.48	54	-14.83	77	Vertical	AV	Pass
	5	14001.0000	50.16	19.12	31.04	74	-23.84	2.1	Vertical	PK	Pass
	5	14001.0000	42.97	19.12	23.85	54	-11.03	2.1	Vertical	AV	Pass
	6	17938.5000	54.24	23.51	30.73	74	-19.76	233.7	Vertical	PK	Pass
	6	17938.5000	46.62	23.51	23.11	54	-7.38	233.7	Vertical	AV	Pass

X	X	X	X	X
W5 ET	WSET	W5 ET	W5 CT	W5 CT"

WSET WSET WSET WSET WSET

WSCT WSCT WSCT

ADD: Building A-B, Baoil'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司 World Standard zation Certification& Testing Group(Shenzhen) Co.,Lt

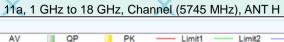
Page 33 of 231

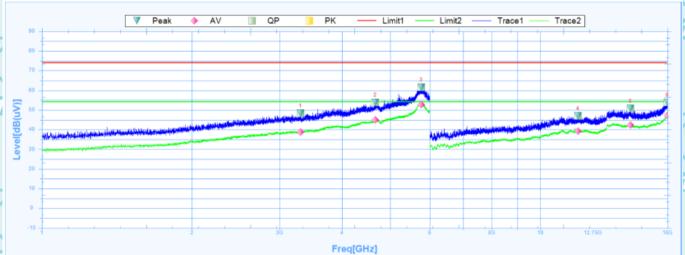
VSET WSET

WSET

WSCT" V

SET





Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

W5 E

W5 E

7//											
	Susputed Data List										
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	3301.8750	48.3	28.38	19.92	74	-25.7	106.1	Horizontal	PK	Pass
	1	3301.8750	38.82	28.38	10.44	54	-15.18	106.1	Horizontal	AV	Pass
	2	4663.7500	53.8	30.93	22.87	74	-20.2	350.1	Horizontal	PK	Pass
	2	4663.7500	45.09	30.93	14.16	54	-8.91	350.1	Horizontal	AV	Pass
¥	3	5764.3750	61.66	32.42	29.24	74	-12.34	113.3	Horizontal	PK	Pass
_	3	5764.3750	52.79	32.42	20.37	54	-1.21	113.3	Horizontal	AV	Pass
	4	11890.5000	46.98	16.5	30.48	74	-27.02	337.6	Horizontal	PK	Pass
	4	11890.5000	39.33	16.5	22.83	54	-14.67	337.6	Horizontal	AV	Pass
	5	15165.0000	50.68	19.42	31.26	74	-23.32	165.5	Horizontal	PK	Pass
	5	15165.0000	42.46	19.42	23.04	54	-11.54	165.5	Horizontal	AV	Pass
1	6	17982.0000	53.75	23.8	29.95	74	-20.25	139.2	Horizontal	PK	Pass
	6	17982.0000	47.26	23.8	23.46	54	-6.74	139.2	Horizontal	AV	Pass

W5 E1 W5 C

W5 CT WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 34 of 231

W5 CT

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

WSEI

Susputed Data List Freq. Reading Factor Level Limit Margin Deg NO. **Polarity** Trace Verdict [MHz] [dB(uV)] [dB] [dB(uV)] [dB] [dB] [°] 2856.2500 88.2 PΚ 47.26 28.03 19.23 74 -26.74 Vertical Pass 2856.2500 37.37 28.03 9.34 54 -16.63 88.2 ΑV Pass Vertical -22.57 PK 3990.6250 51.43 29.68 21.75 74 14.1 Vertical Pass Pass 3990.6250 41.31 29.68 54 -12.69 11.63 14.1 Vertical ΑV PK 3 5753.1250 62.43 32.4 30.03 74 -11.57 151.6 Vertical Pass 3 53.08 32.4 54 -0.92 151.6 ΑV Pass 5753.1250 20.68 Vertical 4 11047.5000 47.51 15.77 31.74 74 -26.49 360 Vertical PΚ Pass 4 11047.5000 39.4 15.77 23.63 54 -14.6 360 ΑV Pass Vertical 14062.5000 49.93 19.06 30.87 74 -24.07 219.2 Vertical PK Pass 5 14062.5000 42.51 19.06 23.45 54 -11.49 219.2 Vertical ΑV Pass 6 17841.0000 53.48 22.88 30.6 74 -20.52 319.6 PK Pass Vertical 17841.0000 45.69 22.88 22.81 54 -8.31 319.6 ΑV Vertical Pass

1					
	VS CT I	WS C1	WSET	W5 C1	WSET
	P178				

W5 CT	WSET	W5 CT	W5ET*	W5 CT

W5CT"	WSET	WSCT	WSET	W5CT"

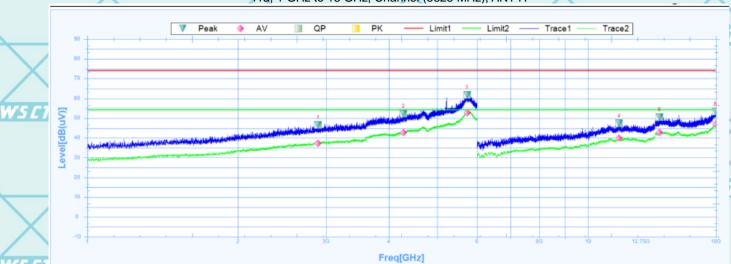
AMERT'	WSCT	WSET	WSIT
WSCT			

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

Page 35 of 231



Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT H

W5 E

	Susputed Data List										
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
	1	2890.0000	46.48	28.07	18.41	74	-27.52	193.4	Horizontal	PK	Pass
	1	2890.0000	37.32	28.07	9.25	54	-16.68	193.4	Horizontal	AV	Pass
	2	4282.5000	52.28	30.21	22.07	74	-21.72	301	Horizontal	PK	Pass
	2	4282.5000	42.73	30.21	12.52	54	-11.27	301	Horizontal	AV	Pass
4	3	5730.6250	61.75	32.37	29.38	74	-12.25	-0.1	Horizontal	PK	Pass
	3	5730.6250	52.84	32.37	20.47	54	-1.16	-0.1	Horizontal	AV	Pass
	4	11532.0000	47.37	16.21	31.16	74	-26.63	167.8	Horizontal	PK	Pass
	4	11532.0000	39.83	16.21	23.62	54	-14.17	167.8	Horizontal	AV	Pass
	5	13891.5000	50.5	18.81	31.69	74	-23.5	43.5	Horizontal	PK	Pass
	5	13891.5000	42.8	18.81	23.99	54	-11.2	43.5	Horizontal	AV	Pass
/	6	17974.5000	53.43	23.75	29.68	74	-20.57	201.3	Horizontal	PK	Pass
	6	17974 5000	47 11	23.75	23.36	54	-6.89	201.3	Horizontal	AV	Pass

W5 C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 36 of 231

W5 CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

ILAC-MRA

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

WS CT

	Suspu	ited Data Lis	it									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2601.8750	45.43	27.72	17.71	74	-28.57	163.5	Vertical	PK	Pass	Ú
	1	2601.8750	36.39	27.72	8.67	54	-17.61	163.5	Vertical	AV	Pass	
	2	3748.7500	50.63	29.1	21.53	74	-23.37	75	Vertical	PK	Pass	
	2	3748.7500	41.03	29.1	11.93	54	-12.97	75	Vertical	AV	Pass	
7	3	5243.1250	62.73	31.79	30.94	74	-11.27	187.4	Vertical	PK	Pass	
	3	5243.1250	47.25	31.79	15.46	54	-6.75	187.4	Vertical	AV	Pass	
	4	11745.0000	47.57	16.11	31.46	74	-26.43	148.6	Vertical	PK	Pass	
	4	11745.0000	40.85	16.11	24.74	54	-13.15	148.6	Vertical	AV	Pass	
	5	14049.0000	50.68	19.08	31.6	74	-23.32	55.4	Vertical	PK	Pass	
	5	14049.0000	42.76	19.08	23.68	54	-11.24	55.4	Vertical	AV	Pass	4
/	6	17853.0000	53.65	22.97	30.68	74	-20.35	209.6	Vertical	PK	Pass	
	6	17853.0000	46.15	22.97	23.18	54	-7.85	209.6	Vertical	AV	Pass	

WSCT

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+ Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

WSCT WSCT WSCT WSCT

AWSCT"

WSLT

WEFT

WS CT

WSET Sand Good Sheet She

WSCT

IWS CT

WELT

WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard ration Certification & Testing Group (Shenzhen) Co.,Ltd

Page 37 of 231

W5CT

WSCT

WSCT

Mahalalala

ac-MRA

TESTING LABORATORY Certificate Number : AT-3951

W5 C

W5 C1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5E

W5 C

W5L

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

7.3.8 RESTRICTED BANDS REQUIREMENTS

Test Result(Only recorde	d the wors	st case in th	ne report):
. 551 , 55 5 51 1				

	Test Result(Only recorde	d the wor	st case in the	e report):	M	15 E T "		1
	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector	
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V		
Ž		WSET	802.11	a(6Mbps) Test	channel:36	ET°		WSET"	
	5150	64.67	-5.24	59.43	68.23	8.80	H	PK	
	5150	52.70	-5.24	47.46	54	6.54	H	AV	
	5150	61.08	V-4.87	56.21	5 68.23	12.02	'5 DT	PK	/
	5150	52.25	-4.87	47.38	54	6.62	V	AV	
			802.11	a(6Mbps) Test	channel:48				
Ž	5350	64.94	-5.24	59.70	68.23	8.53	Н	PK-	•
	5350	53.06	-5.24	47.82	54	6.18	Ŧ	AV	
	5350	60.55	-4.87	55.68	68.23	12.55	V	PK	
	5350	53.07	-4.87	48.20	5 - 54	5.80	5 VT	AV	
			802.11a	(6Mbps) Test	channel: 165				
	5850	64.68	-5.24	59.44	122.23	62.79	Н	PK	
r	5850	54.81	-4.87	49.94	122.23	72.29	V	PK	

Note: Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss

Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Level (dB μ V) – Limits (dB μ V)

WSE

WS CI W5 C W5 C W5 CI

WS ET

W5 CT

W5 CT WS ET WS CT W5 C1

Page 38 of 231

深圳世标检测认证股份有限公司

W5C1

W5CT

W5 E1

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT

7.4 ANTENNA REQUIREMENT

Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

W5CT°

Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

Antenna Gain

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is -1.65dBi.

\times	antenna is -1.65dBi. Please refer to the att	ached "X6857 Internal	Photo" for the antenna	location	
WSET	WSET	WSET	WSCI	WS	7
	WSET	WSET	WSCT	WSET	WSCT
WSET	WSET	WSET	\times		
	W5 ET	WSET	WSET	WSET	WSCT
WSCT	WSCT	WSCT	WSEI	WSI	
	WSET	WSET	WSET	WSET	WSCT
WSET	WSET	WSCT	WSEI	WSI	7
	WSET	WSET	WSCT		
WSET	WSET	WSCT	WSET	Sprdization Con	WS LT
	oli'an Industrial Park,No.58 and 60,Tangtou A			深圳世标检测认证股份有限公司	Dollow # MJ. O.

WSET

WSCT

Page 39 of 231

WS CT WS CT

World Standardization Certification & Testing Group (Shenzhen) Co., Itd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.5 EMISSION BANDWIDTH

7.5.1 TEST EQUIPMENT

Please refer to Section 5 this report.

WSET"

<u> 4W5 ET</u>

W5 C1

7.5.2 TEST PROCEDURE

	-26dB Bandwidth	n and 99% Occupied Bandwidth:	1
<u> </u>	Test Method:	a)The transmitter was radiated to the spectrum analyzer in peak hold mode.	

b)Measure the maximum width of the emission that is 26 dB down from the peak of the emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Test Equipment Setting – 26dB Bandwidth:

a)Attenuation: Auto

a)Span: 1.5 times to 5.0 times the OBW

b)Span Frequency: > 26dB Bandwidth c)RBW: Approximately 1% of the emission bandwidth c)VBW: ≥ 3 x RBW

c)RBW: Approximately 1% of the emission bandwidth d)VBW: VBW > RBW e)Detector: Peak e)Trace: Max Hold

g)Sweep Time: Auto 6 dB Bandwidth:

Test Method: a)The transmitter was radiated to the spectrum analyzer in peak hold mode.

b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.

c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions

Testing of Transmitters with Multiple Outputs in the Same Band.

d)Measured the spectrum width with power higher than 6dB below carrier.

Test Equipment Setting: To WETT WETT

a)Attenuation: Auto
b)Span Frequency: > 6dB Bandwidth
c)RBW: 100kHz

e)Detector: Peak
f)Trace: Max Hold
g)Sweep Time: Auto

d)VBW: $\geq 3 \times RBW$

Maximum Conducted Output Power Measurement:

Test Method: a)The transmitter output (antenna port) was connected to the power meter.

b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).

c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01

Testing of Transmitters with Multiple Outputs in the Same Band.

d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

Test Equipment Setting: Detector - Average

Power Spectral Density:

Test Method: a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.

b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).

c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power

Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the

d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for

the first frequency bin of the summed spectrum. The summed spectrum value for each of

the other frequency bins is computed in the same way.

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW)

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wand@wsct-cert.com Http://www.wsct-cert.com

WELT

Page 40 of 231

WSCT

WSCT

ion& Tes

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

W5CT

W5 CT	Report No : WSC	T-ANAB-R&E2501	00002A-Wi-Fi2		V5 CT	"John alaha"	Certificate Number : AT-3951
	Report No., WSC	1-ANAD-NALZ30	100002A-VVI-1 12	\/			
	X	and the final result	should ≤ 30 dBm.	X	X		X
	WSCT	WS	ET .	WSET	WSCI		W5 CT
	Test Equipment Sett a)Attenuation: Aut				e)Detector: RMS		
X			ntire emissions bandwi	dth (FBW) of	f)Trace: AVERAGE	\times	
	the signal	, i <u>= </u>		a (==::) a.	g)Sweep Time: Auto		
THE STATE OF	c)RBW: 1000 kHz		W. C.		h)Trace Average: 100	times	
MOLI	d)VBW: 3000 kHz		ovimum DSD is specifi	od in 500 kHz ac	dd 10log(500kHz/RBW)	to the	
					idth of the spectrum an		
	during measureme	•				,	
		ity Measurement:	ET° /	WSCT	WSET	00	W5 CT°
	Test Method:	a)The transmitter of	output (antenna port) w nitted absence of mod	as connected to	the spectrum analyzer.		
X					nce of modulation emis	sions	
		bandwidth.					
Was a			Hz, VBW = 10 kHz with			TULL C	
W5 C1		e)fc is declaring of ppm and	cnannel frequency. Th	nen the frequency	y error formula is (fc-f)/f	c x 106	
			n ±20ppm (IEEE 802.1	Inspecification).			
					voltage from 85 to 115	percent of	
		the					
	WSET	nominal value g)Extreme tempera	ature is 0°C-40°C	W5 [T	W5 CT		W5CT°
	Test Equipment Sett		ature is 0 0~40 C				
X	a)Attenuation: Aut		X		e)Sweep Time: Auto	\times	
		: Entire absence of	modulation emissions	bandwidth			
WEET	c)RBW: 10 kHz	WSCT	WELT		WS FT	WEE	
IELS.	d)VBW: 10 kHz	WP15	/ MPI3B		PITA	/ UPIS	
	7.5.3 CONFIG	URATION OF T	HE EUT				
	Same as section 3.4						
	7.5.4 EUT OP	ERATING CONI					
	Same as section 3.	5 of this report.	ET /	W5 CT	W5 ET		W5 CT
\							
X		X	X		X	X	
NS E I		WSCT	WSET		WS ET	WSE	
		1	1				
	W5ET"	W.5		W5 CT	W5 ET		W5CT"
\ /		\/					
X		X	X		X	X	
W5 CT		W5 ET	W5 CT	/	NS ET	W5 C	
	WSCT	WS		WSCT	WSIT		
		1005			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ation& Test

深圳世标检测认证股份有限公司

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

Page 41 of 231

W5CT

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

	7.3.3 EIIVII I		
<	-26dB Bandwidth and 99% Occupied Bandwidth:		
	Limit: No restriction limits.	WELT	WELT
	-6 dB Bandwidth:		/ UPLA
	Limit: For digital modulation systems, the m	ninimum 6dB bandwidth shall be at least 500 kHz.	
X	Test Equipment Setting:	X	
	a)Attenuation: Auto	e)Detector: Peak	
W5C1	b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz	f)Trace: Max Hold g)Sweep Time: Auto	7°
ZUE!3	-/	g)Sweep Time: Auto	
	d)VBW: ≥ 3 x RBW		
	Maximum Conducted Output Power Measurement:		X
	⊠5.15~5.	25 GHz	
	Limit of Outdoor access point:	☐Limit of Indoor access point:	
	The maximum conducted output power over the	The maximum conducted output power over the	WELT
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 1 W	- IF17E
	(30dBm) provided the maximum antenna gain does not	(30dBm) provided the maximum antenna gain does	
	exceed 6 dBi. If transmitting antennas of directional gain	not	
	greater than 6 dBi are used, both the maximum	exceed 6 dBi. If transmitting antennas of directional	
WALL CO	conducted output power and the maximum power	gain greater than 6 dBi are used, both the maximum	-0
/W5 C1	spectral density shall be reduced by the amount in dB	conducted output power and the maximum power	
	that the directional gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in	
	The maximum e.i.r.p. at any elevation angle above 30	dB	
	degrees as measured from the horizon must not exceed	that the directional gain of the antenna exceeds 6	
	125 mW (21 dBm).	dBi.	
	Limit of Fixed point-to-point access points:	Limit of Mobile and portable client devices:	MELET
	The maximum conducted output power over the	The maximum conducted output power over the	
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 250	
	(30dBm). Fixed point-to-point U-NII devices may employ	mW	
	antennas with directional gain up to 23 dBi without any	(24dBm) provided the maximum antenna gain does	
Augusta	corresponding reduction in the maximum conducted	not	
	output power or maximum power spectral density. For	exceed 6 dBi. If transmitting antennas of directional	
	fixed point-to-point transmitters that employ a directional	gain greater than 6 dBi are used, both the maximum	
	antenna gain greater than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power	
	maximum conducted output power and maximum	spectral density shall be reduced by the amount in	
	power spectral density is required for each 1 dB of	dB	
	antenna gain in excess of 23 dBi.	that the directional gain of the antenna exceeds 6	Auren
	antenna gain in excess of 25 dbi.	dBi.	W5CT°
	Mr. 05 5 05 011- 0		
X	The maximum conducted output power over the frequence		
	mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB e		
Acres	antennas of directional gain greater than 6 dBi are used,	both the maximum conducted output power and the	
ZW5L1	maximum power spectral density shall be reduced by the	amount in dB that the directional gain of the antenna	
	exceeds 6 dBi.		
	⊠5.725~5	5.85 GHz	
	The maximum conducted output power over the frequency		X
	transmitting antennas of directional gain greater than 6 d		
	power and the maximum power spectral density shall be		4
	the antenna exceeds 6 dBi. However, fixed point-to-point		W5 CT°
		. O-IVIII devices operating in this band may employ	
	transmitting antennas with	ding reduction in transmitter and dust at a succession	
	directional gain greater than 6 dBi without any correspon	aing reduction in transmitter conducted power.	
	Power Spectral Density		
Acres	⊠5.15~5.	25 GHz	
∠W5 [1	Limit of Outdoor access point: 17 dBm/MHz	Limit of Indoor access point: 17 dBm/MHz	
	Limit of Fixed point-to-point access points: 17	Limit of Mobile and portable client devices: 11	
	dBm/MHz	dBm/MHz	
	□5.25-5.35 GHz	11 dBm/MHz	
	□5.470-5.725 GHz	11 dBm/MHz	
	⊠5.725~5.85 GHz	30 dBm/500kHz	ation& Testin
	Frequency Stability Measurement:	Sill	S.C.
		n the band of operation under all conditions of normal	12
X	operation as specified in the user's m		MC CTO O
			WSCT She
house		rance shall be \pm 20 ppm maximum for the 5 GHz band	LE TE
/W5E1	(IEEE 802.11n specification).		3
ADD Building A.D.	Pacilies Industrial Park No. 59 and 60 Tagets: Avenue Shiver Sheet Real - State Of	Solar City Currenting Province China	MOM # PITION
	Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, She		W # P
IEL: 0086-755-2699	6192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@	wsct-cert.com Http://www.wsct-cert.com World Standardization Certification& Testing	g Group(Shenzhen) Co.,Ltd

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

7.5.6 TEST RESULT

-26dB Bandwidth and 99% Occupied Bandwidth

7	W5 CT	

	Product	: EUT-Sample	Test Mode	: See section 3.4	1
I	Test Item	: -26dB Bandwidth/-6dB Bandwidth	Temperature	: 25°C ₩5 [7
		and 99% Occupied Bandwidth			
	Test Voltage	: DC 3.91V	Humidity	: 56%RH	
	Test Result	: PASS			

-26dB&99%	Bandw	idth				
	Mode	Frequency (MHz)	-26 dB Bandwidth (MHz)	99%dB Bandwidth (MHz)	Verdict	
W5 CT°	a 5	5180	20.46	16.434	Pass	7°
	а	5240	20.04	16.439	Pass	
X	а	5260	20.08	16.451	Pass	
	а	5320	20.77	16.479	Pass	
WSET	а	5500	20.34	16.462	Pass	
	а	5700	19.92	16.431	Pass	
	n20	5180	20.96	17.652	Pass	
	n20	5240	21.17	17.651	Pass	
	n20	5260	20.71	17.642	Pass	
WSCT	n20	5320	20.98	17.694	Pass	
	n20	5500	21.55	17.664	Pass	
X	n20	5700	22.43	17.637	Pass	
	n40	5190	41.77	36.125	Pass	
WSET	n40	5230	40.56	36.158 W.s	Pass	
	n40	5270	41.24	36.128	Pass	
	n40	5310	53.29	36.257	Pass	
	n40	5510	46.67	36.181	Pass	
	n40	5670	46.37	36.174	Pass	
WSCT	ac20	5180	20.77	17.620	Pass	
	ac20	5240	20.94	17.671	Pass	
X	ac20	5260	21.16	17.642	Pass	
	ac20	5320	22.04	17.678	Pass	
W5 CT	ac20	5500	21.10 W5	17.645 ws	Pass	
	ac20	5700	20.66	17.639	Pass	
	ac40	5190	40.53	36.191	Pass	
	ac40	5230	40.84	36.207	Pass	
W. C. C.	ac40	5270	40.24	36.125	Pass	
WSET	ac40	5310	40.78	36.175	Pass	
	ac40	5510	40.77	36.156	Pass	
X	ac40	5670	41.78	36.144	Pass	
	ac80	5210	79.68	75.382	Pass	
WS CT°	ac80	5290	79.66 W5	75.474 WS	Pass	cation&
	ac80	5530	79.53	75.611	Pass /	
X	ac80	5610	79.56	75.494	Pass	
	ax20	5180	20.84	17.670	Pass	W5 C

ax20

17.659

Pass

Page 43 of 231

21.12

5240

WS

W5

W5 C

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5 CT

W5 C1

Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2

W5CT°

	ax20	5260	21.23	18.859	Pass	
	ax20	5320	20.69	18.903	Pass	
LT	ax20	5500	21.80 W5 C	18.894 W.5	Pass	
	ax20	5700	20.90	18.882	Pass	
	ax40	5190	40.82	37.633	Pass	
	ax40	5230	41.08	37.609	Pass	
	ax40	5270	40.34	37.639	Pass	
	ax40	5310	40.99	37.741	Pass	
	ax40	5510	40.81	37.628	Pass	
	ax40	5670	41.48	37.599	Pass	
	ax80	5210	79.87	77.463	Pass	
$\mathcal{L}\mathcal{T}^{\circ}$	ax80	5290	79.36 W5 C	77.374 W 5	Pass	
	ax80	5530	79.74	77.274	Pass	
	ax80	5610	79.80	77.370	Pass	

W5[T]

-6dB&99% Bandwidth

Y	Jabaco / Danaman		A SECOND PORT OF THE PERSON NAMED IN	10 A A A A A A A A A A A A A A A A A A A		4	
	Mode	Frequency	-6 dB Bandwidth	99%dB Bandwidth	Limit -6 dB	Verdict	
		(MHz)	(MHz)	(MHz)	Bandwidth (MHz)		/
	a	5745	16.32	16.385	0.5	Pass	
	a	5825	15.06	16.368	0.5	Pass	
	n20	5745	W5 €17.28	W 5 17.598	W5 / 0.5	Pass	<i>C1</i>
7	n20	5825	16.93	17.598	0.5	Pass	
	n40	5755	35.13	36.104	0.5	Pass	
	n40	5795	35.09	36.014	0.5	Pass	
	ac20	5745	17.55	17.597	0.5	Pass	
	ac20	5825	16.05	17.582	0.5	Pass	
	ac40	5755	35.03	36.051	0.5	Pass	/
	ac40	5795	33.90	36.061	0.5	Pass	
	ac80	5775	75.08	75.370	0.5	Pass	
	ax20	5745	W5 € 17.30	W 5 17.595	W5/0.5	Pass	6 7
7	ax20	5825	15.03	17.586	0.5	Pass	
	ax40	5755	35.20	36.088	0.5	Pass	
	ax40	5795	35.15	36.017	0.5	Pass	
	ax80	5775	75.04	75.294	0.5	Pass	

WS CT WS CT WS CT WS CT WS CT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

AWS CT

a. 深圳世标检测认证股份有限公司
World Standard Fation Certification & Testing Group (Shenzhen) Co.,Lt

DD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com


Member of the WSCT Group (WSCT SA)

Page 44 of 231

W5 CT

WSCT WSCT

W5 CT

"Antalahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2 -26dB Bandwidth NVNT a 5260MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI W + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.260000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off KEYSIGHT Input: RF Align: Auto

Mkr3 5.270069000 GHz 1 Graph Ref LvI Offset 5.30 dB Ref Value 25.30 dBm -26.51 dBm Scale/Div 10.0 dB 3 Center 5.26000 GHz #Res BW 200.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) #Video BW 620.00 kHz 2 Metrics Measure Trace Occupied Bandwidth 16.451 MHz Total Power 16.5 dBm 27.657 kHz 20.08 MHz Transmit Freq Error % of OBW Power 99.00 % -26.00 dB 9 C 2 Pec 17, 2024 XX -26dB Bandwidth NVNT a 5320MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI **v** + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.320000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off KEYSIGHT Input: RF Align: Auto 1 Graph Mkr3 5.330390000 GHz Ref LvI Offset 5.35 dB Ref Value 25.35 dBm -27.15 dBm Scale/Div 10.0 dB δ1 **3** Span 30 MHz Sweep 1.33 ms (10001 pts) #Video BW 620.00 kHz Center 5.32000 GHz #Res BW 200.00 kHz 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 16.479 MHz Total Power 16.6 dBm Transmit Freq Error 6.943 kHz % of OBW Power 99.00 % -26.00 dB 9 C 2024 .:33:53 PM

WSCT

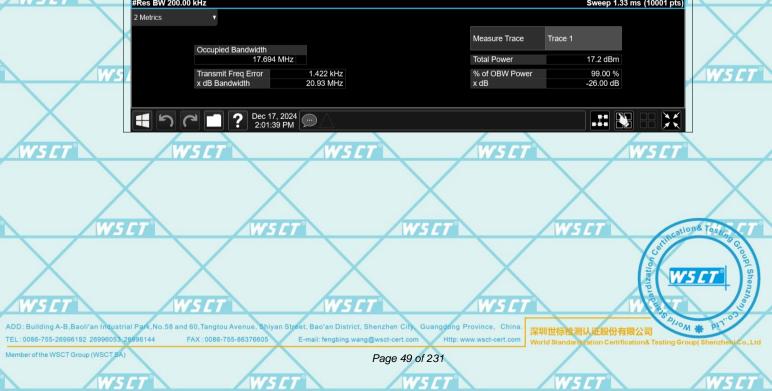
Malahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2 -26dB Bandwidth NVNT a 5500MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI W + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.500000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off KEYSIGHT Input: RF Align: Auto

Mkr3 5.510161000 GHz 1 Graph Ref LvI Offset 5.34 dB Ref Value 25.34 dBm -24.30 dBm Scale/Div 10.0 dB **3** Center 5.50000 GHz #Res BW 200.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) #Video BW 620.00 kHz 2 Metrics Measure Trace Occupied Bandwidth 16.462 MHz Total Power 16.6 dBm -8.778 kHz 20.34 MHz Transmit Freq Error % of OBW Power 99.00 % -26.00 dB 9 C 2 Pec 17, 2024 9 1:36:28 PM XX -26dB Bandwidth NVNT a 5700MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI **v** + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.700000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off KEYSIGHT Input: RF Align: Auto 1 Graph Mkr3 5.709944000 GHz Ref LvI Offset 5.43 dB Ref Value 25.43 dBm -26.09 dBm Scale/Div 10.0 dB 34.6 (hay toldrag Lagrande molanda de Center 5.70000 GHz #Res BW 200.00 kHz Span 30 MHz Sweep 1.33 ms (10001 pts) #Video BW 620.00 kHz 2 Metrics Measure Trace Trace 1 Occupied Bandwidth 16.431 MHz Total Power 14.9 dBm Transmit Freq Error -14.810 kHz % of OBW Power 99.00 % -26.00 dB 9 C 2024 .:45:20 PM

Measure Trace

| Trace | Trace

"Antalahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2 -26dB Bandwidth NVNT n20 5180MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI W + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.180000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Atten: 30 dB Preamp: Off Align: Auto



ation& Tesus Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, MON # 深圳世标检测认证股份有限公司 TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 Page 48 of 231

W5 C1

"Halalahala World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2 -26dB Bandwidth NVNT n20 5260MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI W + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.260000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Atten: 30 dB Preamp: Off Align: Auto Mkr3 5.270370000 GHz 1 Graph Ref Lvi Offset 5.30 dB Ref Value 25.30 dBm -25.34 dBm Scale/Div 10.0 dB

"Antalahaha World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** CCREDITED Mahalalak W5 CI Report No.: WSCT-ANAB-R&E250100002A-Wi-Fi2 -26dB Bandwidth NVNT n20 5500MHz Ant1 Spectrum Analyzer 1 Occupied BW SCPI W + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 5.500000000 GHz Avg|Hold: 100/100 Radio Std: None Atten: 30 dB Preamp: Off KEYSIGHT Input: RF Align: Auto Mkr3 5.510753000 GHz 1 Graph Ref LvI Offset 5.34 dB Ref Value 25.34 dBm -27.95 dBm Scale/Div 10.0 dB

W5 C1