

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong SAR, China.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

TEST REPORT

Report Number: 22040380HKG-001

Application for Original Grant of 47 CFR Part 15 Certification

New Family of RSS-247 Issue 2 Equipment

FCC ID: EW780-2634-00

IC: 1135B-80263400

Prepared and Checked by:

Approved by:

Signed On File Wong Cheuk Ho, Herbert Lead Engineer

Wong Kwok Yeung, Kenneth Assistant Supervisor Date: June 16, 2022

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

VTech Telecommunications Ltd. Intertek Report No: 22040380HKG-001

Applicant Name: VTech Telecommunications Ltd. **Applicant Address:** 23/F., Tai Ping Industrial Centre, Block 1, 57 Ting Kok Road, Tai Po, Hong Kong. **FCC Specification Standard:** FCC Part 15, October 1, 2020 Edition FCC ID: EW780-2634-00 FCC Model(s): RM5756HD BU, RM5756-2HD BU, RM7756HD BU, RM7756-2HD BU **IC Specification Standard:** RSS-247 Issue 2, February 2017 RSS-Gen Issue 5 Amendment 2, February 2021 IC: 1135B-80263400 PMN: RM5756HD BU, RM5756-2HD BU, RM7756HD BU, RM7756-2HD BU HVIN: 35-400364BUA VTech Model(s): RM5756HD BU, RM5756-2HD BU, RM7756HD BU, RM7756-2HD BU Type of EUT: Spread Spectrum Transmitter **Description of EUT:** Video Monitor - Baby Unit Sample Receipt Date: April 08, 2022 Date of Test: April 08, 2022 to June 04, 2022 **Report Date:** June 16, 2022 **Environmental Conditions:** Temperature: +10 to 40°C Humidity: 10 to 90% **Conclusion:** Test was conducted by client submitted sample. The submitted sample as received complied with the 47 CFR Part 15 / RSS-247 Issue 2 Certification.

TABLE OF CONTENTS

1.0	TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE	4
	1.1 Summary of Test Results	4
	1.2 Statement of Compliance	4
2.0	GENERAL DESCRIPTION	5
	2.1 Product Description	5
	2.2 Test Methodology	6
	2.3 Test Facility	6
	2.4 Related Submittal(s) Grants	
3.0	SYSTEM TEST CONFIGURATION	7
	3.1 Justification	7
	3.2 EUT Exercising Software	8
	3.3 Details of EUT and Description of Accessories	9
	3.4 Measurement Uncertainty	9
4.0	TEST RESULTS	10
	4.1 Maximum Conducted Output Power at Antenna Terminals	10
	4.2 Minimum 6dB RF Bandwidth	12
	4.3 Maximum Power Spectral Density	19
	4.4 Out of Band Conducted Emissions	26
	4.5 Field Strength Calculation	42
	4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	43
	4.6.1 Radiated Emission Configuration Photograph	43
	4.6.2 Radiated Emission Data	43
	4.6.3 Radiated Emission Test Setup	54
	4.6.4 Transmitter Duty Cycle Calculation	55
	4.7 AC Power Line Conducted Emission	56
	4.7.1 AC Power Line Conducted Emission Configuration Photograph	56
	4.7.2 AC Power Line Conducted Emission Data	56
	4.7.3 Conducted Emission Test Setup	59
5.0	EQUIPMENT LIST	60

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-247/ RSS-Gen# Section	Results	Details See Section
Antenna Requirement	15.203	7.1.2#	Pass	2.1
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	5.4(4)	Pass	4.1
Min. 6dB RF Bandwidth	15.247(a)(2)	5.2(1)	Pass	4.2
Max. Power Density (average)	15.247(e)	5.2(2)	Pass	4.3
Out of Band Antenna Conducted Emission	15.247(d)	5.5	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	5.5	Pass	4.6
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4#	Pass	4.7

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2021 Edition RSS-247 Issue 2, February 2017 RSS-Gen Issue 5 Amendment 2, February 2021

TEST REPORT

2.0 GENERAL DESCRIPTION

2.1 Product Description

The RM5756HD BU (35-400364BUA) is a Video Monitor - Baby Unit.

The Equipment Under Test (EUT) operates at frequency range of 2412MHz to 2462MHz with 11 channels.

For 802.11b mode, it operates at frequency range of 2412.000MHz to 2462.000MHz with 11 channels. It transmits via Direct-sequence spread spectrum (DSSS) modulation. Maximum bit rate can be up to 11Mbps.

For 802.11g mode, it operates at frequency range of 2412.000MHz to 2462.000MHz with 11 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can be up to 54Mbps.

For 802.11n (with 20MHz bandwidth) mode, it operates at frequency range of 2412.000MHz to 2462.000MHz with 11 channels. It transmits via Orthogonal Frequency Division Multiplexing (OFDM) modulation. Maximum bit rate can support up to 65Mbps.

The EUT is power by a AC/DC adaptor.

The antenna(s) used in the EUT is integral Monopole antenna. Peak Antenna Gain is 0dBi

For FCC, the Model(s): RM5756-2HD BU, RM7756HD BU and RM7756-2HD BU are the same as the Model: RM5756HD BU in electronics/electrical designs including software & firmware, PCB layout and construction design/physical design/enclosure as declared by client. The only differences between these models are color and model number to be sold for marketing purpose as declared by client.

The circuit description is saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.558074 D01 v05r02 (02-April-2019). All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 Amendment 2, February 2021.

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong SAR, China. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 2042H, CABID is "HKAP01".

2.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (WiFi portion).

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 120VAC during test.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

3.1 Justification – Cont'd

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis… Pulsed RF.* The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 1MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst-case data is included in this report.

All data rates were tested under normal mode of WiFi. Only the worst-case data is shown in the report for DSSS and OFDM.

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor (provided with the unit) was used to power the device. Their description(s) are listed below.

(1) An AC adaptor (100-240VAC 50/60Hz 0.15A to 5.0VDC 1.0A 5.0W, Model: VT05EUS05100, Brand VTPL) (Provided by Client)

Description of Accessories:

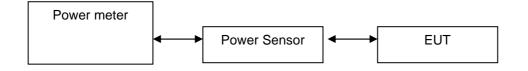
(1) Parent Unit, Model: RM5756HD PU (Provided by Client)

There are no accessories for compliance of this product.

3.4 Measurement Uncertainty

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-3, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044. For these excepted or not mentioned standards, Cl 4.2.2 of ILAC-G8:09/2019 decision rules will be reference and guard band will be equal to our measurement uncertainty with 95% confidence level (k=2). In case, the measured value is within guard band region, undetermined decision will be used. The values of the Measurement uncertainty for radiated emission test and RF conducted measurement test are \pm 5.3dB and \pm 0.99dB respectively. The value of the Measurement uncertainty for conducted emission test is \pm 4.2dB.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.


TEST REPORT

4.0 TEST RESULTS

4.1 Maximum Conducted (peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to the obtain power at the EUT antenna terminals. The measurement procedure 9.1.2 was used.

The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

0 .10

Frequency (MHz)		Output in dBm	Output in mWatt
Low Channel:	2412	18.8	75.9
Middle Channel:	2437	18.4	69.2
High Channel:	2462	18.2	66.1

IFFF 002 44h (DCCC 4 MAhaa) A shares Ca's

Frequency (M	Hz)	Output in dBm	Output in mWatt
Low Channel:	2412	14.5	28.2
Middle Channel:	2437	14.4	27.5
High Channel:	2462	14.2	26.3

IEEE 802.11n (20MHz) (OFDM, MCS0) Antenna Gain = 0 dBi

Frequency (MHz)		Output in dBm	Output in mWatt
Low Channel:	2412	12.8	19.1
Middle Channel:	2437	12.5	17.8
High Channel:	2462	12.4	17.4

TEST REPORT

4.1 Maximum Conducted Output Power at Antenna Terminals - Cont'd

Cable loss: 0.5 dB External Attenuation: 0 dB

Cable loss, external attenuation:

included in OFFSET function added to SA raw reading

IEEE 802.11b (DSSS, 1 Mbps) max. conducted (peak) output level = 18.8 dBm

IEEE 802.11g (OFDM, 9 Mbps) max. conducted (peak) output level = 14.5 dBm

IEEE 802.11n (20MHz) (OFDM, MCS0) max. conducted (peak) output level = 12.8 dBm

Limits:

1W (30dBm) for antennas with gains of 6dBi or less

W (____dBm) for antennas with gains more than 6dBi

4.2 Minimum 6dB RF Bandwidth

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

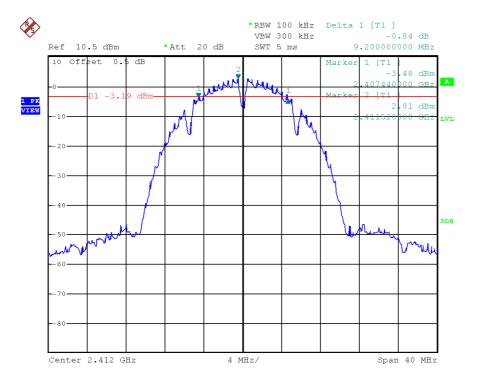
	IEEE 80	2.11b (DSSS, 1 Mbps)	
Frequency (MHz)		6dB Bandwidth (MHz)	
Low Channel:	2412	9.20	
Middle Channe	: 2437	9.20	
High Channel:	2462	9.28	

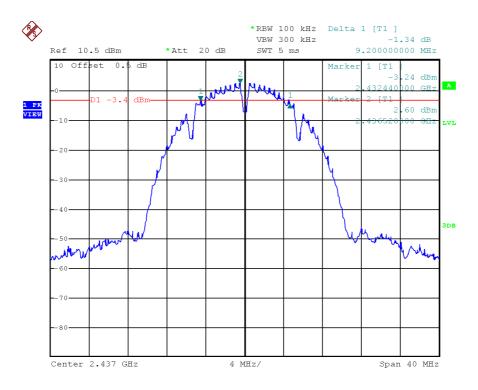
IEEE 802.11g	(OFDM.	6 Mbps)
1002.118	(01 0101,	0 10 10 0 5 /

Frequency (MHz)		6dB Bandwidth (MHz)
Low Channel:	2412	16.80
Middle Channel:	2437	16.80
High Channel:	2462	16.80

IEEE 802.11n (20MHz) (OFDM, MCS0)				
Frequency (MHz)		6dB Bandwidth (MHz)		
Low Channel:	2412	16.80		
Middle Channel:	2437	16.72		
High Channel:	2462	16.80		

Limits 6 dB bandwidth shall be at least 500kHz

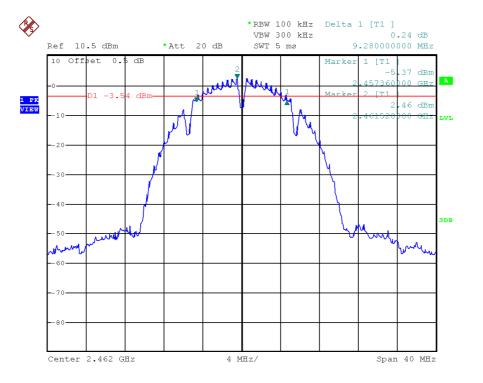

The plots of 6dB RF bandwidth are saved as below.


TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11b, Lowest Channel

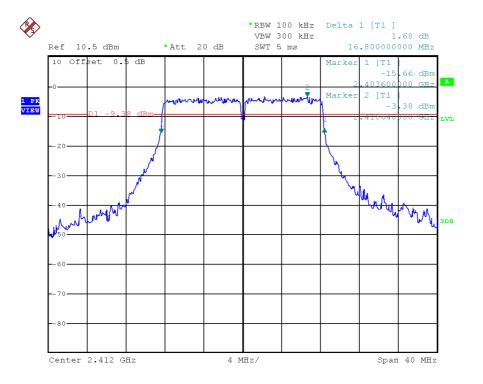
802.11b, Middle Channel

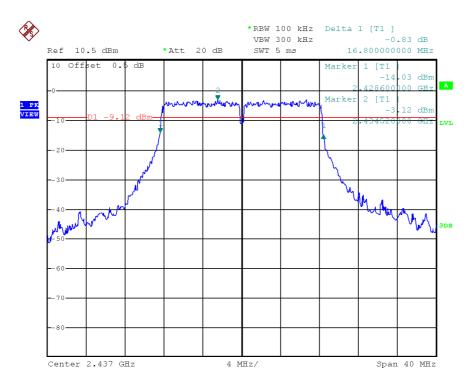


TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11b, Highest Channel

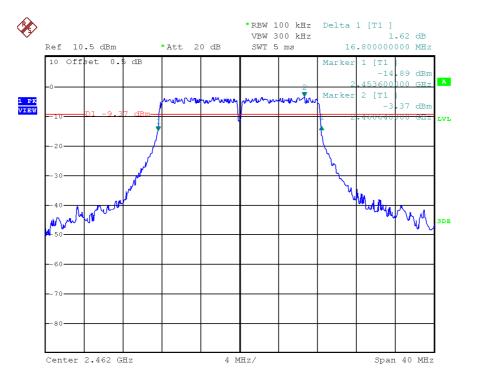



TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11g, Lowest Channel

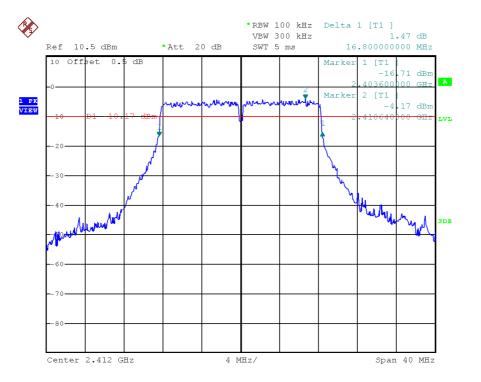
802.11g, Middle Channel

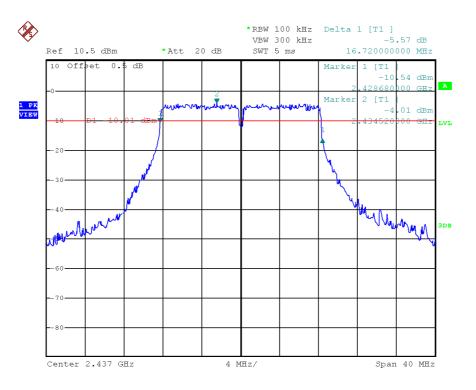


TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11g, Highest Channel

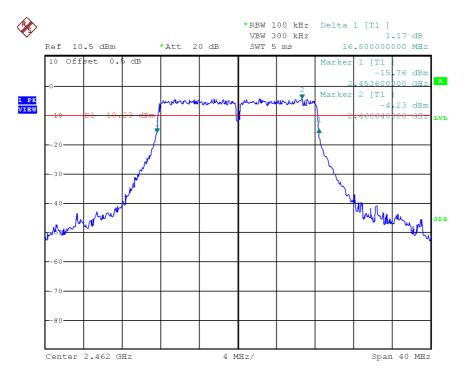



TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11n (20MHz), Lowest Channel

802.11n (20MHz), Middle Channel



TEST REPORT

PLOTS OF 6dB RF BANDWIDTH

802.11n (20MHz), Highest Channel

4.3 Maximum Power Spectral Density

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

IEEE 802.11b (DSSS, 1 Mbps)				
Frequency (MHz)		PSD in 100kHz (dBm)		
Low Channel:	2412	2.01		
Middle Channel:	2437	2.31		
High Channel:	2462	2.20		

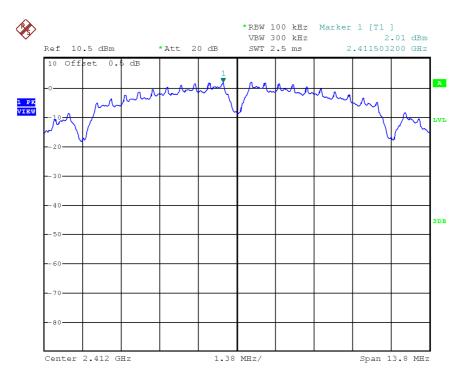
IEEE 802.11g (OFDM, 6 Mbps)				
Frequency (MHz)		PSD in 100kHz (dBm)		
Low Channel:	2412	-3.81		
Middle Channel:	2437	-3.51		
High Channel:	2462	-3.54		

IEEE 802.11n (20MHz) (OFDM, MCS0)

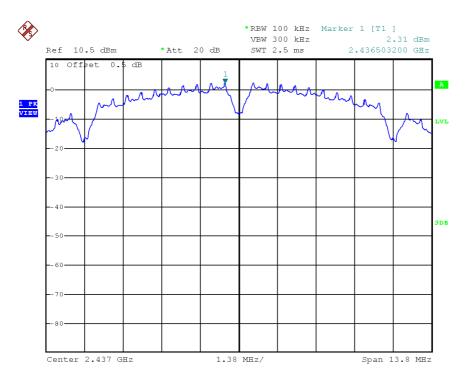
Frequency (MHz)		PSD in 100kHz (dBm)
Low Channel:	2412	-4.67
Middle Channel:	2437	-4.36
High Channel:	2462	-4.40

Cable Loss: 0.5 dB

Limit:

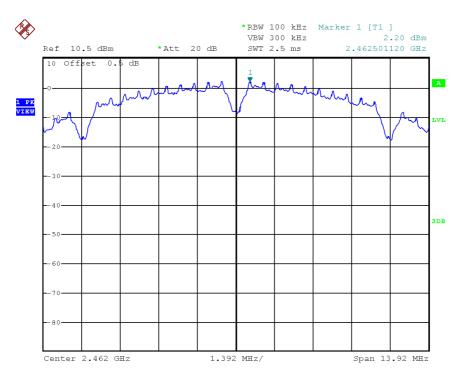

8dBm

The plots of power spectral density are as below.

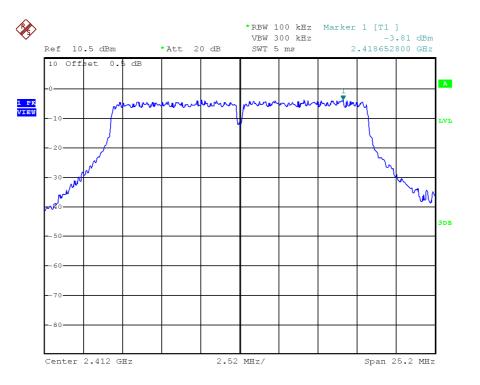


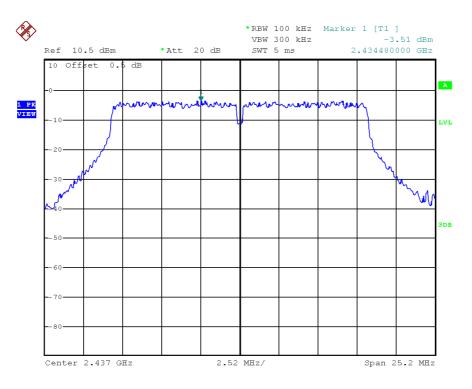
PLOTS OF POWER SPECTRAL DENSITY

802.11b, Lowest channel


802.11b, Middle channel

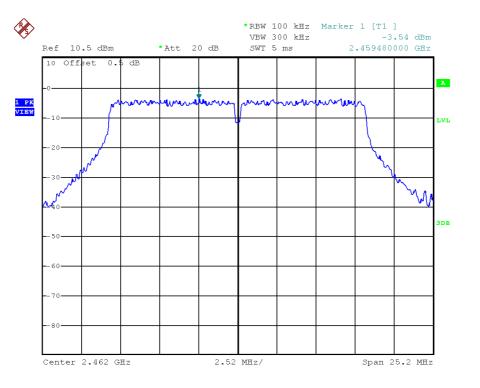
PLOTS OF POWER SPECTRAL DENSITY


802.11b, Highest channel

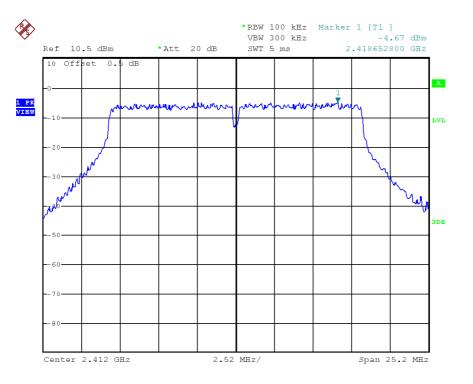


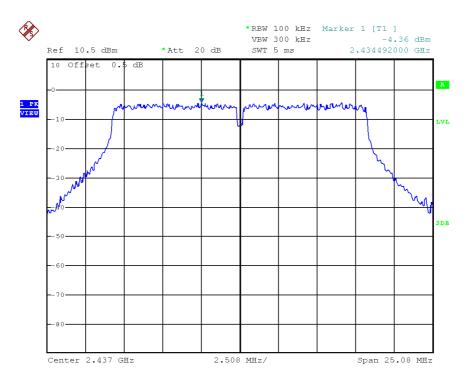
PLOTS OF POWER SPECTRAL DENSITY

802.11g, Lowest channel


802.11g, Middle channel

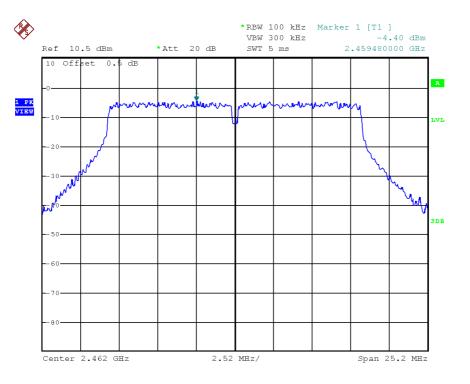
PLOTS OF POWER SPECTRAL DENSITY


802.11g, Highest channel



PLOTS OF POWER SPECTRAL DENSITY

802.11n (20MHz), Lowest channel


802.11n (20MHz), Middle channel

PLOTS OF POWER SPECTRAL DENSITY

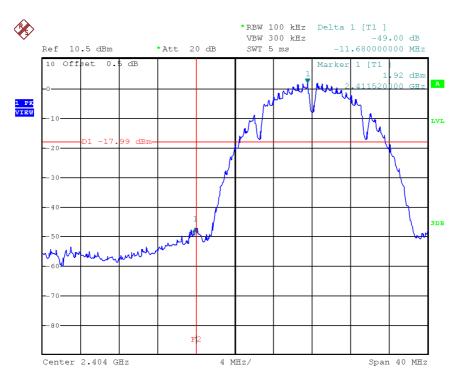
802.11n (20MHz), Highest channel

4.4 Out of Band Conducted Emissions

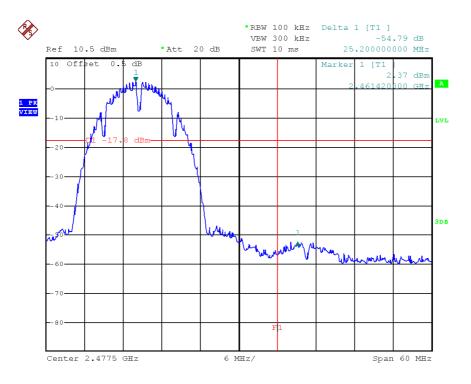
For 802.11b/g/n20MHz, the maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth for 802.11b/g/n20MHz.

The measurement procedures under sections 11 of KDB558074 D01 v05r01 (11-Feb-2019) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

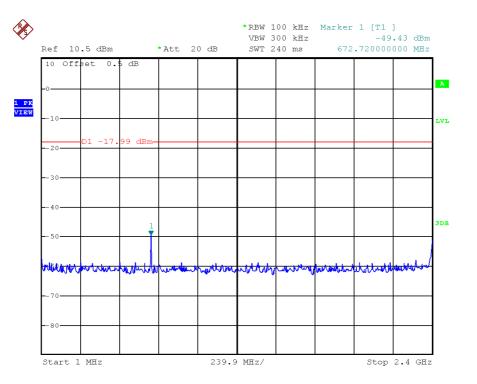

Limits:

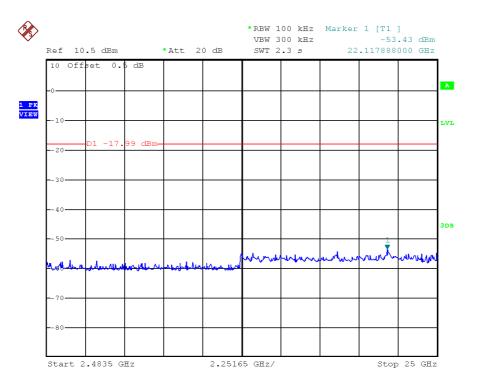
All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level for 802.11 b,g,n20MHz.



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

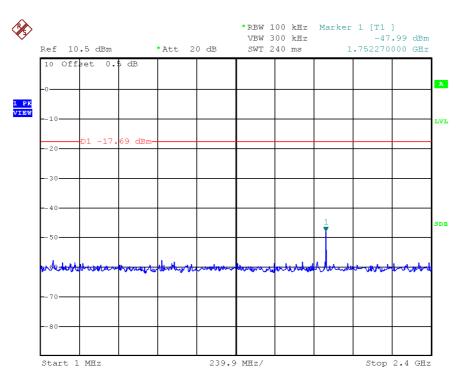
802.11b, Lowest Channel, Bandedge

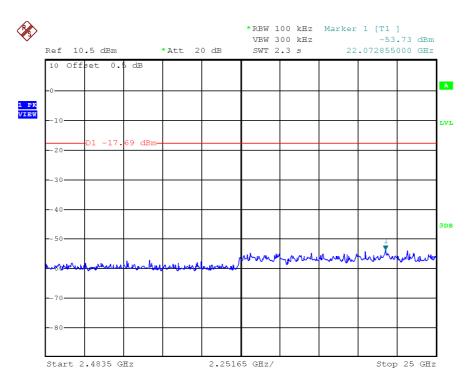

802.11b, Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

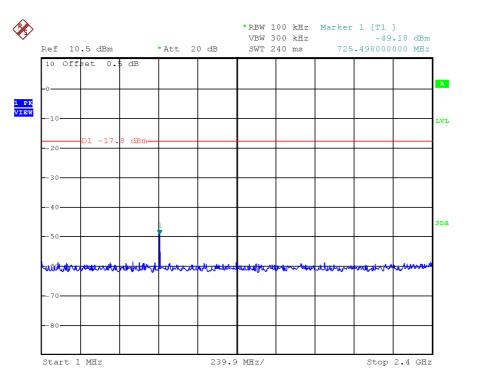
802.11b, Lowest Channel, Plot A

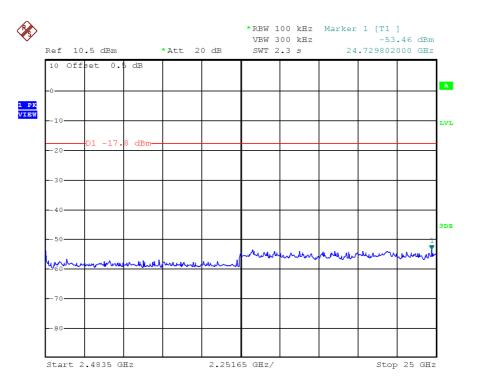

802.11b, Lowest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

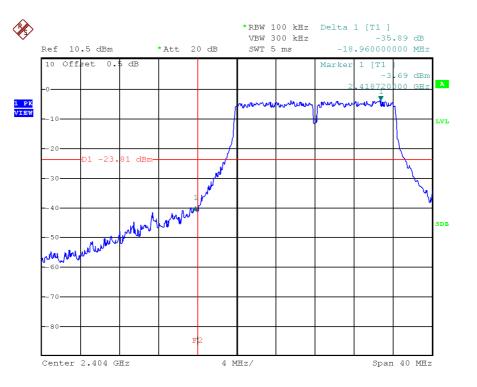
802.11b, Middle Channel, Plot A

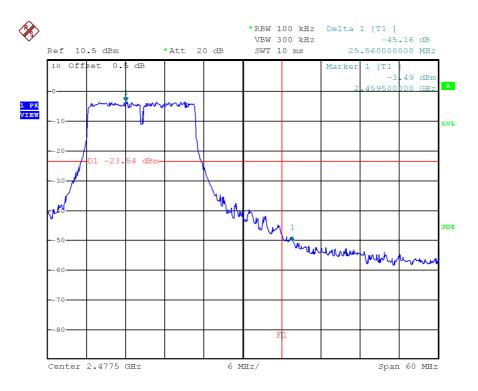

802.11b, Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

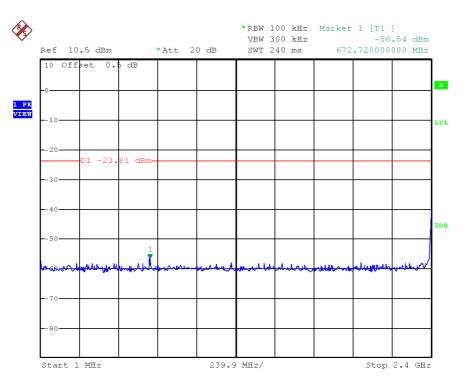
802.11b, Highest Channel, Plot A

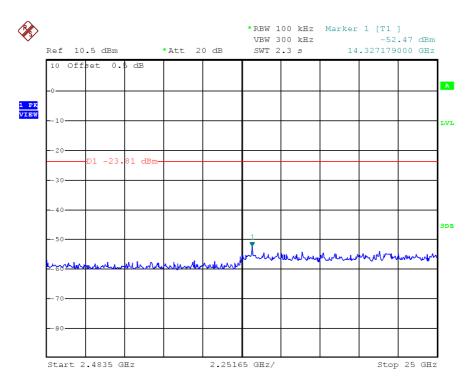

802.11b, Highest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

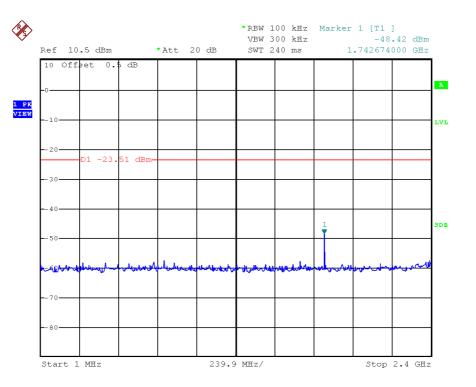
802.11g, Lowest Channel, Bandedge

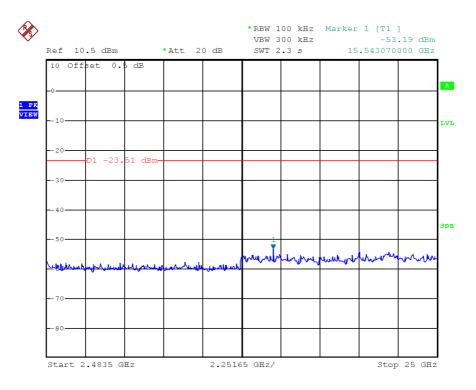

802.11g, Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

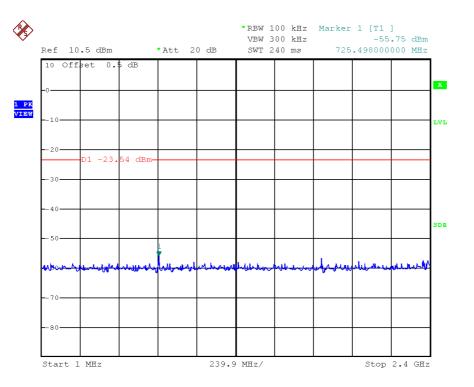
802.11g, Lowest Channel, Plot A

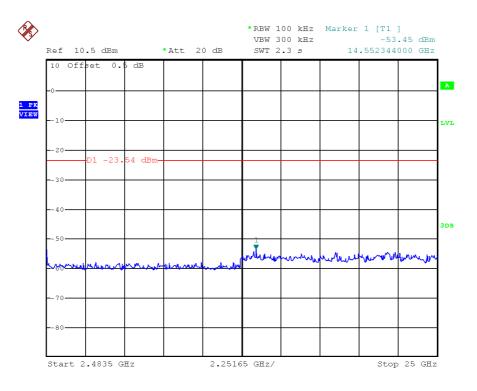

802.11g, Lowest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

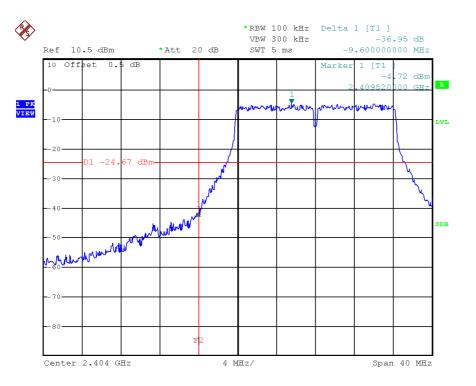
802.11g, Middle Channel, Plot A

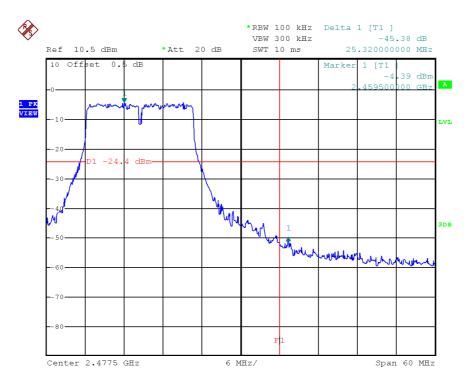

802.11g, Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

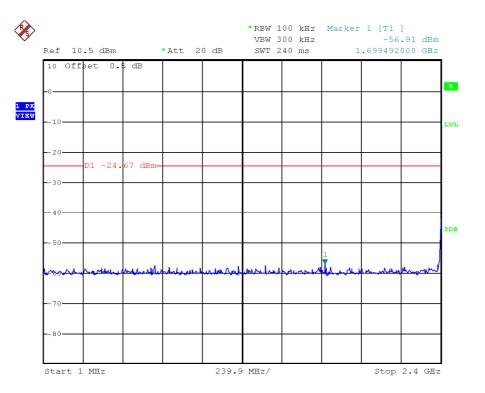
802.11g, Highest Channel, Plot A

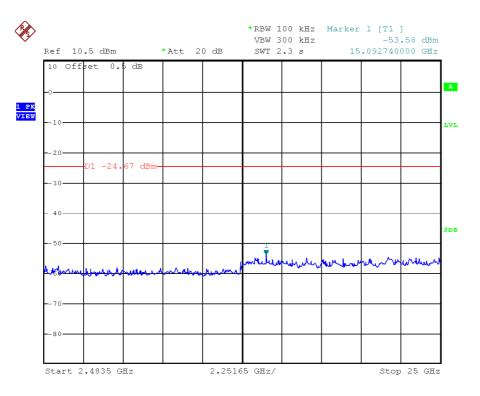

802.11g, Highest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

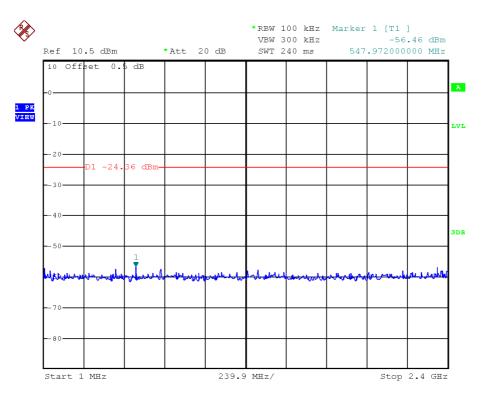
802. 11n (20MHz), Lowest Channel, Bandedge

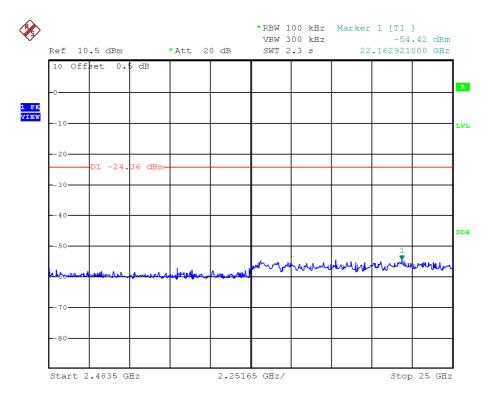

802. 11n (20MHz), Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

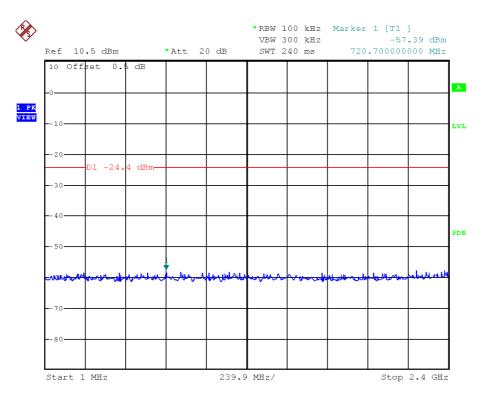
802.11n (20MHz), Lowest Channel, Plot A

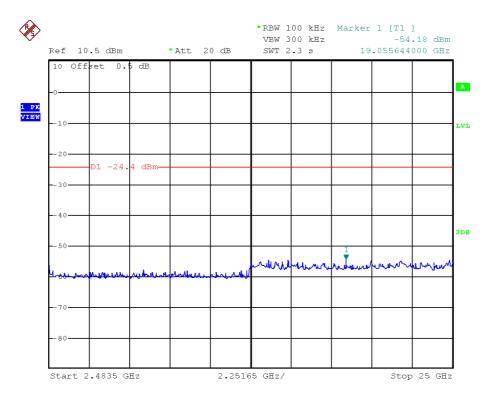

802.11n (20MHz), Lowest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Middle Channel, Plot A

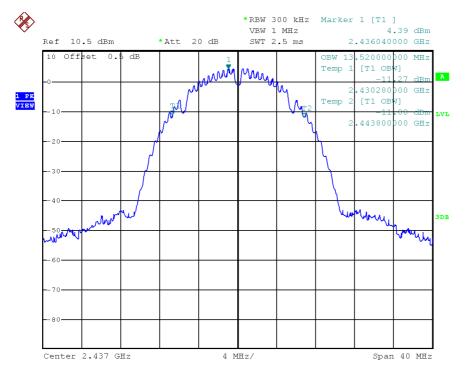

802.11n (20MHz), Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11n (20MHz), Highest Channel, Plot A

802.11n (20MHz), Highest Channel, Plot B



TEST REPORT

Occupied Bandwidth Results: (802.11b)

(802.11b)	Occupied Bandwidth (MHz)
Low Channel: 2412	13.440
Middle Channel: 2437	13.520
High Channel: 2462	13.360

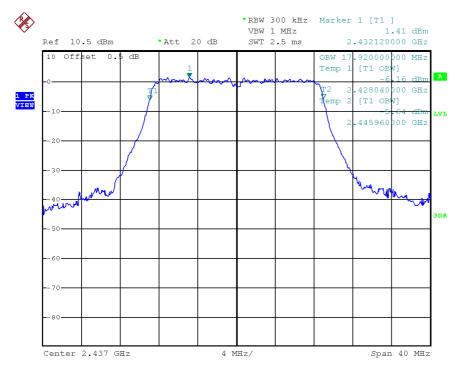
The worst case is shown as below

TEST REPORT

Occupied Bandwidth Results: (802.11g)

(802.11g)	Occupied Bandwidth (MHz)
Low Channel: 2412	16.960
Middle Channel: 2437	17.040
High Channel: 2462	16.960

The worst case is shown as below



TEST REPORT

Occupied Bandwidth Results: (802.11n HT20)

(802.11n HT20)	Occupied Bandwidth (MHz)
Low Channel: 2412	16.880
Middle Channel: 2437	17.920
High Channel: 2462	16.960

The worst case is shown as below

TEST REPORT

4.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB
PD = Pulse Desensitization in dB
AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

<u>Example</u>

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0.0 dB AV = -10 dB

 $FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m

4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission

at

502.128 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in tables 1-10 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 3.2 dB margin

RADIATED EMISSION DATA

Mode: TX-Channel 01

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	45.1	33	29.4	41.5	54.0	-12.5
Н	4824.000	46.7	33	34.9	48.6	54.0	-5.4
Н	12060.000	25.9	33	40.5	33.4	54.0	-20.6

Table 1 IEEE 802.11b (DSSS, 1 Mbps)

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	56.1	33	29.4	52.5	74.0	-21.5
Н	4824.000	49.7	33	34.9	51.6	74.0	-22.4
Н	12060.000	39.3	33	40.5	46.8	74.0	-27.2

NOTES: 1. Peak detector is used unless otherwise stated.

- 2. Average detector is used for the average data of emission measurement.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 06

Table 2 IEEE 802.11b (DSSS, 1 Mbps)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	45.9	33	34.9	47.8	54.0	-6.2
Н	7311.000	40.3	33	37.9	45.2	54.0	-8.8
Н	12185.000	25.3	33	40.5	32.8	54.0	-21.2

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	49.3	33	34.9	51.2	74.0	-22.8
Н	7311.000	47.3	33	37.9	52.2	74.0	-21.8
Н	12185.000	38.0	33	40.5	45.5	74.0	-28.5

NOTES: 1. Peak detector is used unless otherwise stated.

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 11

Table 3 IEEE 802.11b (DSSS, 1 Mbps)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	45.4	33	29.4	41.8	54.0	-12.2
Н	4924.000	46.9	33	34.9	48.8	54.0	-5.2
Н	7386.000	40.7	33	37.9	45.6	54.0	-8.4
Н	12310.000	25.7	33	40.5	33.2	54.0	-20.8

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	58.2	33	29.4	54.6	74.0	-19.4
Н	4924.000	50.3	33	34.9	52.2	74.0	-21.8
Н	7386.000	47.6	33	37.9	52.5	74.0	-21.5
Н	12310.000	39.1	33	40.5	46.6	74.0	-27.4

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 01

Table 4 IEEE 802.11g (OFDM, 6 Mbps)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	46.0	33	29.4	42.4	54.0	-11.6
Н	4824.000	34.3	33	34.9	36.2	54.0	-17.8
Н	12060.000	24.7	33	40.5	32.2	54.0	-21.8

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	64.4	33	29.4	60.8	74.0	-13.2
Н	4824.000	47.3	33	34.9	49.2	74.0	-24.8
Н	12060.000	38.1	33	40.5	45.6	74.0	-28.4

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 06

Table 5 IEEE 802.11g (OFDM, 6 Mbps)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	30.6	33	34.9	32.5	54.0	-21.5
Н	7311.000	30.6	33	37.9	35.5	54.0	-18.5
Н	12185.000	25.7	33	40.5	33.2	54.0	-20.8

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	45.3	33	34.9	47.2	74.0	-26.8
Н	7311.000	44.5	33	37.9	49.4	74.0	-24.6
Н	12185.000	39.1	33	40.5	46.6	74.0	-27.4

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 11

Table 6 IEEE 802.11g (OFDM, 6 Mbps)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	45.4	33	29.4	41.8	54.0	-12.2
Н	4924.000	34.3	33	34.9	36.2	54.0	-17.8
Н	7386.000	33.9	33	37.9	38.8	54.0	-15.2
Н	12310.000	25.9	33	40.5	33.4	54.0	-20.6

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	64.8	33	29.4	61.2	74.0	-12.8
Н	4924.000	46.6	33	34.9	48.5	74.0	-25.5
Н	7386.000	48.9	33	37.9	53.8	74.0	-20.2
Н	12310.000	39.3	33	40.5	46.8	74.0	-27.2

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 01

Table 7 IEEE 802.11n (20MHz) (OFDM, MCS0)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	46.2	33	29.4	42.6	54.0	-11.4
Н	4824.000	41.7	33	34.9	43.6	54.0	-10.4
Н	12060.000	25.7	33	40.5	33.2	54.0	-20.8

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2390.000	61.8	33	29.4	58.2	74.0	-15.8
Н	4824.000	49.3	33	34.9	51.2	74.0	-22.8
Н	12060.000	39.1	33	40.5	46.6	74.0	-27.4

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 06

Table 8 IEEE 802.11n (20MHz) (OFDM, MCS0)

			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	31.6	33	34.9	33.5	54.0	-20.5
Н	7311.000	30.5	33	37.9	35.4	54.0	-18.6
Н	12185.000	25.9	33	40.5	33.4	54.0	-20.6

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4874.000	44.6	33	34.9	46.5	74.0	-27.5
Н	7311.000	46.9	33	37.9	51.8	74.0	-22.2
Н	12185.000	39.3	33	40.5	46.8	74.0	-27.2

- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: TX-Channel 11

Table 9 IEEE 802.11n (20MHz) (OFDM, MCS0)

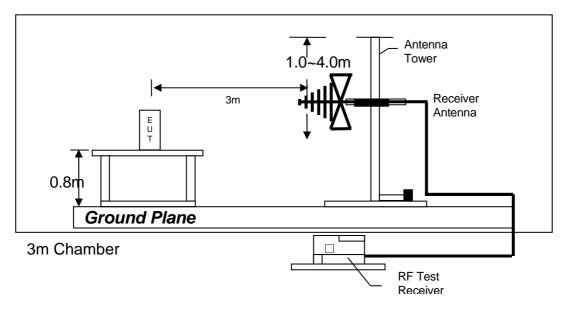
			Pre-Amp	Antenna	Net at	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	3m (Average)	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	48.0	33	29.4	44.4	54.0	-9.6
Н	4924.000	32.6	33	34.9	34.5	54.0	-19.5
Н	7386.000	31.6	33	37.9	36.5	54.0	-17.5
H	12310.000	24.7	33	40.5	32.2	54.0	-21.8

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2483.500	65.8	33	29.4	62.2	74.0	-11.8
Н	4924.000	47.7	33	34.9	49.6	74.0	-24.4
Н	7386.000	46.3	33	37.9	51.2	74.0	-22.8
Н	12310.000	38.1	33	40.5	45.6	74.0	-28.4

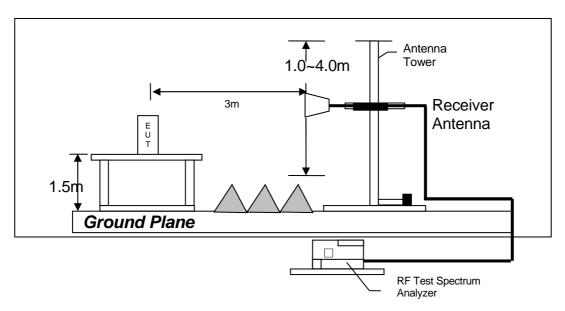
- 2. Average detector is used for the average data of emission measurement
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 7. For the measurement of radiated emission, summation method was used which numerical integrating (in terms of linear power) over the transmitter occupied bandwidth
- 8. For the linear power measurement, data in 1MHz spacing was collected by spectrum analyzer with 1MHz resolution bandwidth

Mode: Wifi Operating

Table 10


			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	30.845	26.5	16	10.0	20.5	40.0	-19.5
V	56.868	37.2	16	11.0	32.2	40.0	-7.8
V	72.028	29.8	16	7.0	20.8	40.0	-19.2
V	118.828	26.6	16	14.0	24.6	43.5	-18.9
V	208.326	27.6	16	17.0	28.6	43.5	-14.9
Н	444.486	22.6	16	26.0	32.6	46.0	-13.4
V	502.128	32.8	16	26.0	42.8	46.0	-3.2
V	562.262	28.8	16	28.0	40.8	46.0	-5.2

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emissions within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.



4.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

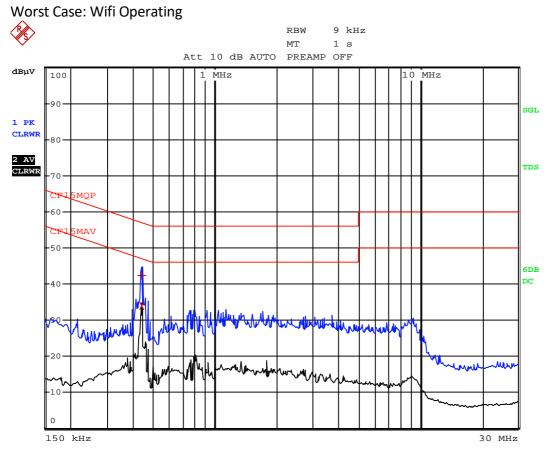
TEST REPORT

4.6.4 Transmitter Duty Cycle Calculation

Not applicable – No average factor is required.

4.7	AC Power Line Conducted Emission
	Not applicable – EUT is only powered by battery for operation.
\square	EUT connects to AC power line. Emission Data is listed in following pages.
	Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.
4.7.1	AC Power Line Conducted Emission Configuration Photograph
	Worst Case Line-Conducted Configuration at
	0.438 MHz

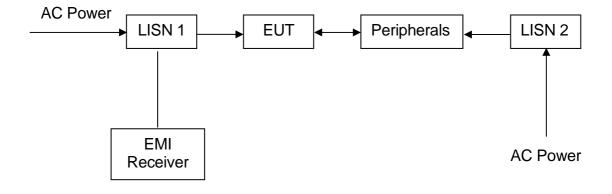
The worst-case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf


4.7.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 13.0 dB margin

AC POWER LINE CONDUCTED EMISSION


TEST REPORT

Worst Case: Wifi Operating

	ED	IT PEAK LIST (Final Measureme	ent Results)
Tra	cel:	CF15MQP		
Tra	ce2:	CF15MAV		
Tra	ce3:			
	TRACE	FREQUENC	CY LEVEL dB	AV DELTA LIMIT dB
1	Quasi Peak	438 kHz	42.38	-14.71
2	CISPR Avera	ge438 kHz	34.06	-13.03

5.0 EQUIPMENT LIST

1) Radiated Emissions Test

Equipment	EMI Test Receiver	Spectrum Analyzer	Biconical Antenna (20MHz to 200MHz)
Registration No.	EW-3481	EW-2466	EW-2512
Manufacturer	ROHDESCHWARZ	ROHDESCHWARZ	EMCO
Model No.	ESR7	FSP30	3104C
Calibration Date	December 21, 2021	November 18, 2019	June 03, 2020
Calibration Due Date	December 21, 2022	August 18, 2022	December 03, 2022

Equipment	Log Periodic Antenna	Double Ridged Guide Antenna	RF Cable 14m (1GHz to 26.5GHz)
Registration No.	EW-3243	EW-1133	EW-2781
Manufacturer	EMCO	EMCO	GREATBILLION
Model No.	3148B	3115	SMA m/SHF5MPU
			/SMA m ra14m,26G
Calibration Date	June 30, 2021	May 26, 2021	November 24, 2020
Calibration Due Date	December 30, 2022	November 26, 2022	November 24, 2022

Equipment	RF Preamplifier (9kHz to 6000MHz)	2.4GHz Notch Filter	14m Double Shield RF Cable (20MHz to 6GHz)
Registration No.	EW-3006b	EW-3435	EW-2074
Manufacturer	SCHWARZBECK	MICROWAVE	RADIALL
Model No.	BBV9718	N0324413	N(m)-RG142-BNC(m)
			L=14M
Calibration Date	November 25, 2019	November 16, 2019	November 14, 2019
Calibration Due Date	June 25, 2022	June 16, 2022	August 14, 2022

Equipment	Pyramidal Horn Antenna	Active Loop H-field (9kHz to 30MHz)
Registration No.	EW-0905	EW-3302
Manufacturer	EMCO	EMCO
Model No.	3160-09	6502
Calibration Date	July 23, 2019	December 13, 2021
Calibration Due Date	June 23, 2022	June 13, 2023

2) Conducted Emissions Test

RF Cable 240cm		Artificial Mains	EMI Test Receiver 7GHz
(RG142)	(9kHz	Network	
to 30MHz)			
EW-2454		EW-2501	EW-3481
RADIALL		ROHDESCHWARZ	ROHDESCHWARZ
Bnc m st / 142 /	bnc	ENV-216	ESR7
mra 240cm			
November 10, 20	020	September 11, 2021	December 21, 2021
August 10, 202	2	September 11, 2022	December 21, 2022
	(RG142) to 30MHz) EW-2454 RADIALL Bnc m st / 142 / mra 240cm November 10, 20	(RG142) (9kHz to 30MHz) EW-2454 RADIALL Bnc m st / 142 / bnc	(RG142) (9kHz Network to 30MHz) EW-2454 EW-2501 RADIALL ROHDESCHWARZ Bnc m st / 142 / bnc ENV-216 mra 240cm September 11, 2021

3) Conductive Measurement Test

Equipment	RF Cable SMA-SMA 18GHz 1.0m length	Wideband power sensor 2 pcs 50MHz to 18GHz	Spectrum Analyzer
Registration No.	EW-3272	EW-3309	EW-2466
Manufacturer	GREATBILLION	ROHDESCHWARZ	ROHDESCHWARZ
Model No.	SMA m /blue	NRP-Z81	FSP30
	cable/SMAm 18G 1m		
Calibration Date	November 24, 2021	December 01, 2021	November 18, 2019
Calibration Due Date	November 24, 2022	December 01, 2022	August 18, 2022

4) Bandedge & Bandwidth Measurement

Equipment	Spectrum Analyzer	5m RF Cable (40GHz)
Registration No.	EW-2466	EW-2701
Manufacturer	ROHDESCHWARZ	RADIALL
Model No.	FSP30	Sma m-m 5m 40G
Calibration Date	November 18, 2019	November 24, 2020
Calibration Due Date	August 18, 2022	November 24, 2022

TEST REPORT

5) Control Software for Radiated Emission

Software Information	
Software Name	EMC32
Manufacturer	ROHDESCHWARZ
Software version	10.50.40 & 10.40.10

END OF TEST REPORT