

MPE Calculations

Systems operating under the provision of 47 CFR 1.1307(b)(1) shall be operated in a manor that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines.

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user or nearby persons and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b). The MPE calculation for this exposure is shown below.

Using the Antennas with highest output power:

The peak radiated output power (EIRP) is calculated as follows:

Antenna	Frequency (GHz)	Power input to the antenna (P) (dBm)	Power gain of the antenna (G) (dBi)	EIRP (P+G) (dBm)	EIRP Log ^{-1(dBm/10)} (mW)
Ethertronics (Chain A)	2.4	23.83	3.00	26.83	481.95
Ethertronics (Chain A)	5	20.91	5.00	25.91	389.94
Ethertronics (Chain B)	2.4	23.63	3.00	26.63	460.26
Ethertronics (Chain B)	5	20.61	5.00	25.61	363.92

EIRP = P + G

Where

P = Power input to the antenna (mW).

G = Power gain of the antenna (dBi)

The numeric gain (G) of the antenna with a gain specified in dB is determined by:

Antenna	Frequency (GHz)	Antenna Gain (G) (dBi)	Numeric Antenna Gain Log ^{-1(dBm/10)} (dB)
Ethertronics (Chain A)	2.4	3.00	2.00
Ethertronics (Chain A)	5	5.00	3.16
Ethertronics (Chain B)	2.4	3.00	2.00
Ethertronics (Chain B) $G = L \alpha \sigma^{-1} (dP, antenna, \alpha \alpha in/10)$	5	5.00	3.16

 $G = Log^{-1}$ (dB antenna gain/10)

22431 ANTONIO PARKWAY B160-417 RANCHO SANTA MARGARITA. CA 92688

Antenna	Frequency (GHz)	Power input to the antenna (P) (mW)	Numeric Power Gain of the Antenna (G) (dB)	Maximum Power Spectral Density S=PG/(4R ² π) (mW/cm ²)	Maximum Power Spectral Density Limit (mW/cm ²)
Ethertronics (Chain A)	2.4	241.55	2.00	0.096	1.00
Ethertronics (Chain A)	5	123.31	3.16	0.078	1.00
Ethertronics (Chain B)	2.4	230.67	2.00	0.092	1.00
Ethertronics (Chain B)	5	115.08	3.16	0.072	1.00

 $S = PG/(4R^2\pi)$

Where

S = Maximum power density (mW/cm²)

P = Power input to the antenna (mW).

G = Numeric power gain of the antenna

R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)

The maximum permissible exposure (MPE) for the general population is 1mW/cm².

The power density at 20cm does not exceed the 1mW/cm² limit. Therefore, the exposure condition is compliant with FCC rules.