

TEST REPORT

Applicant Name : Address :	Shenzhen Jiteng Network Technology Co., Ltd No.1202, Bitian Pavilion, Bizhong Garden, No.10 Bibo First Street, Bibo Community, Huangbei Street, Luohu District, Shenzhen City, China
Report Number :	SZNS1220505-18180E-00A
FCC ID:	2AY4C-GM04
Test Standard (s) FCC PART 15.247	
Sample Description	
Product:	Mini PC
Trademark:	GEEKOM
Tested Model:	MiniAir 11
Date Received:	2022-05-05
Date of Test:	2022-05-10 to 2022-05-27
Report Date:	2022-05-30

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Black Ohr

Black Ding EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk 🖈 ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk "". Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 72

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
Test Equipment List	12
FCC §1.1310 & §2.1091 -MAXIMUM PERMISSIBLE EXPOSURE (MPE)	14
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	16
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	23
Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	47
APPLICABLE STANDARD	

TEST DATA	47
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	50
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	50
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	60
APPLICABLE STANDARD	60
Test Procedure	60
TEST DATA	60
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product	Mini PC
Tested Model	MiniAir 11
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 3.24 dBm
Modulation Technique	Bluetooth: BDR(GFSK)/EDR(π/4-DQPSK)/EDR(8DPSK)
Antenna Specification*	Internal Antenna: 2.68 dBi(provided by the applicant)
Voltage Range	DC 19V from adapter
Sample number	SZNS1220505-18180E-RF-S1 (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter 1 information	Model: BSY065T1903423D, Input: 100-240V~50/60Hz, 1.5A, Output: 19V/3.42A
Adapter 2 information	Model: A481-1902360U, Input: 100-240V~50/60Hz 1.5A, Output: 19V/2.36A

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty		
Occupied Cha	nnel Bandwidth	5%		
RF output por	wer, conducted	0.73dB		
Unwanted Emi	ssion, conducted	1.6dB		
AC Power Lines C	onducted Emissions	2.72dB		
	30MHz - 1GHz	4.28dB		
Emissions, Radiated	1GHz - 18GHz	4.98dB		
Kaulateu	18GHz - 26.5GHz	5.06dB		
Temperature		1 °C		
Humidity		6%		
Supply	voltages	0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"DRTU"* software was used during testing, the power level is default*.

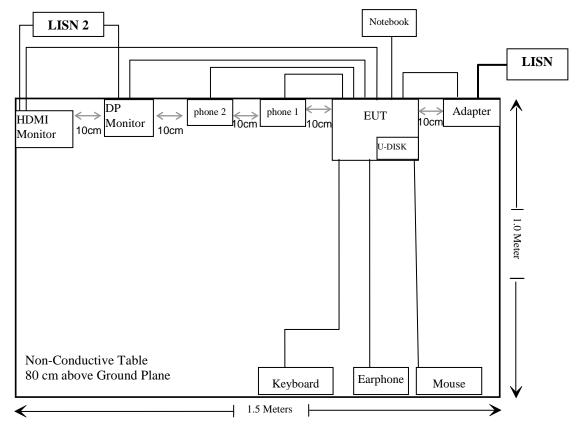
Special Accessories

No special accessory.

Equipment Modifications

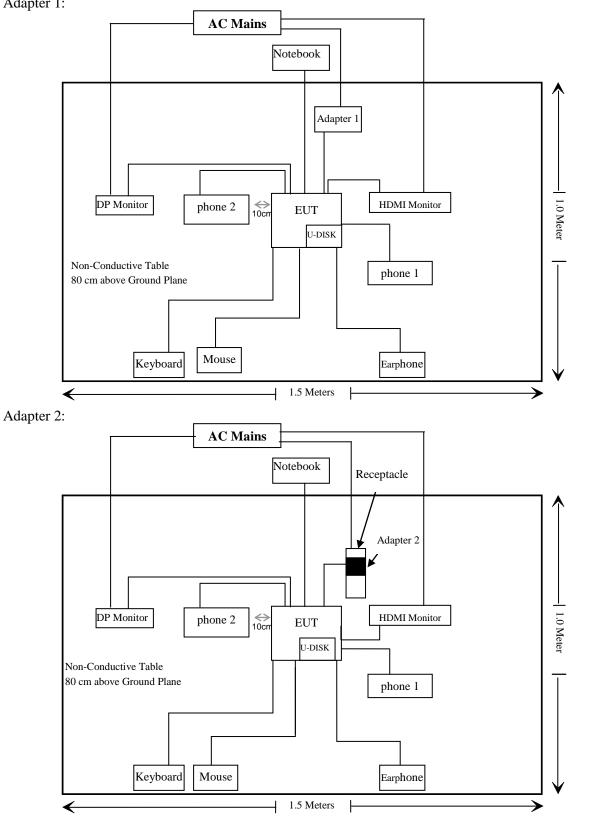
No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
DELL	Keyboard	L100	CN0RH66658985C018C
DELL	Mouse	MOC5UG	Unknown
PHILIPS	DP Monitor	275M7C	Unknown
DELL	HDMI Monitor	ST2310f	CN-05MKKK-72872-053
Unknown	U Disk	Unknown	Unknown
Huawei	Phone 1	TAS-AL00	88Y5T19A03011842
Shenzhen Wanplas Tech nology Co., LTD	Phone 2	GM1900	2a0a4328
SCI	Earphone	SCRC-130A	Unknown
Lenovo	Notebook	T430	Unknown

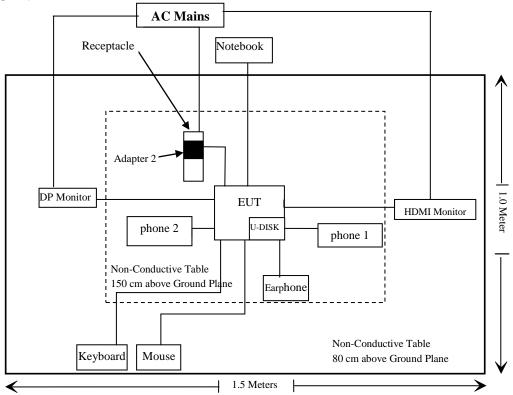
External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable DC output Cable	1.2	Adapter 1	EUT
Unshielded Detachable DC output Cable	1.2	Adapter 2	EUT
Unshielded Detachable AC power Cable	1.0	EUT	Adapter 1
Shielded Detachable HDMI Cable	2.0	EUT	HDMI Monitor
Shielded Detachable DP Cable	1.0	EUT	DP Monitor
Unshielded Detachable USB Cable	1.5	EUT	Mouse
Unshielded Detachable USB Cable	1.5	EUT	Keyboard
Unshielded Detachable TYPE-C Cable 1	1.0	EUT	Phone
Unshielded Detachable TYPE-C2 Cable 2	1.0	EUT	Phone
Unshielded Detachable earphone Cable	0.75	EUT	Earphone
Unshielded Detachable RJ45 Cable	10.0	EUT	Notebook


Block Diagram of Test Setup

For conducted emission:

Shenzhen Accurate Technology Co., Ltd.


For Radiated emission: Below 1GHz: Adapter 1:

Version 11: 2021-11-09

Shenzhen Accurate Technology Co., Ltd.

Above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
\$15.247 (I), \$1.1310 & \$2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Test Equipment List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted Emissions Test								
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12			
R & S	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Ω Coaxial Switch	MP59B	6200506474	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
			tware: e3 19821b(V9)				
	Γ	Radiated Emiss	ions Test					
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
	Radiated Er	nission Test Soft	ware: e3 19821b(V	79)				

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
RF Conducted Test						
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12	
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.33	RF-03	Each time		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)Electric Field Strength (V/m)Magnetic Field Strength (A/m)Power Density (mW/cm²)Averaging Time (minutes)								
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f ²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/	/	f/1500	30				
1500-100,000	/	/	1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 =$ power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

For worst case:

Mode	Frequency Range	Ante	ntenna Gain Tune-up Power		Evaluation Distance	Power Density	MPE Limit (mW/cm ²)		
	(MHz)	(dBi)	(numeric)	(dBm)	dBm) (mW) (cm)		$(\mathrm{mW/cm}^2)$		
BT	2402-2480	2.68	1.85	3.5	2.24	20	0.0008	1.0	
BLE	2402-2480	2.68	1.85	2.0	1.58	20	0.0006	1.0	
2.4G Wi-Fi	2412-2462	2.68	1.85	16.0	39.81	20	0.0147	1.0	
5G Wi-Fi Band 1	5150-5250	3.39	2.18	15.5	35.48	20	0.0154	1.0	
5G Wi-Fi Band 4	5725-5850	4.31	2.70	16.0	39.81	20	0.0214	1.0	

Note: 1. The BT function can transmit at the same time with the Wi-Fi function.

2. The 2.4G Wi-Fi function can't transmit at the same time with the 5G Wi-Fi function.

Simultaneous transmitting consideration:

The ratio= MPE_{BT}/limit + MPE_{5G Wi-Fi}/limit= $0.0008/1+0.0214/1=0.0222 \le 1.0$

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

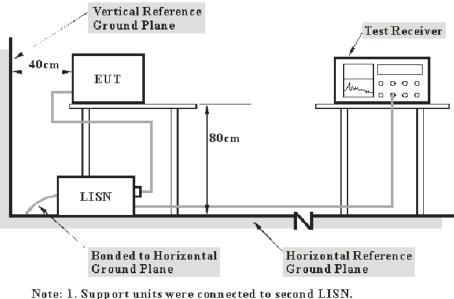
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna arrangement for Bluetooth, which was permanently attached and the antenna gain is 2.68dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Support units were connected to second LISM.
 Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Shenzhen Accurate Technology Co., Ltd.

Factor & Margin Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

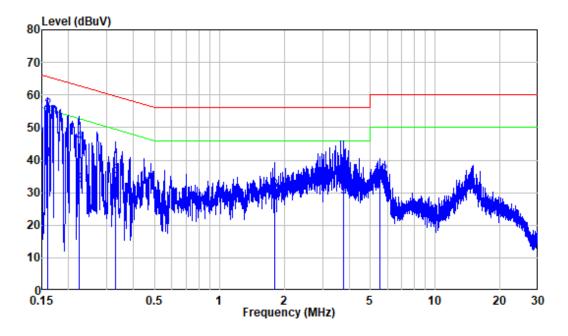
Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

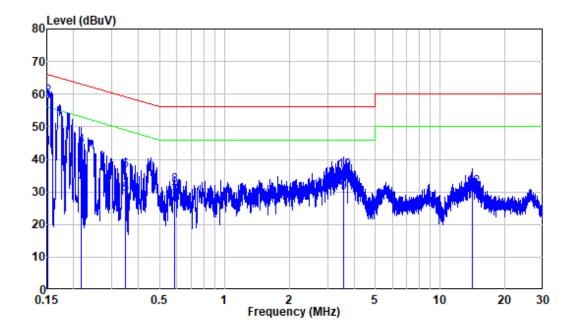
Environmental Conditions


Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.1 kPa

The testing was performed by Jason Liu on 2022-05-27.

EUT operation mode: BT Transmitting (Worst case as below)

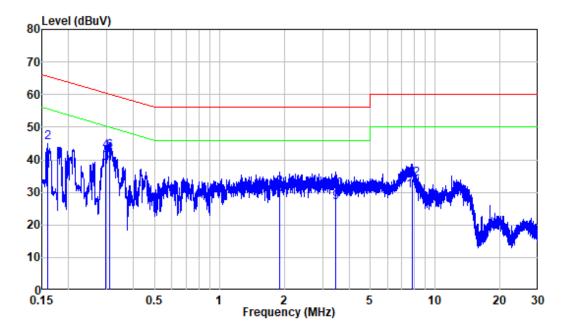
Adapter 1:


AC 120V/60 H	Hz, Line
--------------	----------

Site	:	Shielding Room
Condition	:	Line
Job No.	:	SZNS1220505-18180E-RF
Mode	:	BT Transmitting
Power	:	AC 120V 60Hz
Adapter	:	BSY065T1903423D

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.160	9.80	30.27	40.07	55.45	-15.38	Average
2	0.160	9.80	45.52	55.32	65.45	-10.13	QP
3	0.223	9.80	22.37	32.17	52.71	-20.54	Average
4	0.223	9.80	35.59	45.39	62.71	-17.32	QP
5	0.329	9.80	17.20	27.00	49.47	-22.47	Average
6	0.329	9.80	25.36	35.16	59.47	-24.31	QP
7	1.807	9.82	16.65	26.47	46.00	-19.53	Average
8	1.807	9.82	20.64	30.46	56.00	-25.54	QP
9	3.774	9.84	18.98	28.82	46.00	-17.18	Average
10	3.774	9.84	24.69	34.53	56.00	-21.47	QP
11	5.524	9.86	20.41	30.27	50.00	-19.73	Average
12	5.524	9.86	25.20	35.06	60.00	-24.94	QP

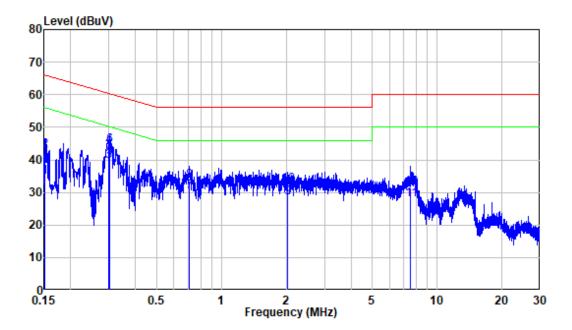
AC 120V/60 Hz, Neutral



Site :	Shielding Room			
Condition:	Neutral			
Job No. :	SZNS1220505-18180E-RF			
Mode :	BT Transmitting			
Power :	AC 120V 60Hz			
Adapter :	BSY065T1903423D			

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.151	9.80	33.79	43.59	55.94	-12.35	Average
2	0.151	9.80	49.28	59.08	65.94	-6.86	QP
3	0.216	9.80	23.03	32.83	52.96	-20.13	Average
4	0.216	9.80	34.30	44.10	62.96	-18.86	QP
5	0.347	9.80	19.35	29.15	49.04	-19.89	Average
6	0.347	9.80	26.63	36.43	59.04	-22.61	QP
7	0.587	9.81	18.91	28.72	46.00	-17.28	Average
8	0.587	9.81	22.17	31.98	56.00	-24.02	QP
9	3.577	9.84	20.05	29.89	46.00	-16.11	Average
10	3.577	9.84	26.65	36.49	56.00	-19.51	QP
11	14.054	10.04	17.17	27.21	50.00	-22.79	Average
12	14.054	10.04	21.45	31.49	60.00	-28.51	QP

Version 11: 2021-11-09


Adapter 2:

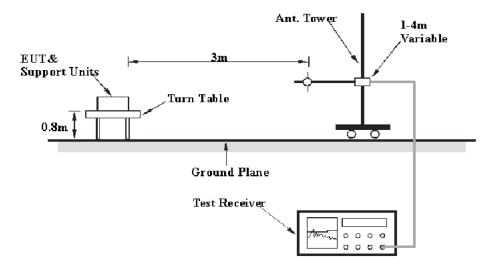
Site :	Shielding Room			
Condition:	Line			
Job No. :	SZNS1220505-18180E-RF			
Mode :	BT Transmitting			
Power :	AC 120V 60Hz			
Adapter :	A481-1902360U			

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.159	9.80	26.60	36.40	55.51	-19.11	Average
2	0.159	9.80	35.60	45.40	65.51	-20.11	QP
3	0.296	9.80	29.18	38.98	50.35	-11.37	Average
4	0.296	9.80	32.82	42.62	60.35	-17.73	QP
5	0.311	9.80	30.17	39.97	49.95	-9.98	Average
6	0.311	9.80	32.78	42.58	59.95	-17.37	QP
7	1.900	9.82	18.10	27.92	46.00	-18.08	Average
8	1.900	9.82	21.46	31.28	56.00	-24.72	QP
9	3.458	9.83	16.99	26.82	46.00	-19.18	Average
10	3.458	9.83	20.82	30.65	56.00	-25.35	QP
11	7.810	9.88	20.46	30.34	50.00	-19.66	Average
12	7.810	9.88	24.34	34.22	60.00	-25.78	QP

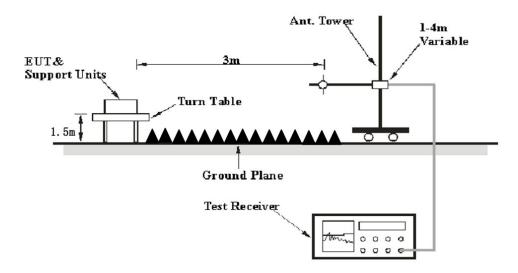
AC 120V/60 Hz, Neutral

Site :	Shielding Room
Condition:	Neutral
Job No. :	SZNS1220505-18180E-RF
Mode :	BT Transmitting
Power :	AC 120V 60Hz
Adapter :	A481-1902360U

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.152	9.80	25.06	34.86	55.88	-21.02	Average
2	0.152	9.80	33.03	42.83	65.88	-23.05	QP
3	0.300	9.80	29.82	39.62	50.24	-10.62	Average
4	0.300	9.80	34.34	44.14	60.24	-16.10	QP
5	0.302	9.80	31.01	40.81	50.17	-9.36	Average
6	0.302	9.80	34.55	44.35	60.17	-15.82	QP
7	0.708	9.81	20.49	30.30	46.00	-15.70	Average
8	0.708	9.81	23.68	33.49	56.00	-22.51	QP
9	2.027	9.82	18.45	28.27	46.00	-17.73	Average
10	2.027	9.82	22.53	32.35	56.00	-23.65	QP
11	7.536	9.98	17.89	27.87	50.00	-22.13	Average
12	7.536	9.98	21.53	31.51	60.00	-28.49	QP


FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
Above I GHZ	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Average measurement.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

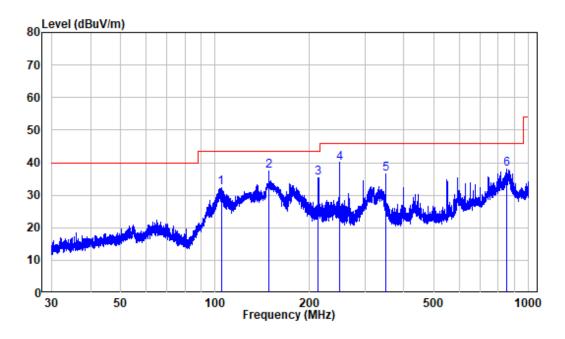
Test Data

Environmental Conditions

Temperature:	22-24 °C
Relative Humidity:	49-61 %
ATM Pressure:	101.0-103.0 kPa

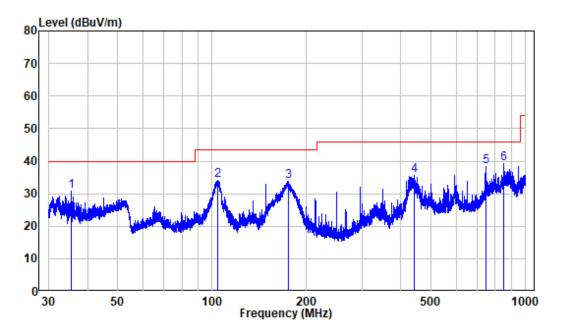
The testing was performed by Level Li on 2022-05-27 for below 1GHz and Leo Li from 2022-05-10 to 2022-05-18 for above 1GHz.

EUT operation mode: BT Transmitting


(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes, and the worst case is GFSK Mode)

30MHz-1GHz:

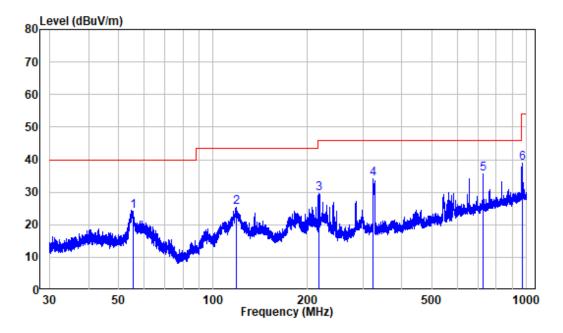
Worst case: GFSK High Channel


Adapter 1:

Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZNS1220505-18180E-RF
Test Mode:	BT Transmitting
Adepter :	BSY065t1903423D

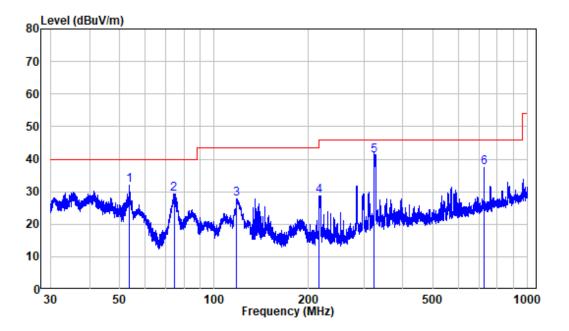
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	104.490	-11.78	44.04	32.26	43.50	-11.24	Peak
2	148.441	-15.36	52.80	37.44	43.50	-6.06	Peak
3	212.829	-11.75	47.03	35.28	43.50	-8.22	Peak
4	249.972	-10.74	50.70	39.96	46.00	-6.04	Peak
5	350.016	-7.31	43.87	36.56	46.00	-9.44	Peak
6	850.290	0.36	37.59	37.95	46.00	-8.05	Peak



Vertical

Site : chamber Condition: 3m VERTICAL Job No. : SZNS1220505-18180E-RF Test Mode: BT Transmitting Adepter : BSY065t1903423D

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	35.468	-11.38	42.27	30.89	40.00	-9.11	Peak
2	104.307	-11.77	45.85	34.08	43.50	-9.42	Peak
3	174.577	-13.14	47.06	33.92	43.50	-9.58	Peak
4	442.324	-5.64	41.29	35.65	46.00	-10.35	Peak
5	750.108	-0.87	39.17	38.30	46.00	-7.70	Peak
6	850.290	0.36	38.87	39.23	46.00	-6.77	Peak


Adapter 2:

Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZNS1220505-18180E-RF
Test Mode:	BT Transmitting
Adepter :	A481-1902360U

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	55.390	-10.25	34.41	24.16	40.00	-15.84	Peak
2	118.342	-13.22	38.69	25.47	43.50	-18.03	Peak
3	218.213	-11.51	41.05	29.54	46.00	-16.46	Peak
4	324.456	-8.29	42.40	34.11	46.00	-11.89	Peak
5	724.579	-1.29	36.91	35.62	46.00	-10.38	Peak
6	966.389	2.44	36.59	39.03	54.00	-14.97	Peak

Vertical

Site : chamber Condition: 3m VERTICAL Job No. : SZNS1220505-18180E-RF Test Mode: BT Transmitting Adepter : A481-1902360U

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	53.576	-10.28	42.18	31.90	40.00	-8.10	Peak
2	74.428	-16.14	45.56	29.42	40.00	-10.58	Peak
3	117.979	-13.16	40.93	27.77	43.50	-15.73	Peak
4	216.214	-11.61	40.39	28.78	46.00	-17.22	Peak
5	324.314	-8.30	49.40	41.10	46.00	-4.90	QP
6	724.579	-1.29	38.62	37.33	46.00	-8.67	Peak

F	Re	eceiver		Rx An	tenna	Corrected	Corrected	.	м ·	
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	Low Channel									
2310	43.78	PK	73	2.0	Н	-7.23	36.55	74	-37.45	
2310	43.93	PK	146	1.4	V	-7.23	36.7	74	-37.3	
2390	43.63	РК	54	1.6	Н	-7.21	36.42	74	-37.58	
2390	43.35	РК	300	1.6	V	-7.21	36.14	74	-37.86	
4804	44.25	РК	355	1.7	Н	-3.52	40.73	74	-33.27	
4804	45.68	PK	283	1.9	V	-3.52	42.16	74	-31.84	
			Mi	iddle Ch	annel					
4882	43.06	PK	42	1.7	Н	-3.37	39.69	74	-34.31	
4882	43.88	PK	102	2.2	V	-3.37	40.51	74	-33.49	
			Н	ligh Cha	nnel					
2483.5	43.86	PK	29	1.4	Н	-7.2	36.66	74	-37.34	
2483.5	44.51	PK	323	1.4	V	-7.2	37.31	74	-36.69	
2500	44.9	PK	326	1.8	Н	-7.18	37.72	74	-36.28	
2500	44.42	РК	200	2.1	V	-7.18	37.24	74	-36.76	
4960	43.87	PK	45	1.9	Н	-3.01	40.86	74	-33.14	
4960	45.26	PK	344	1.6	V	-3.01	42.25	74	-31.75	

Above 1GHz (Worst case: GFSK, Adapter 2)

Bluetooth & 5G Wi-Fi (802.11a mode, 5180MHz) Simultaneously Transmission: Worst case for adapter2:

Frequency			Turntable	urntable		Corrected Corrected Factor Amplitud		Limit	Margin
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
324.46	44.13	QP	193	1.6	Н	-8.29	35.84	46	-10.16
324.31	50.29	QP	321	2.2	V	-8.30	41.99	46	-4.01
6845.79	41.15	PK	33	1.6	Н	4.41	45.56	74	-28.44
7123.64	40.62	РК	289	1.8	V	5.47	46.09	74	-27.91

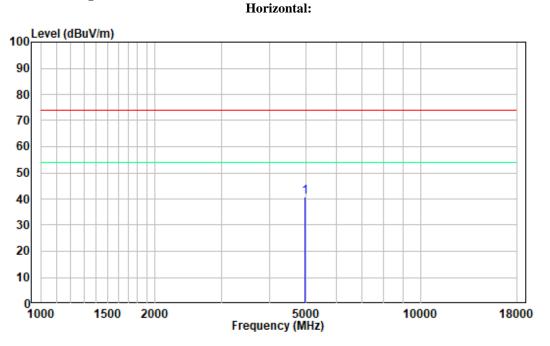
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

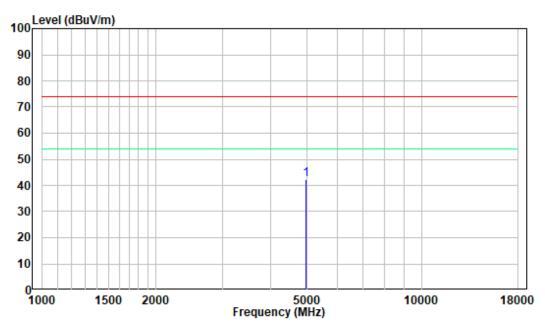
Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

Shenzhen Accurate Technology Co., Ltd.

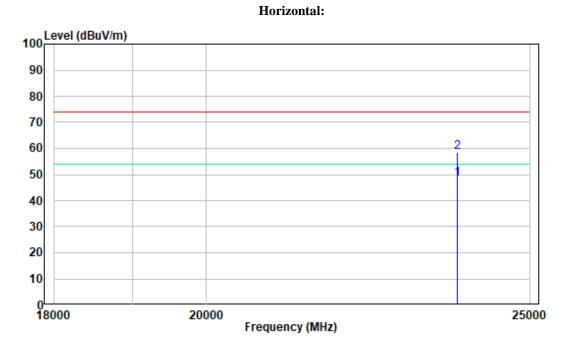

1-18GHz

Pre-scan plots:

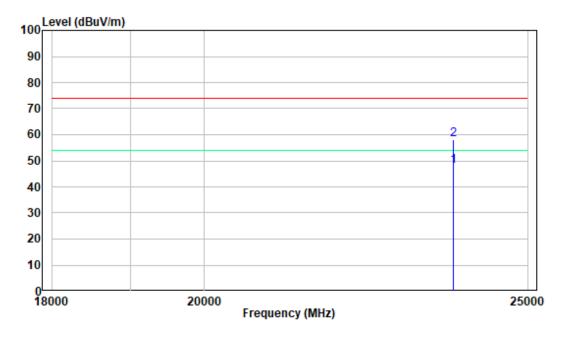
Worst case: GFSK High Channel

Vertical:

Version 11: 2021-11-09


Shenzhen Accurate Technology Co., Ltd.

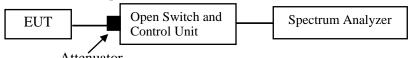
Report No.: SZNS1220505-18180E-00A


18-25GHz

Pre-scan plots:

Worst case: GFSK High Channel

Vertical:


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Attenuator

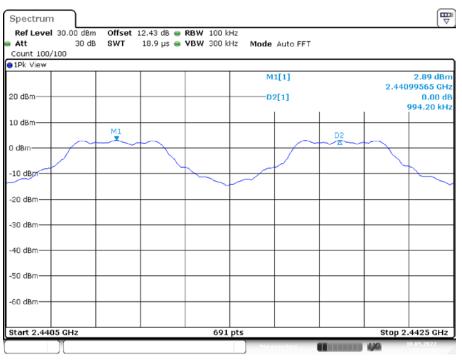
Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Cat Kang on 2022-05-10.

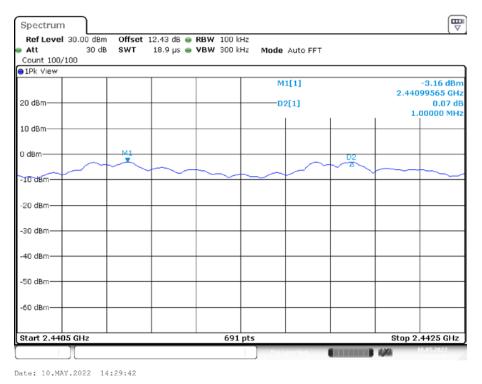
EUT operation mode: Transmitting


Test Result: Compliant.

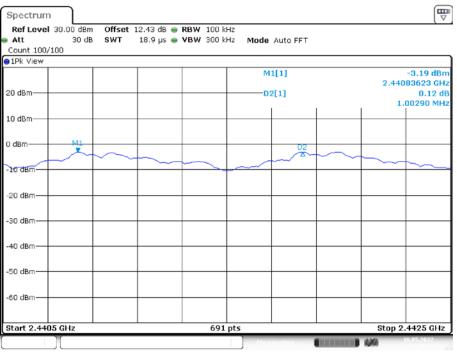
Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	0.994	>=0.646	PASS
2DH1	Ant1	Нор	1	>=0.976	PASS
3DH1	Ant1	Нор	1.003	>=0.974	PASS

Note: The limit = (2/3) * 20dB bandwidth

Please refer to the below plots:


Shenzhen Accurate Technology Co., Ltd.

DH1_Ant1_Hop


Date: 10.MAY.2022 12:18:56

2DH1_Ant1_Hop

Version 11: 2021-11-09

Shenzhen Accurate Technology Co., Ltd.

3DH1_Ant1_Hop

Date: 10.MAY.2022 14:49:33

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

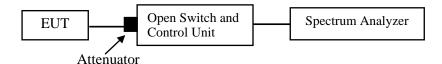
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

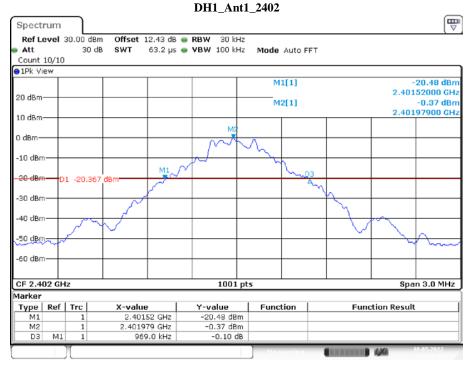
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

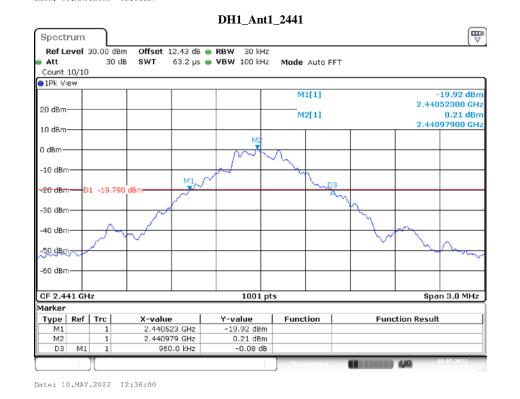
Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

The testing was performed by Cat Kang on 2022-05-10.


EUT operation mode: Transmitting

Test Result: Compliant.


Test Mode	Antenna	Channel[MHz]	20db EBW[MHz]	99% Occupied Bandwidth [MHz]	Limit[MHz]	Verdict
DH1	Ant1	2402	0.969	0.869		PASS
		2441	0.960	0.869		PASS
		2480	0.963	0.869		PASS
2DH1	Ant1	2402	1.464	1.352		PASS
		2441	1.464	1.352		PASS
		2480	1.467	1.349		PASS
3DH1	Ant1	2402	1.461	1.349		PASS
		2441	1.458	1.349		PASS
		2480	1.458	1.352		PASS

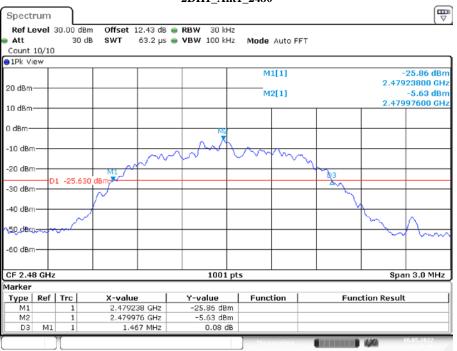
Please refer to the below plots:

20 dB EMISSION BANDWIDTH

Date: 10.MAY.2022 12:16:27

		ΔΠΙ_ΑΙΙΙΙ	_4400			_
Spectrum						
Ref Level 30.00	dBm Offset 12.43 dB	RBW 30 kHz				
Att 3	0 dB SWT 63.2 µs	VBW 100 kHz	Mode Auto FF	т		
Count 10/10						
1Pk View						
			M1[1]			19.79 dBm
20 dBm					2.479	52000 GH
20 0011			M2[1]			0.29 dBn
10 dBm					2.479	97900 GH
		M2				
0 dBm			7			
			1			
-10 dBm		~~	- m			
-20 dBm D1 -19.	M1~	/*	~~_R3			
-20 dBm D1 -19.	715 dBm		4,	3		
-30 dBm				<u>h</u>		
				1		
-40 dBm //				\rightarrow	-	
	$\gamma \sim 1$			\sim		
-50 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hum
-60 dBm						
CF 2.48 GHz		1001 pt	s		Spa	n 3.0 MHz
Marker						
Type Ref Trc	X-value	Y-value	Function	Fund	tion Result	
M1 1	2.47952 GHz	-19.79 dBm				
M2 1 D3 M1 1	2.479979 GHz 963.0 kHz	0.29 dBm -0.02 dB				
D3 MI I	963.0 KHZ	-0.02 dB				
			Measuring		4,40	10.05.2022

Date: 10.MAY.2022 12:38:05

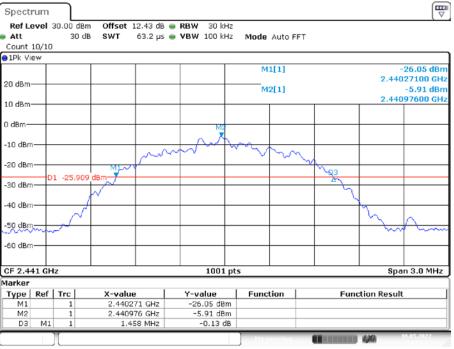


Spect		L							
	evel	30.00 d		12.43 dB					
Att		30	dB SWT	63.2 µs	VBW 100 kHz	Mode Auto F	FT		
Count									
∋1Pk Vi	ew								
						M1[1]		0.40	-26.47 dBm
20 dBm	\rightarrow		_			M2[1]		2.40	123800 GHz -6.42 dBn
						m2[1]		2 40	197000 GH
10 dBm	+		_					2.40	197000 012
0 dBm—					M2				
-10 dBm	.				L A. A.				
-10 abn						m	~		
-20 dBm			_	$\mathcal{N}^{\prime \prime \prime}$		v v	N		
20 000		1 06 4	19 dBm				<u></u> 63		
-30 dBm		1 -20.4	19 UBIN				- 4m		
			\sim						
-40 dBrr	1-			+			V	1	
		~	~					m	
-50 dBm	Lat.	~~ <u>~</u>		+				<u> </u>	- mar
-60 dBm									
-00 UBI	-								
CF 2.4	02 GH	z			1001 pt	5		Sp	an 3.0 MHz
Marker									
Туре	Ref	Trc	X-valı		Y-value	Function	Fun	ction Resu	lt
M1		1		238 GHz	-26.47 dBm				
M2 D3	8.81	1		197 GHz	-6.42 dBm				
03	M1		1.	464 MHz	-0.11 dB				
		1				Measuring		4,20	10.05.2022

Date: 10.MAY.2022 14:25:52

		2DIII_AIIU	1_2771			_
Spectrum						
Ref Level 30.00 dB	m Offset 12.43 dB	BRBW 30 kHz				`
Att 30 d	lB SWT 63.2 μs	VBW 100 kHz	Mode Auto FF	τ		
Count 10/10						
1Pk View						
			M1[1]		-	25.95 dBn
20 dBm					2.440	24100 GH
20 dBm			M2[1]			-5.92 dBn
10 dBm					2.440	97300 GH:
TO UBIN						
0 dBm						
		Ma				
-10 dBm			0.0.0			
		$\gamma \sim 1$	$\sum m m m$	2		
-20 dBm	M1 2			-1		
-20 dBm D1 -25.92	3 dBm			<u>b</u> 3		
-30 dBm				- m		
10.10						
-40 dBm						
-50 dBm					\sim	\wedge
					- m	ma
-60 dBm						
CF 2.441 GHz		1001				
		1001 pt	5		spar	1 3.0 MHz
Marker	Marchan I		E 1	-	ction Result	
Type Ref Trc M1 1	2.440241 GHz	Y-value -25.95 dBm	Function	Fund	ction Result	
M2 1	2.440973 GHz	-25.95 dBm				
D3 M1 1	1.464 MHz	-0.24 dB				
			1			0.05.2022
			Measuring		1,41	

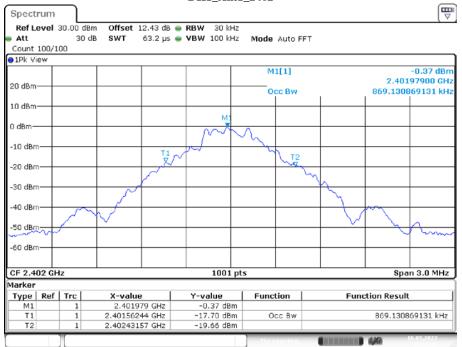
Date: 10.MAY.2022 14:35:00


2DH1_Ant1_2480

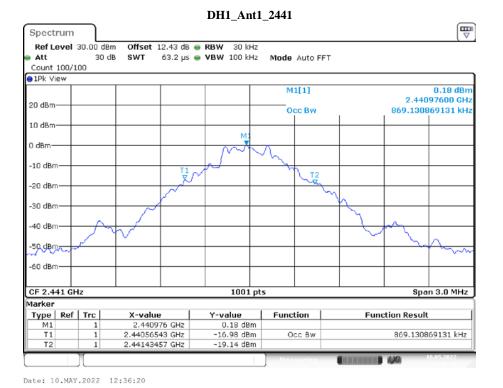
Date: 10.MAY.2022 14:37:36

			JDIII_AIIU	1_2402			_
Spectrum							l □ □
Ref Level	30.00	iBm Offset 12.43 de	3 😑 RBW 30 kHz				`
Att	30	dB SWT 63.2 µ	5 👄 VBW 100 kHz	Mode Auto Fi	FT		
Count 10/10)						
∋1Pk View							
				M1[1]		-	26.92 dBm
20 dBm						2.401	26800 GH
20 dBm				M2[1]			-6.46 dBm
10 dBm						2.401	97300 GHz
			Ma				
-10 dBm				~~			
		- north	$\sim \sim $	$\sim \sim \sim \sim$			
-20 dBm		ML			<u>~</u>		
D	1 -26.4	456 dBm			1 423		
-30 dBm							
-40 dBm		1				5	
EQ dDay	- 7	~				\sim	~
-50 dBm	~					~~~	- mar
-60 dBm							
CF 2.402 GH	1Z		1001 pt	5		Spa	n 3.0 MHz
Marker	1 - 1						
	Trc	X-value	Y-value	Function	Fund	tion Result	
M1 M2	1	2.401268 GHz 2.401973 GHz	-26.92 dBm -6.46 dBm				
D3 M1		1.461 MHz	0.12 dB				
00 111	1	1.401 1412	0.12 00	,			0.05.2022
	Л			Measuring		4,261	0.0512022

Date: 10.MAY.2022 14:47:43

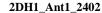

Date: 10.MAY.2022 14:53:24

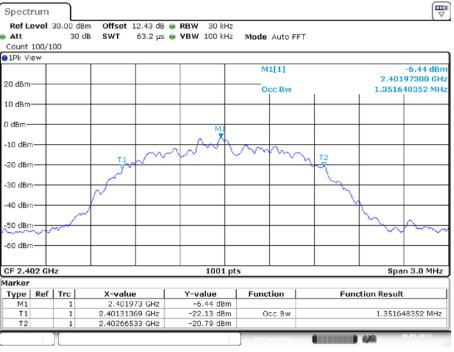
			JDIII_AIIU			_
Spectrum						
Ref Level 3	30.00 dE	Bm Offset 12.43 dB	RBW 30 kHz			· · · · · ·
Att	30	dB SWT 63.2 µs	🔵 VBW 100 kHz	Mode Auto FF	т	
Count 10/10						
1Pk View						
				M1[1]		-25.95 dBr
20 dBm						2.47926800 GH
20 dBm				M2[1]		-5.76 dBr
10 dBm						2.47997600 GH
0 dBm						
			M2			
-10 dBm				~		
		James I				
-20 dBm		M1			Mr.	
D:	L -25.76				Ne3	
-30 dBm						
-40 dBm						10
	ير ا					IN N
-50°dBro	~~					how how
-60 dBm						
-00 08111						
CF 2.48 GHz			1001 pts	5		Span 3.0 MHz
larker						
Type Ref		X-value	Y-value	Function	Fund	ction Result
M1	1	2.479268 GHz	-25.95 dBm			
M2 D3 M1	1	2.479976 GHz 1.458 MHz	-5.76 dBm 0.16 dB			
M1	1	1.430 MHZ	0.10 08			
				Measuring		400 10.05.2022


Date: 10.MAY.2022 14:55:27

99% OCCUPIED BANDWIDTH

DH1_Ant1_2402

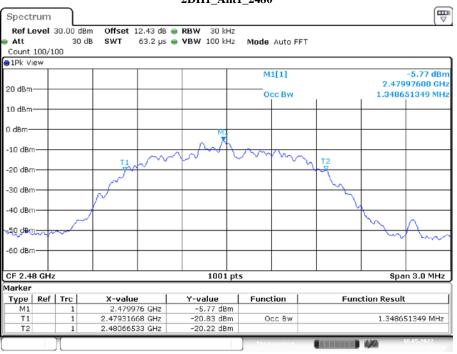

Date: 10.MAY.2022 12:16:48



			DIII_AIIII				_
Spectrum							₩
Ref Level	30.00 dB	m Offset 12.43 dB	RBW 30 kHz				<u>`</u>
Att	30 c		VBW 100 kHz	Mode Auto FF	т		
Count 100/1	100						
1Pk View							
				M1[1]		0.35	dBn
20 dBm						2.47997900	GH
20 dBm				Occ Bw		869.130869131	kH:
10 dBm							
			MI				
				,			
				\mathcal{N}			
-10 dBm							
			\sim				
-20 dBm —							
					γ		
-30 dBm		$+ \sim$			15		
					1		
-40 dBm	~~~~						
EQ dbm	1						
-50 dBm						- www	
-60 dBm							
-co abiii							
CF 2.48 GH	z		1001 pt	s		Span 3.0 M	1Hz
Marker							
	Trc	X-value	Y-value	Function	Fund	tion Result	
M1	1	2.479979 GHz	0.35 dBm				
T1 T2	1	2.47956244 GHz 2.48043157 GHz	-16.86 dBm -18.64 dBm	Occ Bw		869.130869131	KHZ
12		2.40043157 GHZ	-10.04 uBm				_
				Measuring		4/4 10.05.202	2

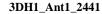
DH1_Ant1_2480

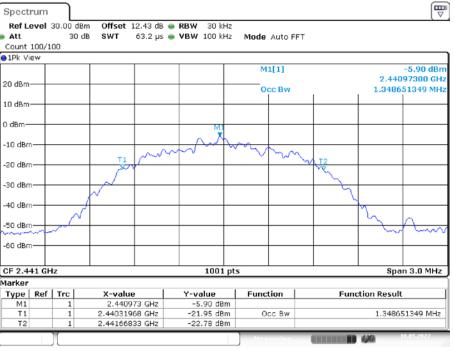
Date: 10.MAY.2022 12:38:24



Date: 10.MAY.2022 14:26:15

Date: 10.MAY.2022 14:35:21




2DH1_Ant1_2480

Date: 10.MAY.2022 14:38:01

				JDIII_AIII.	L_2402			
Spectrum								
Ref Level	30.00	dBm Offset	12.43 dB	RBW 30 kHz				
Att	30	DdB SWT	63.2 µs	VBW 100 kHz	Mode Auto F	FT		
Count 100/	100							
∋1Pk View								
					M1[1]			-6.49 dBm
20 dBm							2.40	197300 GHz
20 abm					Occ Bw		1.3486	51349 MHz
10 dBm								
10 00.11								
0 dBm								
				M				
-10 dBm					~			
		T1	and					
-20 dBm —		<u> </u>	₩			- Mrs-		-
						~		
-30 dBm		~	<u> </u>			5		
10 10-		~~						
-40 dBm		7					5	
-50 dBm-		\sim					~	
	~~~~						$\sim$	1 mm
-60 dBm								
CF 2.402 G	<b>U</b> -7			1001 pt				n 3.0 MHz
Marker	112			1001 pt	3		арс	11 3.0 MHZ
	Trc	X-valu	• I	Y-value	Function	Eup	ction Resul	•
M1	1		73 GHz	-6.49 dBm	. anoton		eren kesul	•
T1	1	2.401319		-22.40 dBm	Occ Bw		1.3486	51349 MHz
T2	1	2.402668	33 GHz	-23.45 dBm				
	1			1	Measuring		4.363	10.05.2022
							and the second s	

Date: 10.MAY.2022 14:48:02

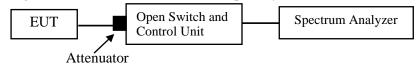




Date: 10.MAY.2022 14:53:43

		JDIII_AIIU			
Spectrum					
Ref Level 30.00 dB	m Offset 12.43 dB	RBW 30 kHz			· · · · · · · · · · · · · · · · · · ·
Att 30 c	İB SWT 63.2 μs	VBW 100 kHz	Mode Auto FF	т	
Count 100/100					
1Pk View					
			M1[1]		-5.91 dBm
20 dBm					2.47997600 GHz
20 dBm			Occ Bw		1.351648352 MHz
10 dBm					
0 dBm					
		MI			
-10 dBm					
	T1 ~~~~	www i			
-20 dBm	-			MT2	
				n n n	
-30 dBm				- h	
-40 dBm /	/				7
					$\sim$ $\sim$
-SondBrander					When
-60 dBm					
-oo abiii					
CF 2.48 GHz		1001 pt:	5		Span 3.0 MHz
larker					
Type Ref Trc	X-value	Y-value	Function	Fund	ction Result
M1 1	2.479976 GHz	-5.91 dBm -21.84 dBm	Occ Bw		1.351648352 MHz
T1 1 T2 1	2.47931668 GHz 2.48066833 GHz	-21.84 dBm	OCC BW		1.351048352 MHz
12 1	2.40000000 GH2	-22.95 UDIII			
			Measuring		10.05.2022

Date: 10.MAY.2022 14:55:45


# FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

# **Applicable Standard**

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

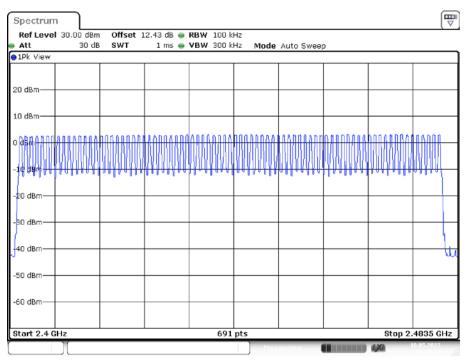
# **Test Procedure**

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.



# **Test Data**

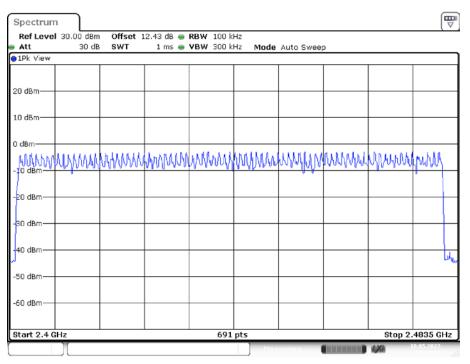
# **Environmental Conditions**


Temperature:	23 °C			
<b>Relative Humidity:</b>	51 %			
ATM Pressure:	101.1 kPa			

The testing was performed by Cat Kang on 2022-05-10.

EUT operation mode: Transmitting

Test Result: Compliant.


TestMode	Antenna	Antenna Channel Result[Num]		Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS



DH1_Ant1_Hop

Date: 10.MAY.2022 12:28:19

#### 2DH1_Ant1_Hop

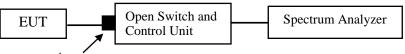


Date: 10.MAY.2022 14:30:06

Ref Level				2.43 dB	_									
Att	30	db SW	т	1 ms	•	VBW	300 k	Hz	Mode	Auto Swee	0			
●1Pk View														
20 dBm-		_												
10 dBm														
0 dBm														
<b>EARALKE</b>		a un a r	INAL	38848	A N A	48.80	6114	KNR I	LARAA I	WWW		ABAAABAI	RANAN	
	WWW	1400/4	VUVU	And And	144	0040	VYAA	444	AAAAA	กลงสิทษาให	MUNANA	aaaaaAAA	naddar	
-20 dBm-														
Lo abiii														L
-30 dBm-														
40 dBm														
														<b>h</b>
-50 dBm-														
-30 ubiii														
-60 dBm-														
-ou ubm														
Start 2.4 G	Hz						691	pts				Stop 2.	4835 G	Hz

# 3DH1_Ant1_Hop

Date: 10.MAY.2022 14:50:16


# FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

# **Applicable Standard**

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

# **Test Procedure**

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW  $\geq 3 \times RBW$ .
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses



Attenuator

# **Test Data**

# **Environmental Conditions**

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

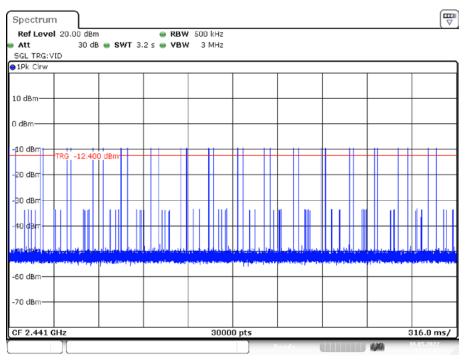
The testing was performed by Cat Kang on 2022-05-10.

# EUT operation mode: Transmitting

#### Test Result: Compliant.

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.38	320	0.12	<=0.4	PASS
DH3	Ant1	Нор	1.45	140	0.203	<=0.4	PASS
DH5	Ant1	Нор	2.86	110	0.315	<=0.4	PASS
2DH1	Ant1	Нор	0.39	330	0.127	<=0.4	PASS
2DH3	Ant1	Нор	1.63	160	0.261	<=0.4	PASS
2DH5	Ant1	Нор	2.87	120	0.344	<=0.4	PASS
3DH1	Ant1	Нор	0.39	320	0.123	<=0.4	PASS
3DH3	Ant1	Нор	1.63	190	0.31	<=0.4	PASS
3DH5	Ant1	Нор	2.87	110	0.316	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops

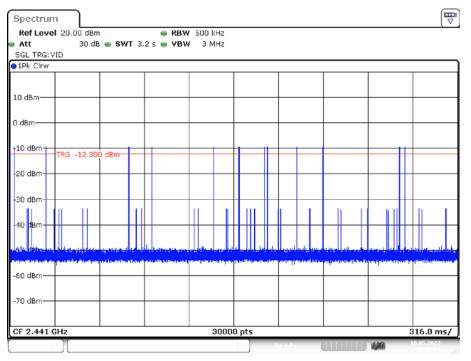

Note 2: Total Hops =Hopping Number in 3.16s*10

Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

		<b>D</b> III_0	mr_mop				_
Spectrum							[₩
Ref Level 20.00 d	iBm	🖷 RBW 1 MHz					
Att 30	dB 🥃 SWT 10 m	is 🖶 VBW 3 MHz					
SGL TRG: VID							
1Pk Clrw							
			M1[	1]		-	10.59 dBn
10 40							25 n
10 dBm			D2[	1]			1.09 di 375.05 μ
			1 1	1			ο70.00 μ.
0 dBm							
M1 D2							
-10 dBm TRG -12.	400 dBm		+				
-20 dBm							
-30 dBm							
-40 dBm							
	1. 1.	المراجع المراجع				1 au	1. 1.
O dBringhing routed	n nin pitritiani	יאיר אין "תריוון יאר "ו אוי אי		a folio ( deshi	tin lin y it the	ing it grantin	البيد البيبيا
A DEPARTMENT	են անտումես։	dentifies the black	addition of the local of a	an atta	autolia anta tal	Add and Adored	turni data
-60 dB	the state of the s		1 Hill with				
				· - 11	. T.,	1.111	
-70 dBm	+ +		+ +				
CF 2.441 GHz		800	0 pts				1.0 ms/
			Re	adv		130	0.05.2022

DH1_Ant1_Hop

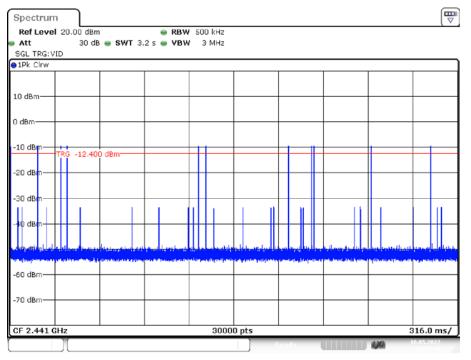
Date: 10.MAY.2022 12:28:37




Date: 10.MAY.2022 12:28:42

Att SGL TRG:VI		) dB 🥌	SWT 10	) ms 🖷 VB1	N 3 MHz					
1Pk Clrw							1[1] 2[1]			-10.34 dBr 25 n 0.86 d 1.44893 m
dBm										
11 70 dBm	D2 TRG -12		m							
0 dBm		_								
0 dBm										
0 dBm		ng da ng si Kana kana da ng si	- A. 1	<mark>an panapalaha</mark> ang bawa salaha		la <mark>electrica de la composiciona de la composic Composiciona de la composiciona de</mark>	lender seite da.abdalaht.	e telati dalap	A S. M. M. M. A.	ingen sister
50 dBm			<del>de chiek</del>			<del>ala de </del>	, the second		- terter lind	all and and
70 dBm										
F 2.441 G	Hz	_			8000	pts				1.0 ms/

DH3_Ant1_Hop

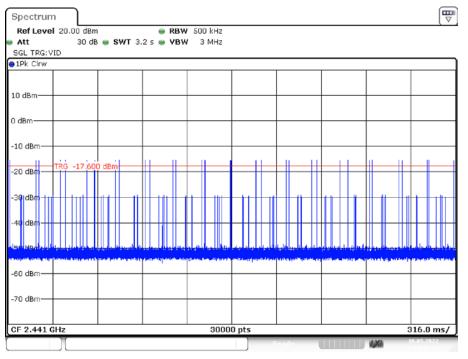

Date: 10.MAY.2022 12:47:19



Date: 10.MAY.2022 12:47:25

SGL TRG:VID IPk Cirw				
		M1[1]		-13.57 dBr
.0 dBm		D2[1]		-1.23 μ 3.86 d
				2.86411 m
) dBm				
	<b>0</b> 2			
TRG -12.400 dBm	A			
0 dBm				
30 dBm				
40 dBm				
0 dBm	and the state of the second	il della	a ting thing while the addition	relation of the state
60 dBm		a nadadin and de belakere, ar war ba		
	The state of the s	ענידא אוי יינער איי איי	I THE STREET OF THE STREET	ar her dera
70 dBm		-		
CF 2.441 GHz	800	0 pts		1.0 ms/

DH5_Ant1_Hop

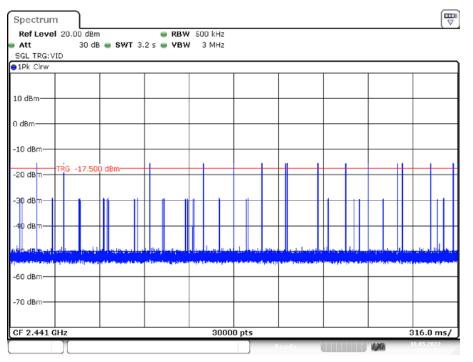



Date: 10.MAY.2022 12:51:06

				nti_nop				Ē
Spectrum								
Ref Level 20.00 di	Bm	😑 RBV	V 1 MHz					
Att 30	dB 🕳 SWT 1	0 ms 👄 🛛 🛛 🖉	N 3 MHz					
SGL TRG: VID								
1Pk Clrw								
				м	1[1]		-	19.60 dBn
10 40								-1.23 μ
10 dBm				D	2[1]			4.40 dl 385.05 μ
					1	1		 
D dBm								
-10 dBm								
	OD dBm							
-20 dBm 186 -17.t		<u> </u>						
-30 dBm								
-40 dBm	_							
O dBri	an de la	Lit & Lillion a	di Divisianu da	ll de la contra da	dal talled.	den and a lite		
II III III III III III III III III III		Lower and the second	hin that	Jar La Jaco	a de la contra de la	a ni sa mali	, of a likely like in the	officer and a second
SO dB	all die neue dae dat is	<u>, y tils tit agi till h</u> u	ala di dhi birni	<u>h s ilan, uila, b</u>	والاله والمالية والمالية	i tio, that its diff	it shutatik t	dig yakê dad.
and the first of the first of	the deside of the state	I have a	1.1.1	(B. G.C.)		t de serve d	. II. I	1.00
-70 dBm							· ·	1
CF 2.441 GHz			8000	pts				1.0 ms/
					teady		100	10.05.2022

2DH1_Ant1_Hop

Date: 10.MAY.2022 14:30:23

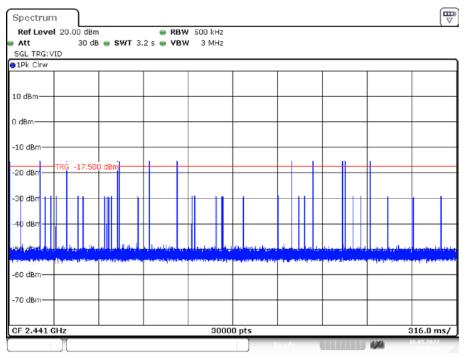



Date: 10.MAY.2022 14:30:29

1Pk Cirw				M	1[1]			15.93 dBr
0 dBm				D2[1]		-15.93 dBm 25 ns 1.10 dB 1.62895 ms		
0 ubm								
dBm-								
10 dBm								
TRG	-17.500 dBm-							
20 dBm								
0 dBm								
40 dBm								
0 dBm	a di la cal			ad instance	a la calinetra de		di atti bada	والواصار براتهم
	in the title lines	and a last of the state of the second se		nalisi sati sa si da si da si da si sa br>Na si sa s		a ser a s	Loodhales Isla	na an tha the A
0 dBm	- illuit wid			<del>a manulun</del>	a nationali	. <del>In the th</del> e		hatta di di
				1	1	1		

2DH3_Ant1_Hop

Date: 10.MAY.2022 14:43:48

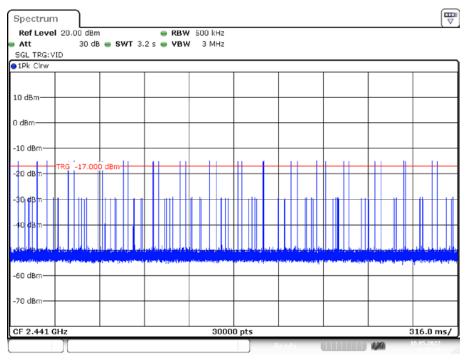



Date: 10.MAY.2022 14:43:53

				Ē		
Spectrum				(4		
Ref Level 20.00 dBm	😑 RBW 1 MHz					
	SWT 10 ms 🖶 VBW 3 MHz					
SGL TRG: VID						
1Pk Cirw						
		M1[1]		-34.29 dBn -1.23 μ		
10 dBm		D2[1]		18.93 di		
				2.87036 m		
0 dBm						
10 d0 m						
-10 dBm	02					
TRG -17.500 dBr	m					
-20 dBm						
taodBm						
-40 dBm						
0 dBm	all a children the failed of the state of th	ur and and taken provided for a	dite of a strift of the second	the description of the second of the second s		
-60 dBm	the second of the second	اين لا ويتعاط وعلم لي الألفة (والالمودور		التنظيمان الإياطان		
	line i kultur	Let all relate	1 1 P P P P P			
-70 dBm			· ·			
CF 2.441 GHz	800	0 pts		1.0 ms/		
		Ready	4,40	10.05.2022		

2DH5_Ant1_Hop

Date: 10.MAY.2022 14:45:37

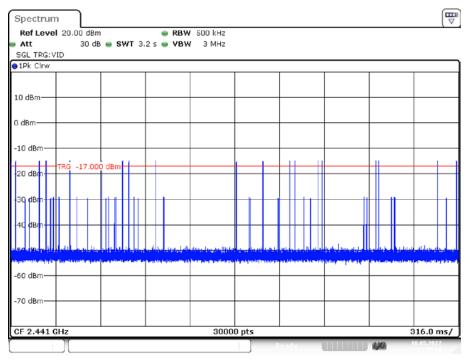



Date: 10.MAY.2022 14:45:42

			JDIII_A	mer_mop	,			_
Spectrum								
Ref Level 20.00 d	Bm	e RB\	V 1 MHz					
	dB 🥌 SWT 1	D ms 👄 VB	N 3 MHz					
SGL TRG: VID								
1Pk Clrw								
				M	1[1]		-	16.56 dBn
				_				25 n
10 dBm				D	2[1]			1.61 dE
					1	1	1	385.05 µs
0 dBm								
-10 dBm								
M1 D2 TRG -17.								
-20 dBm	000 0811							
-30 dBm								
-40 dBm								
ie abiii								
	a state of the second second		المرابط المرا	المتحد المتحاد		the later has a	John Lode	and the late
foldB to a logicity of	in a standart data ha	And A Date	isishe itabila	tale militare	and the first second	a shiri e hinder an	, na shakara a	a shinda cedebidh
ilia a salah dalam kashki di	lite to a state of the state of	La dilicali D. alka	հուտեսես	والمداعا البابيل	aine da bhaile	handanah d	W LUGI COM	d that hands
60 dBm - Province	արերաներին ու	1.1.14	have the late		and the state	1 1 <b>1 1 1 1</b>		<u>, 1, 1, 1, 1, 1</u>
11			· ·			· ·	1 ° '	
-70 dBm								
CF 2.441 GHz		I	8000	pts	I	I		1.0 ms/
			0000		version (		4.90	10.05.2022
					accur.		all	

3DH1_Ant1_Hop

Date: 10.MAY.2022 14:50:34




Date: 10.MAY.2022 14:50:39

Spectrum						[₩
Ref Level 20.00 dBm	👄 RBW 1	MHz				
	SWT 10 ms 👄 VBW 3	MHz				
SGL TRG: VID						
1Pk Cirw						
		м	1[1]			23.81 dBn -1.23 μ
10 dBm		D	2[1]			9.38 d
					1	.62895 m
0 dBm						
-10 dBm						
D2						
TRG -17.000 dBn	n					
V						
-30 dBm						
-30 abm						
to do-						
-40 ¹ dBm						
	and the base in the		date mar	u alta a		I Den
G dBm	nali dina na hala bah	upater a description of the	ال لار ماطل ا	1. AL MI BRAN	State a state of the	AND DATE
	a handalar madalar da an casa	la, indulto discribilian add	h Malanda, ana	dat Utcha.	etal. data	and dia 1.
-80 dBm	A T T T T T T T T T T T T T T T T T T T	ole hull de la hille de la	<u>hu 4489</u>		A heliuw	
		1				
-70 dBm						
CF 2.441 GHz	I	8000 pts	1	1		1.0 ms/
1						

3DH3_Ant1_Hop

Date: 10.MAY.2022 14:58:06



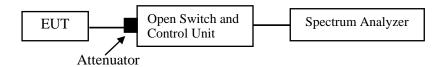
Date: 10.MAY.2022 14:58:11

1Pk Cirw									
				м	1[1]		-	28.62 dBm -1.23 μs	
LO dBm				D2[1]				13.81 dE	
I dBm								2.07200 m	
10 dBm		02							
TR	G -16.900 dBm-	Anton 1							
0 dBm									
dBm									
40 dBm									
0 dBm		بالمربية الم	and a difference	al an a	ulta da da			I to show	
		11	aller, alter bicking	ind. In a second		hani kutata	alter also estation	بلهد ورالتانين	
0 dBm		<mark>di 144 nakin</mark>	Nil, day you ill, i	da ya ka dalak ka al	atitid ying had	<u>, had nd</u> i	<u>t ha, nai poli Al</u> a	a da mandalann	
·		- [] 49 P			1.1.1	- 1 I.I.	1.1.1	[]" ["	
70 dBm									
CF 2.441 GHz			8000	) pts				1.0 ms/	
				R	leady		444	10.05.2022	

3DH5_Ant1_Hop

Att 30 dB 🖷 SWT 3.2 s 🖶 VBW 3 MHz SGL TRG: VID ⊖1Pk Clrw 10 dBm-0 dBm--10 dBm -16.900 dBm-20 dBm 0 dBm -60 dBm--70 dBm-CF 2.441 GHz 30000 pts 316.0 ms/ 1/0

Date: 10.MAY.2022 15:25:32


# FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

# **Applicable Standard**

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

# **Test Procedure**

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



# **Test Data**

# **Environmental Conditions**

Temperature:	23°C
<b>Relative Humidity:</b>	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Cat Kang on 2022-05-10.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	2.62	<=20.97	PASS
DH1	Ant1	2441	3.13	<=20.97	PASS
		2480	3.24	<=20.97	PASS
		2402	-1.11	<=20.97	PASS
2DH1	Ant1	2441	-0.64	<=20.97	PASS
		2480	-0.47	<=20.97	PASS
		2402	-0.84	<=20.97	PASS
3DH1	Ant1	2441	-0.41	<=20.97	PASS
		2480	-0.31	<=20.97	PASS

Version 11: 2021-11-09

			Ē
Spectrum			
Ref Level 30.00 dBm	Offset 12.43 dB 👄	RBW 3 MHz	
Att 30 dB	SWT 1 ms 👄	VBW 10 MHz Mode Auto Sweep	2
Count 100/100			
1Pk View			
		M1[1]	2.62 dBn
			2.4020690 GHz
20 dBm			
10 dBm			
		41	
0 dBm			
-10 dBm			
-20 dBm			
-20 aBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.402 GHz		691 pts	Span 8.0 MHz
		Measuring	<b>10.05.2022</b>

DH1_Ant1_2402

Date: 10.MAY.2022 12:29:20

				~~~~					_
Spectrum	,								
	30.00 dBm		12.43 dB 👄						
Att	30 dB	SWT	1 ms 👄	VBW 10 M	iz Mode	Auto Sweep)		
Count 100/	100								
DIPK VIEW									
					M	1[1]			3.13 dBm
20 dBm						1		2.44	10580 GHz
20 0811									
10 dBm					41				
					/1 ▼				
0 dBm									
								<u> </u>	
-10 dBm									
-20 dBm									
-20 ubiii									
-30 dBm									
-40 dBm			-						
-50 dBm									
-60 dBm									
00 0011									
CF 2.441 G	Hz			691	pts			Spa	n 8.0 MHz
	Y				Mo	suring		430	0.05.2022

Date: 10.MAY.2022 12:36:32

				_
Spectrum				
Ref Level 30.00 dBm	n Offset 12.43 dB 🥃	RBW 3 MHz		
Att 30 dB	B SWT 1 ms 🖷	VBW 10 MHz Mode	Auto Sweep	
Count 100/100				
1Pk View				
		M	11[1]	3.24 dBm
				2.4798840 GHz
20 dBm			<u> </u>	
10 dBm				
		MI		
0 dBm				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-+o ubiii				
-50 dBm				
-60 dBm				
CF 2.48 GHz		691 pts		Span 8.0 MHz
) (asuring	
		Me		

DH1_Ant1_2480

Date: 10.MAY.2022 12:39:55

							_
Spectrum							
Ref Level	30.00 dBm	Offset	12.43 dB 🥃	RBW 3 M	łz		
Att	30 dB	SWT	1 ms 👄	VBW 10 M	Iz Mode Auto Swee	р	
Count 100/3	100					-	
∋1Pk View							
					M1[1]		-1.11 dBm
I							2.4018490 GHz
20 dBm			+			+	
I							
10 dBm							
0 dBm				M1			
-10 dBm	_						
-10 dBm							
-20 dBm-			+			+ + +	
-30 dBm-			+			+	
I							
-40 dBm							
I							
-50 dBm							
co. /p							
-60 dBm							
CF 2.402 G	Hz			691	pts		Span 8.0 MHz
) (Meacuring	· · · · · · · · · · · · · · · · · · ·	10.05.2022
					measuring		14:32:25

Date: 10.MAY.2022 14:32:25

Spectrum				
Ref Level 30.00 dBm Att 30 dB	Offset 12.43 dB SWT 1 ms		Auto Sweep	
Count 100/100			nate encop	
1Pk View				0.01.00
		M	1[1]	-0.64 dBm 2.4411270 GHz
20 dBm				+ +
10 dBm				
0 dBm		M1		
o ubin				
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.441 GHz		691 pts		Span 8.0 MHz

2DH1_Ant1_2441

Date: 10.MAY.2022 14:35:34

			_				_
Spectrum							
Ref Level 30.00	dBm Offset	12.43 dB 🥃 RB	W 3 MHz				
	OdB SWT		3W 10 MHz	Mode	Auto Sweep		
Count 100/100							
1Pk View							
				M	1[1]		-0.47 dBn
						2.48	01040 GH
20 dBm						 	
10 dBm							
LO UDITI							
			M:	1			
D dBm							
-10 dBm	_						
-20 dBm							
-20 ubm							
-30 dBm	_					 	
-40 dBm						 	
-50 dBm							
oo abiii							
-60 dBm		+ +					
CF 2.48 GHz			691 pt	e		Sna	n 8.0 MHz
			oszpi			 opu	10.05.2022
				Mea	suring	1000	

Date: 10.MAY.2022 14:38:29

						Ē
Spectrum						(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Ref Level 30.00 dBr		12.43 dB 🥃	RBW 3 MHz			
Att 30 d	B SWT	1 ms 👄	VBW 10 MHz	Mode Auto Sweep)	
Count 100/100						
1Pk View	-	_				
				M1[1]		-0.84 dBm
				1		2.4019650 GHz
20 dBm						
10 dBm						
			м			
0 dBm						
-10 dBm	1					~
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-oo dom						
co dom						
-60 dBm						
CF 2.402 GHz			691 pt	s	I I	Span 8.0 MHz
1 T				Measuring		10.05.2022

3DH1_Ant1_2402

Date: 10.MAY.2022 14:51:34

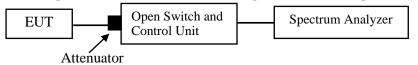
Cu a atur una	ר							E
Spectrum			10.10					(V
Ref Level 30.0			43 dB 😑					
Att Count 100/100	30 GB 8	WТ	1 ms 🖷	VBW 10 MH	z Mode	Auto Sweep		
1Pk View								
IPK VIEW						1[1]		-0.41 dBm
					141	1[1]		09880 GHz
20 dBm							 2.11	0,000 011
10 dBm								
LO UBIN								
a da a				M	1			
) dBm		_	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-10 dBm								
20 dBm								
-30 dBm								
40 dBm								
-50 dBm								
-60 dBm								
CF 2.441 GHz				691	pts		Spa	n 8.0 MHz
					Mela	suring	440	0.05.2022

Date: 10.MAY.2022 14:53:56

Spectrum			
Ref Level 30.00 dBm	Offset 12.43 dB 🥃	RBW 3 MHz	· · · · · ·
Att 30 dB	SWT 1 ms 👄	VBW 10 MHz Mode Auto Sweep)
Count 100/100			
1Pk View			
		M1[1]	-0.31 dBm
			2.4801390 GHz
20 dBm			
10 dBm			
0 dBm		M1	
0 ubiii			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
-40 UBIII			
-50 dBm			
-60 dBm			
CF 2.48 GHz		691 pts	Span 8.0 MHz
		551 pts	
		Measuring	4/4 10552052

3DH1_Ant1_2480

Date: 10.MAY.2022 14:57:03


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

The testing was performed by Cat Kang on 2022-05-10.

EUT operation mode: Transmitting

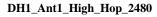
Test Result: Compliant.

Conducted Band Edge Result:

				DH1_Ant1_	Low_240	2			
Spectrum									
Ref Level 2	0.00 dBn	n Offset	12.43 dB	RBW 100 kH;	z				
Att	30 di	3 SWT	246.5 µs	VBW 300 kH	Z Mode A	uto Fi	FT		
Count 300/30	D								
1Pk View									
					M1	[1]			2.34 dBr
10 dBm								2.4	+01880 GH
					M2	[1]			-45.88 dBr
0 dBm					<u> </u>			. 2.4	100000 4 H
					I				
-10 dBm								+	
01	-17.660	dBm							1 1
-20 dBm 01	-17.000								
-30 dBm									
-30 dBm									
-40 dBm								_	ME
								M3	T T
150 dBrits when	واللعوت إلى مراقع	- Aydowar	والمعاليه	when my working and	marchan	الرائلين	b ng buladede gu	- heating toget	une and
					I				
-60 dBm									
-70 dBm					I				
-70 dBm									
Start 2.3 GHz				691 p	ts			stop	2.405 GHz
larker	T	N		N	1 5		-		
Type Ref M1	1	X-valu	88 GHz	<u>Y-value</u> 2.34 dBm	Functi	on	Fu	nction Result	ι
M1 M2	1		88 GHZ 2.4 GHZ	-45.88 dBm					
M2 M3	1		39 GHz	-49.51 dBm					
M4	1		78 GHz	-45.82 dBm					
	<u> </u>					-			10.05.2022

Date: 10.MAY.2022 12:17:03

DH1_Ant1_High_2480


Spectrun	n						
Ref Leve Att Count 300,	3	dBm Offset D dB SWT		RBW 100 kHz VBW 300 kHz	Mode Auto	Sweep	
1Pk View	/ 300						
JIN NOW					M1[1]		3.10 dBr
10 dBm	M1		+		M2[1]		2.480010 GH -45.17 dBr
0 dBm	8						2.483500 GH
u ubiii							
-10 dBm	HA-	_					
-20 dBm	D1 -16.	900 dBm					
-20 aBm							
-30 dBm	HL-						
	R 1 .	M4					
-40 dBm		2	M3	an more man	malling	mound	who we show how here and
-50 dBm							
-60 dBm							
-70 dBm							
-/o ubiii							
Start 2.47	GHz			691 pt	5		Stop 2.55 GHz
larker							
Type Re	f Trc	X-valı	ie	Y-value	Function	Fu	nction Result
M1	1		001 GHz	3.10 dBm			
M2	1	2.4	835 GHz	-45.17 dBm			
MЗ	1		2.5 GHz	-45.17 dBm			
M4	1	2.484	957 GHz	-39.87 dBm			
					Measuring		10.05.2022

Date: 10.MAY.2022 12:38:39

Spectrum										T
Ref Level	20.00 dBr	n Offset	12.41 dB (RBW 100 k	Ηz					
Att	30 d	B SWT	246.5 µs (📄 VBW 300 k	Hz Mode	Auto F	FFT			
Count 300/3	00									
1Pk View										
					M	1[1]				1.75 dBr
10 dBm									2.40	04010 GH
					M	2[1]			-8	50.06 dBa
									2.40	30000 GH
-10 dBm —										
	1 -18.250	l dBm								
-20 dBm	1 -18.200	Jubin								
-30 dBm										
30 uBm										
-40 dBm										
				M4					MЗ	ма
SO UBM	طعور والعرب العربية المع	- month of the state	, www.www.www.www.www.www.www.www.www.ww	Anna	Mark Congression	-	herner money	Andrea	مىچەر <mark>ي</mark> ەمىر	nuluh
-60 dBm										
-70 dBm										
Start 2.3 GH	12			691	nte				Stop 2	.405 GHz
larker	12			091	pts				3(0) 2	.105 012
	Trc	X-valu	e	Y-value	Fund	tion	1	Function	Result	
M1	1		401 GHz	1.75 dB						
M2	1		2.4 GHz	-50.06 dB						
M3	1	2	.39 GHz	-49.91 dB	m					
1913										

DH1_Ant1_Low_Hop_2402

Date: 10.MAY.2022 12:18:19

Ref Level	20.00	iBm Offset	12.43 dB 🧉	RBW	100 kHz					<u> </u>
Att	30	dB SWT	1.1 ms 🧉	VBW	300 kHz	Mode	Auto S	weep		
Count 300/3	00									
1Pk View										
						M	1[1]		3.16	
a dBm									2.472950	
MI						M	2[1]		-44.19	
MARA H	<u>h</u>		+					1	2.483500	GH
UNUUNU	90. – A									
10 984	U(
20 dBm	1 -16.8	340 dBm								
	1									
30 dBm —	_									
			Ma							
40 dBm	A.		La Maria and and and and and and and and and an		transler-		Autor	man	mannen	met
50 dBm			1							
50 dBm —				-						
70 dBm										
tart 2.47 G	Hz				691 pts				Stop 2.55	GHz
arker		-								
	Trc	X-valu		<u>Y-v</u>		Func	Function		unction Result	
M1 M2	1		295 GHz 335 GHz		.16 dBm .19 dBm					
M2 M3	1		2.5 GHz		.19 dBm					
M4	1		536 GHz		.29 dBm					

Date: 10.MAY.2022 12:39:21

			-	~····		-			
Spectrum	,								
Ref Level	20.00 d	Bm Offset	12.43 dB	RBW 100 kH	z				
Att	30	dB SWT	246.5 µs (💿 VBW 300 kH	z Mode	Auto F	FT		
Count 300/	300								
1Pk View									
					M1	[1]			-3.65 dBn
10 dBm									2.402040 GH
					M2	[1]			-50.47 dBn
0 dBm —									2.400000 AL
									X I
-10 dBm									
-20 dBm	D1 -23.6	50 dBm							
-30 dBm	01 -20.0	SO abin							
-30 ubiii									
-40 dBm		_		M4					
				· · · · · · · · · · · · · · · · · · ·	.			MB	Ma
490'dBmuth	ىيلىپلىسالىيى.	with-the the state	welger have a sec	monton	An State of the st	سيعيده	www.	ward warding	لى كەنتىرىيەنلىق كە
co do									
-60 dBm									
-70 dBm									
/ 0 0.0									
Start 2.3 G	Hz			691 p	te			St	op 2.405 GHz
Marker	112			051					op 2.100 driz
	ef Trc X-value		ie I	Y-value	Funct	ion		Function Re	sult
M1	1		204 GHz	-3.65 dBm					
M2	1		2.4 GHz	–50.47 dBm					
M3	1		.39 GHz	-48.31 dBm					
M4	1	2.346	261 GHz	-46.94 dBm	1				
					Meas	urine.		III 420	10.05.2022

2DH1_Ant1_Low_2402

Date: 10.MAY.2022 14:26:30

Spectrum Ref Level 20.00 dBm Offset 12.43 dB 🖷 RBW 100 kHz Att 30 dB SWT 1.1 ms 👄 VBW 300 kHz Mode Auto Sweep Count 300/300 ●1Pk View M1[1] -2.88 dBm 2.480010 GHz 10 dBm-M2[1] -45.26 dBm 2.483500 GHz 0 dBm· -10 dBm -20 dBm D1 -22.880 dBm -30 dBm M 3 -40 dBm Twee my almos and the hard and المراجعة mount -50 dBm -60 dBm -70 dBm-Start 2.47 GHz 691 pts Stop 2.55 GHz Marker Type Ref Trc M1 1 X-value 2.48001 GHz Y-value -2.88 dBm Function Result Function -45.26 dBm -43.67 dBm M2 2.4835 GHz 1 МЗ 2.5 GHz 1 2.484957 GHz M4 1 -40.17 dBm

2DH1_Ant1_High_2480

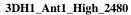
Date: 10.MAY.2022 14:38:16

			2 D1	II_IMCI_LO	"_110p_240	-	
Spectrum	·						
Ref Level	20.00	iBm Offset 1	.2.41 dB 🌘	RBW 100 kHz			
Att	30	dB SWT 2	246.5 µs	• VBW 300 kHz	Mode Auto	FFT	
Count 300/	300						
1Pk View							
					M1[1]		-4.69 dBr
10 dBm							2.401880 GH
					M2[1]		-49.94 dBn
0 dBm —							2.400000 <mark>G</mark> H
							T T
-10 dBm		_					
-20 dBm							
-30 dBm-	D1 -24.6	90 dBm					
-30 uBm							
-40 dBm							
				M4			M3 M2
-50/dBm		where he was a star of the second	A.742-002-04	ger and march of the	Wine work and	ليهمه والمستحمي الم	the man to A de mar work
60 d0							
-60 dBm							
-70 dBm							
Start 2.3 G	L17			691 pt			Stop 2.405 GHz
darker	112			051 pt			000 2.100 012
	Trc	Trc X-value		Y-value	Function	Eur	nction Result
M1	1		38 GHz	-4.69 dBm	. anotion	14	
M2	1		.4 GHz	-49.94 dBm			
M3	1		39 GHz	-50.39 dBm			
M4	1	2.3458	04 GHz	-47.19 dBm			
	1				Measuring	100 C 100 C 100 C	10.05.2022
						the second se	

2DH1_Ant1_Low_Hop_2402

Date: 10.MAY.2022 14:29:03

2DH1_Ant1_High_Hop_2480


Spectrum					- 1-				Ē
Ref Level Att Count 300/3	30	dBm Offset 1)dB SWT		RBW 100 kHz VBW 300 kHz	Mode At	uto Swee;	0		
1Pk View									
					M1[:	1]			92 dBn 350 GH
LO dBm					M2[1]		-44.	96 dBr 500 GH
	4								
20 dBm-0	1 -22.9	920 dBm							
30 dBm									
-40 dBm	- And	2 Logiante march	M3	unnum	M4	mouth	wand	hereneneralister	maler
-50 dBm									
-60 dBm									
-70 dBm									
Start 2.47 G	Hz			691 pt	s			Stop 2.	55 GHz
larker									
Type Ref		X-value		Y-value	Functio	n	Fund	ction Result	
M1	1		05 GHz	-2.92 dBm					
M2	1		35 GHz	-44.96 dBm					
M3 M4	1	2.5181	16 GHz	-44.04 dBm -41.96 dBm					
					Measu	ring		4,44	.2022

Date: 10.MAY.2022 14:40:55

			•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Spectrum									
Ref Level	20.00 d	Bm Offset	12.43 dB	RBW 100	kHz				
Att	30	dB SWT	246.5 µs	VBW 300	kHz Mod	e Auto F	FFT		
Count 300/	300								
1Pk View									
						M1[1]			-3.56 dBn
10 dBm								2	401880 GH
10 ubiii						M2[1]			-49.69 dBm
0 dBm —								2.	40000016H
									T T
-10 dBm									+ A
									1 1
-20 dBm	D1 -23.5	en dam							
	01 -25.5	OU UBIII							
-30 dBm									
-40 dBm									
ile abiii				M4				мз	ма
-StrdBha	and when the second	- Marine Branch	www.dewa	and amake when	4 Marthon	mara	and the street of the state of	-real which have been been and the second	Mayor 4
		1							
-60 dBm			+			+			
-70 dBm									
Start 2.3 G	Hz			693	l pts			Stop	2.405 GHz
Marker									
	Ref Trc X-value			Y-value		ction		Function Resu	lt
M1 M2	1		188 GHz	-3.56 d					
M2 M3	1		2.4 GHz	-49.69 d -50.21 d					
M4	1		217 GHz	-47.30 d					
	7						-		10.05.2022
								1,60	

3DH1_Ant1_Low_2402

Date: 10.MAY.2022 14:48:17

Spectrum					0 -			Ē
Ref Level	30	IBm Offset dB SWT		 RBW 100 kHz VBW 300 kHz 		uto Sweep)	(
1Pk View								
10 dBm					M1[1	-		-2.92 dB 2.480010 GF
	M1				M2[1	1]		-45.00 dB 2.483500 GF
-10 dBm	A—							
-20 dBm	1 -22.9	20 dBm						
-30 dBm		M4						
-40 dBm	6.3	Tomorem	mun		www.	mandet	grille-trachier	-
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.47 G	Hz			691 pt	5			Stop 2.55 GHz
larker								
Type Ref	Trc	X-valu	e	Y-value	Functio	n	Fun	ction Result
M1	1	2.480	01 GHz	-2.92 dBm				
M2	1		35 GHz	-45.00 dBm				
M3 M4	1		2.5 GHz 957 GHz	-44.43 dBm -40.18 dBm				
					Measu	rine		10.05.2022

Date: 10.MAY.2022 14:56:00

			501	II_IIIII_LO	"_110p_240	-	_
Spectru	m						
Ref Leve	el 20.00	dBm Offse	et 12.41 dB	RBW 100 kHz			
Att	:	30 dB SWT	246.5 µs	VBW 300 kHz	Mode Auto F	FT	
Count 30	0/300						
1Pk View							
					M1[1]		-7.17 dB
10 dBm							2.404320 G
10 ubm—					M2[1]		-50.03 dB
0 dBm							2.400000 GI
o abiii							
-10 dBm—							
-20 dBm—	-		_				
	D1 -27	.170 dBm	_				
-30 dBm—							
-40 dBm—							
-40 ubiii—				M4			МЗ М2
	Allen	المصالي وليد أمية إليان	un garage	. And summer of the	بالتولغ بسيامية فساؤسو والعا	war when when	Terry of Barrens
-60 dBm—	+		_				
-70 dBm—	+	_					
Start 2.3	GHz			691 pt	s		Stop 2.405 GH
Marker							
Type R	ef Trc	Trc X-value		Y-value	Function	Fu	nction Result
M1	1	2.	40432 GHz	-7.17 dBm			
M2	1		2.4 GHz	-50.03 dBm			
M3	1		2.39 GHz	-50.38 dBm			
M4	1	2.3	49304 GHz	-46.18 dBm			
					Measuring		10.05.2022

3DH1_Ant1_Low_Hop_2402

Date: 10.MAY.2022 14:48:57

Specti	rum											
Ref Le	evel	20.00 dBm	Offset 1	2.43 dB	👄 RBV	√ 100 kH	z					
🛛 Att		30 dB	SWT	1.1 ms	VB\	₩ 300 kH	z Mode	Auto s	Swee:			
Count 3	300/3	00										
⊖1Pk Vi	ew											
							D	11[1]				-2.91 dBm
10 dBm-											2.	471790 GHz
							D.	12[1]				-44.14 dBm
ðdam−	\rightarrow										. 2.	483500 GHz
Baal	hal 1	.h										
-10 aBr	(TH)	<u> </u>						+				+
	1	1										
-20 dBm		1 -22.910	dBm									+
00 db		1	abiii									
-30 dBm												
-40 dBm		M2			42					M4		
TO GDI	·	warn	mound	hermoniter	throw	unner	marin	mon	m	mon	mondo	merenantite
-50 dBm	∩											
-60 dBm	∩ - +-							+				+
-70 dBm	ا – ۱							-			+	+
Start 2	.47 G	Hz				691	ots				Sto	p 2.55 GHz
Marker												
Type	Ref	Trc	X-value		Y-	value	Fund	ction	1	Fun	ction Resul	it [
M1		1	2.4717	79 GHz		-2.91 dBr						
M2		1	2.483	35 GHz	- 4	44.14 dBr	n					
M3		1	2	.5 GHz		44.18 dBr	n					
M4		1	2.53075	54 GHz	-4	42.84 dBr	n					
							Me	asuring	-	CONTRACTOR OF STREET,	440	10.05.2022
									•			

Date: 10.MAY.2022 14:56:32

***** END OF REPORT *****