

SAR TEST REPORT

Product Name: Wireless Headphone

Model Name: A6611

FCC ID: 2AOKB-A6611RC

Issued For : Anker Innovations Limited

Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt

Road, Hong Kong

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park,

No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number: LGT24L225HA02

Sample Received Date: Dec. 01, 2024

Date of Test: Dec. 04, 2024

Date of Issue: Mar. 07, 2025

Max. SAR (1g): Head: 0.269 W/kg(Battery model: ZWD1040S1H) Head: 0.241 W/kg(Battery model: VDL 1040W7)

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

Table of Contents

1. General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
2. Test Standards and Limits	7
3. SAR Measurement System	8
3.1 Definition of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	14
6. SAR Evaluation Procedures	15
7. EUT Antenna Location Sketch	16
8. EUT Test Position	18
8.1 Define Two Imaginary Lines on the Handset	18
8.2 Hotspot mode exposure position condition	19
9. Uncertainty	20
9.1 Measurement Uncertainty	20
9.2 System validation Uncertainty	21
10. Conducted Power Measurement	22
10.1 Test Result:	22
11. Test Setup Photo	23
11.1 Setup Photos	23
12. SAR Result Summary	24
12.1 Head SAR	24
13. Equipment List	25
Appendix A. System Validation Plots	26
Appendix B. SAR Test Plots	28
Appendix C. Probe Calibration and Dipole Calibration Report	34

Reprot No.: LGT25B032HA02 Page 2 of 34

Revision History

Rev.	Issue Date	Contents				
00	Mar. 07, 2025	Initial Issue				

Reprot No.: LGT25B032HA02 Page 3 of 34

TEST REPORT CERTIFICATION

Applicant Anker Innovations Limited

Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt

Road, Hong Kong

Manufacture Anker Innovations Limited

Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt

Address Road, Hong Kong

Product Name Wireless Headphone

Trademark N/A

Model Name A6611

Sample number LGT2501012-1

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
ANSI/IEEE Std. C95.1-2019 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013	PASS				

Prepared by:

Della He

Engineer

Approved by:

Vita Li

Manager

Reprot No.: LGT25B032HA02

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Product Name	Wireless Headphone						
Trademark	soundcore						
Model Name	A6611	A6611					
Series Model	N/A						
Model Difference	N/A						
Device Category	Portable						
Product stage	Production unit						
RF Exposure Environment	General Population / l	Jncontrolled					
Hardware Version	V1.2						
Software Version	V3.07	V3.07					
Frequency Range	Bluetooth: 2402 ~ 2480 MHz						
	Mode	Head (W/kg)	Duty cycle used for SAR testing				
	Battery model: ZWD1040S1H						
	BR/EDR	0.269	58%				
Max. Reported SAR(1g):	BLE GFSK(1Mbps)	0.188	62%				
(Limit:1.6W/kg)	BLE GFSK(2Mbps)	0.133	33%				
Test distance: Head:0mm	Battery model: VDL 1040W7						
Head.offilli	BR/EDR	0.241	58%				
	BLE GFSK(1Mbps)	0.164	62%				
	BLE GFSK(2Mbps)	0.107	33%				
Battery	Rated Voltage:3.85V Capacity: 38mAh						
Operating Mode:	Bluetooth: GFSK +π/4 BLE: GFSK	IDQPSK+8DPSK					
Antenna Specification	Monopole Antenna						
Operating Mode	Maximum continuous	output					
Hotspot Mode	Not Support						
DTM Mode	Not Support						

Reprot No.: LGT25B032HA02 Page 5 of 34

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (℃)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Company Name:	Shenzhen LGT Test Service Co., Ltd.			
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China			
Accreditation Certificate	FCC Registration No.: 746540			
	A2LA Certificate No.: 6727.01			
	IC Registration No.: CN0136			

Reprot No.: LGT25B032HA02 Page 6 of 34

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices
9	FCC KDB 616217 D04 SAR for laptop and tablets v01r01	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Wireless Headphone Computers

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0
(B). Limits for	General Popula	tion/Uncontrolled Exposure (W/kg)
Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Reprot No.: LGT25B032HA02 Page 7 of 34

3. SAR Measurement System

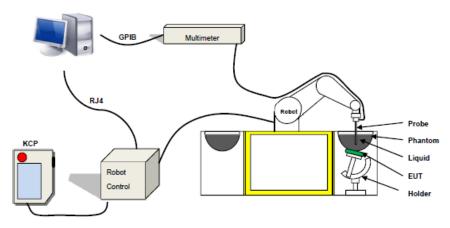
3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

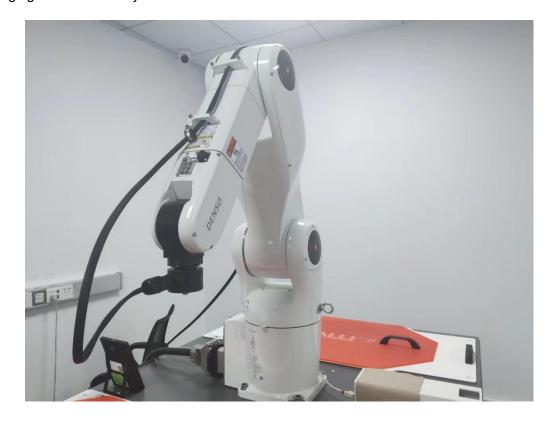

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue;

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:


COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Reprot No.: LGT25B032HA02 Page 8 of 34

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 1g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 04/22 EPGO364 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 600 MHz to 6 GHz for head & body simulating liquid.
- -Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Probe

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 06/22 SAM 148

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

Page 10 of 34 Reprot No.: LGT25B032HA02

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The uncertainty due to the liquid conductivity and permittivity arises from two different sources. The first source of error is the deviation of the liquid conductivity from its target value (max _ 5 %) and the second source of error arises from the measurement procedures used to assess conductivity. The uncertainty shall be assessed using a rectangular probability For 1 g averaging, the maximum weighting coefficient for SAR is 0,5.

IEEE SCC-34/SC-2 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and body tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following table.

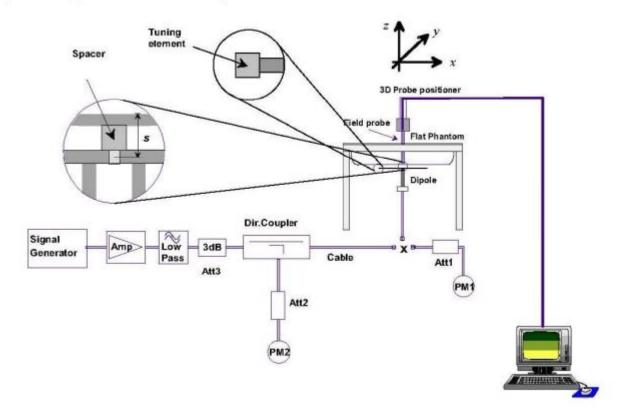
Frequency	εr	σ 10g S/m
300	45.3	0.87
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 to 2000	40.0	1.40
2100	39.8	1.49
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40
3500	37.9	2.91
4000	37.4	3.43
4500	36.8	3.94
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27

Reprot No.: LGT25B032HA02 Page 11 of 34

LIQUID MEASUREMENT RESULTS

	Am	nbient	Simulating Li	quid	Darameters	Torgot	Measured	Deviation	Limited					
	Temp. Humidity [°C] %		Frequency(MHz)	Temp. [°C]	Parameters	Target	ivieasureu	%	%					
2024-12-04	21.4	49	2402	21.0	Permittivity	39.29	39.60	0.80	±5					
2024-12-04	21.4	49	2402	2402	2402	21.0	Conductivity	1.76	1.73	-1.56	±5			
2024 42 04	04.4	04.4	04.4	40	2440	2440	04.4	Permittivity	39.22	39.84	1.59	±5		
2024-12-04	21.4	49	2440	2 44 U		21.1	Conductivity	1.79	1.79	-0.11	±5			
2024 42 04	24.4	49	2441	2441	24.0	Permittivity	39.21	39.62	1.03	±5				
2024-12-04	21.4	49			21.2	Conductivity	1.79	1.79	-0.16	±5				
00044004	04.5	F0	0.450	04.0	Permittivity	39.20	40.68	3.78	±5					
2024-12-04	21.5	50	2450	Z 4 5U	2400	2400	2400	2400 21.3	21.3	Conductivity	1.80	1.78	-1.11	±5
2024 12 04		2490	22.6	Permittivity	39.16	39.97	2.07	±5						
2024-12-04	23.9	52	2480	2480	2480	2480	23.6	Conductivity	1.83	1.84	0.44	±5		

Reprot No.: LGT25B032HA02 Page 12 of 34



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

Reprot No.: LGT25B032HA02 Page 13 of 34

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of ± 10 %.

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2024-12-04	2450	31.62	1.551	49.05	54.28	-9.64	10

Note:

- 1. The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 31.62 mW.
- 3. The results are normalized to 1 W input power.

Reprot No.: LGT25B032HA02 Page 14 of 34

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

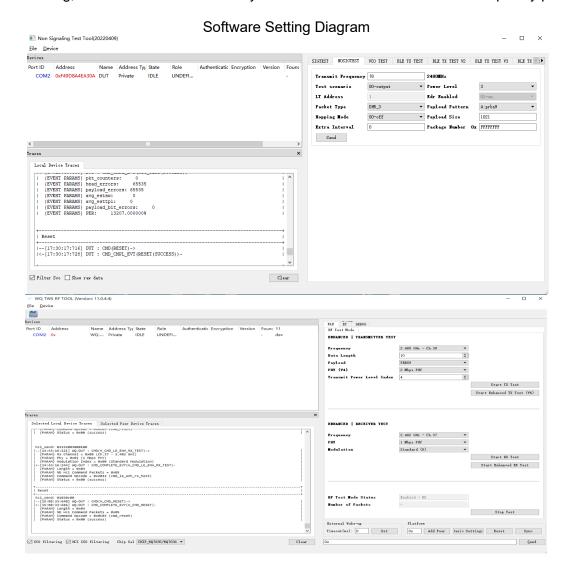
The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

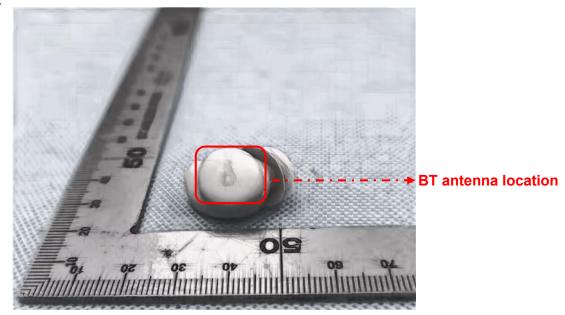
First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


Reprot No.: LGT25B032HA02 Page 15 of 34

7. EUT Antenna Location Sketch

It is a Bluetooth headset, support BT mode.

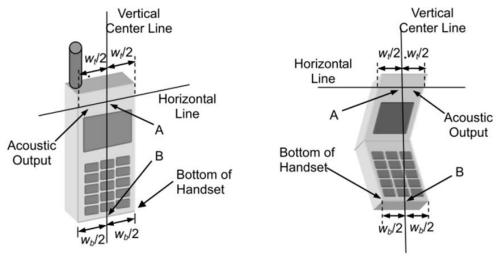

For SAR testing, the device was controlled by software to test at reference fixed frequency points.

Reprot No.: LGT25B032HA02 Page 16 of 34

Antenna Location:

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

Reprot No.: LGT25B032HA02 Page 17 of 34



8. EUT Test Position

This EUT was tested in Front Face and Rear Face.

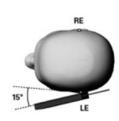
8.1 Define Two Imaginary Lines on the Handset

- (1) The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Cheek Position

- 1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- 2) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

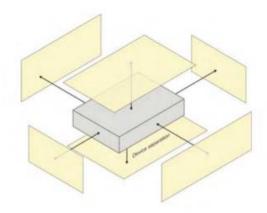
Reprot No.: LGT25B032HA02 Page 18 of 34



Title Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

Body-worn Position Conditions:


Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

8.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm (instead of 10mm) is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Reprot No.: LGT25B032HA02 Page 19 of 34

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at

approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	vi
	(+- %)	Dist.		(0)	(10g)	(+-%)	(+-%)	
Measurement System Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	√0.5	√0.5	1.43	1.43	∞
• •	5.9			√0.5	√0.5			
Hemispherical Isotropy		R	$\sqrt{3}$			2.41	2.41	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	1.81	1.81	∞
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions-				4	4			
reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mechanical	1.4	В	<u></u>	4	4	0.01	0.01	
tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
respect to phantom shell	1.7	11	γ3	1	'	0.01	0.01	~
Extrapolation, Interpolation		_	_					
and Integration Algoritms for	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Max, SAR								
Test sample Related	2.6	N	1	1	1	2.60	2.60	11
Test sample positioning Device holder uncertainty	3	N	1	1	1	3.00	3.00	11 7
Output Power Variation -	_	IN		I	ı	3.00	3.00	/
SAR Drift Measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and tissue paramet	1	11	1 1/2	'	'	1.10	1.10	•
Phantom uncertainty								
(shape and thickness	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
uncertainty)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Uncertainty in SAR								
correction for deviations in	2	N	1	1	0.84	2.00	1.68	∞
permittivity and conductivity								
Liquid Conductivity -	4	N	1	0.78	0.71	3.12	2.84	5
Measurement Uncertainty)				00	U	01.12		
Liquid Permittivity -	5	N	1	0.23	0.26	1.15	1.30	5
Measurement Uncertainty Liquid Conductivity								
(Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	∞
Liquid Permittivity		_						
(Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard		500				40.17	40.04	
Uncertainty		RSS				10.47	10.34	
Expanded Uncertainty		K				20.95	20.69	
(95% Confidence interval)		r۱				20.90	20.09	

Reprot No.: LGT25B032HA02 Page 20 of 34

9.2 System validation Uncertainty

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	vi
Measurement System						,		
Probe calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Boundary effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	0.71	0.71	∞
System detection limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	~
Modulation response	0	N	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	8
RF ambient conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient conditions- reflections	3	R	√3	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation, Interpolation and Integration Algoritms for Max, SAR	2.3	R	√3	1	1	1.33	1.33	8
Dipole	T			1	1	T	ı	
Deviation of Experimental Source from Numerical Source	5	N	1	1	1	5.00	5.00	∞
Input Power and SAR Drift Measurement	0.5	R	√3	1	1	0.29	0.29	∞
Dipole Axis to Liquid Distance	2	R	√3	1	1	1.15	1.15	8
Phantom and Tissue Parame	ters							
Phantom uncertainty (shape and thickness uncertainty)	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	2	N	1	1	0.84	2.00	1.68	∞
Liquid Conductivity - Measurement Uncertainty)	4	N	1	0.78	0.71	3.12	2.84	5
Liquid Permittivity - Measurement Uncertainty	5	N	1	0.23	0.26	1.15	1.30	5
Liquid Conductivity (Temperature Uncertainty)	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid Permittivity (Temperature Uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Combined Standard Uncertainty		RSS				10.16	10.03	
Expanded Uncertainty (95% Confidence interval)		K				20.32	20.06	

Reprot No.: LGT25B032HA02 Page 21 of 34

10. Conducted Power Measurement

10.1 Test Result:

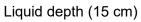
Bluetooth

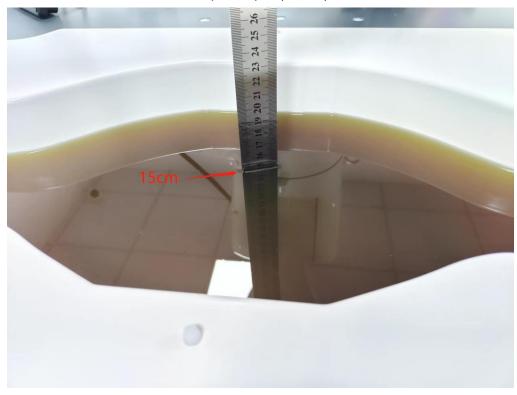
BR/EDR

	ВТ				
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	
	0	2402	11.014	12.630	
GFSK(1Mbps)	39	2441	11.071	12.797	
	78	2480	10.908	12.325	
π/4-QPSK(2Mbps)	0	2402	11.040	12.706	
	39	2441	11.079	12.820	
	78	2480	10.896	12.291	
	0	2402	11.028	12.671	
8DPSK(3Mbps)	39	2441	11.027	12.668	
	78	2480	10.877	12.238	

BLE

	BLE				
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	
	0	2402	5.288	3.379	
GFSK(1Mbps)	19	2440	5.650	3.673	
	39	2480	5.689	3.706	
	0	2402	5.325	3.408	
GFSK(2Mbps)	19	2440	5.716	3.729	
	39	2480	5.730	3.741	


Reprot No.: LGT25B032HA02 Page 22 of 34



11. Test Setup Photo

11.1 Setup Photos

Refer to Attached files: SAR Test setup photo

Reprot No.: LGT25B032HA02 Page 23 of 34

12. SAR Result Summary

12.1 Head SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift (%)	Max. Turn-up Power(dBm)	Output Power (dBm)	Scaled SAR (W/Kg)	Meas. No.
			Battery m	odel: ZWD10)40S1H				
		Back Side	2402	0.234	-0.18	11.50	11.014	0.262	/
DD/EDD	OFOK(ANAL)	Back Side	2441	0.242	0.21	11.50	11.071	0.267	/
BR/EDR	GFSK(1Mbps)	Back Side	2480	0.235	-0.12	11.50	10.908	0.269	1
		Front Side	2441	0.123	-0.10	11.50	11.071	0.136	/
		Back Side	2402	0.158	0.22	6.00	5.288	0.186	/
DI E	OFOK(4N4bma)	Back Side	2440	0.173	-0.35	6.00	5.650	0.188	2
BLE	GFSK(1Mbps)	Back Side	2480	0.172	-0.03	6.00	5.689	0.185	/
		Front Side	2440	0.094	0.16	6.00	5.325	0.110	/
DI E	BLE GFSK(2Mbps)	Back Side	2440	0.125	-0.12	6.00	5.716	0.133	3
BLE		Front Side	2440	0.057	-0.07	6.00	5.730	0.061	/
			Battery n	nodel: VDL 1	040W7				
		Back Side	2402	0.190	-0.21	11.50	11.014	0.212	/
DD/EDD	OFOK(4N4bma)	Back Side	2441	0.216	0.10	11.50	11.071	0.238	/
BR/EDR	GFSK(1Mbps)	Back Side	2480	0.210	-0.32	11.50	10.908	0.241	4
		Front Side	2441	0.119	0.15	11.50	11.071	0.131	/
		Back Side	2402	0.139	0.23	6.00	5.288	0.164	5
DI E	OFOK(4N4bma)	Back Side	2440	0.103	-0.18	6.00	5.650	0.112	/
BLE	BLE GFSK(1Mbps)	Back Side	2480	0.145	0.31	6.00	5.689	0.156	/
	Front Side	2440	0.074	-0.04	6.00	5.325	0.086	/	
BLE	CECK(OMb.z.c)	Back Side	2440	0.100	0.27	6.00	5.716	0.107	6
DLE	GFSK(2Mbps)	Front Side	2440	0.062	-0.10	6.00	5.730	0.066	/

Note:

- 1. The test separation of all above table is 0mm.
- 2. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

 b. Scaled SAR(W/kg) = Measured SAR(W/kg) *Tune-up Scaling Factor

 3. Repeated measurement is not required when the original highest measured SAR is <0.80 W/kg.

Reprot No.: LGT25B032HA02 Page 24 of 34

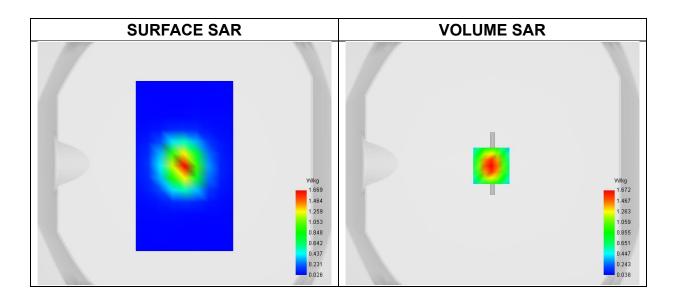
13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHz Dipole	MVG	DIP2G450	SN 06/22 DIP2G450-645	2022.02.11	2025.02.10
E-Field Probe	MVG	EPGO364	SN 04/22 EPGO364	2024.02.07	2025.02.06
Liquid Calibration Kit	MVG	OCPG 87	SN 06/22 OCPG87	2024.02.07	2025.02.06
Antenna	MVG	ANTA 73	SN 06/22 ANTA 73	N/A	N/A
Ellipsoid Phantom	MVG	ELLI 51	SN 06/22 ELLI 51	N/A	N/A
Phantom	MVG	SAM 148	SN 06/22 SAM148	N/A	N/A
Phone holder	MVG	MSH 117	SN 06/22 MSH 117	N/A	N/A
Laptop positioner	MVG	LSH 36	SN 06/22 LSH 38	N/A	N/A
Directional coupler	SHW	SHWDCP	202203280013	N/A	N/A
Network Analyzer	ZVL	R&S	116184-HC	2024.03.25	2025.03.24
Multi Meter	DMM6500	Keithley	4527252	2024.03.15	2025.03.14
Signal Generator	Keysight	N5182B	MY59100717	2024.03.09	2025.03.08
Power Sensor	R&S	Z11	116184	2024.02.23	2025.02.22
Electronic Temperature hygrometer	N/A	ST-W2318	N/A	2024.03.11	2025.03.10
Temperature hygrometer	N/A	TP101	N/A	2024.03.11	2025.03.10
Head Tissue Simulating Liquid	SPEAG	HBBL600- 10000V6	SL AAH U16 BC	1	/

Reprot No.: LGT25B032HA02 Page 25 of 34

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

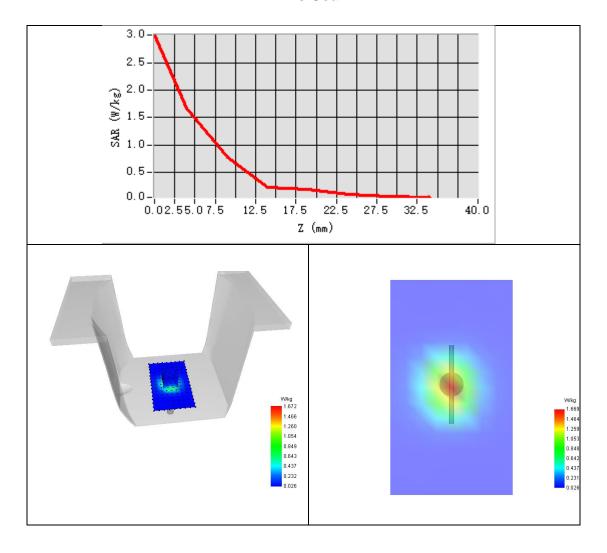

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement:2024-12-04

Experimental conditions.

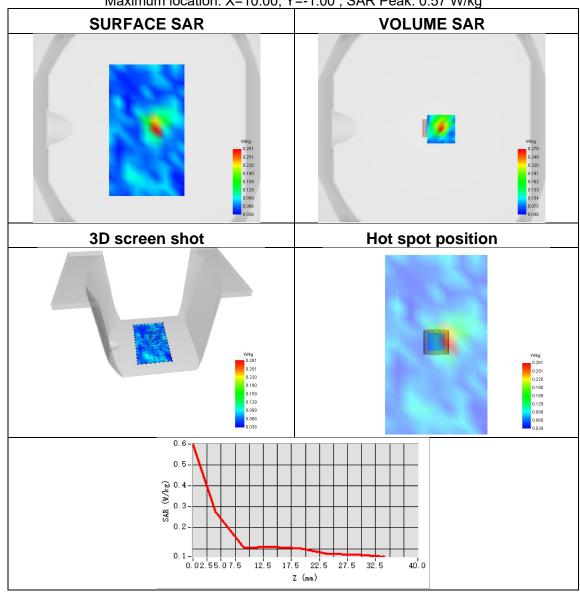
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW
Frequency (MHz)	2450.000
Relative permittivity	40.68
Conductivity (S/m)	1.77
Probe	SN 04/22 EPGO364
ConvF	2.30
Crest factor:	1:1


Maximum location: X=-1.00, Y=-2.00; SAR Peak: 2.98 W/kg

SAR 10g (W/Kg)	0.695
SAR 1g (W/Kg)	1.551

Reprot No.: LGT25B032HA02 Page 26 of 34

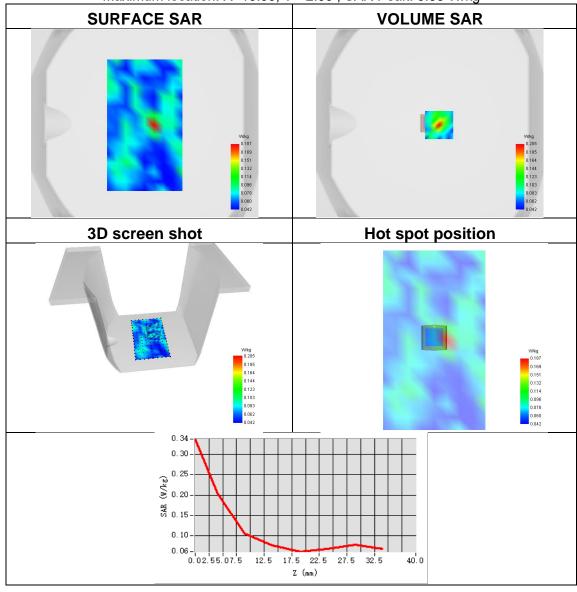
Z Axis Scan


Reprot No.: LGT25B032HA02 Page 27 of 34

Appendix B. SAR Test Plots Plot 1:

Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BR/EDR
Frequency	2480
SAR 10g (W/Kg)	0.110
SAR 1g (W/Kg)	0.235
ConvF	2.30
Relative permittivity	39.97
Conductivity (S/m)	1.84

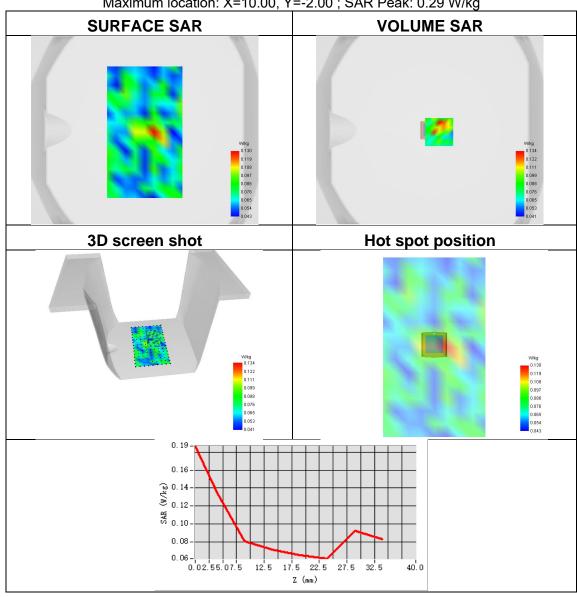
Maximum location: X=10.00, Y=-1.00; SAR Peak: 0.57 W/kg



Plot 2:

Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BLE_ GFSK(1Mbps)
Frequency	2440
SAR 10g (W/Kg)	0.084
SAR 1g (W/Kg)	0.173
ConvF	2.30
Relative permittivity	39.84
Conductivity (S/m)	1.79

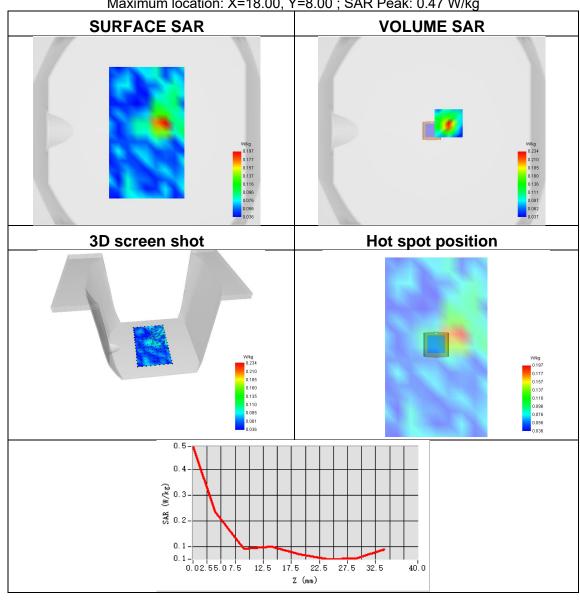
Maximum location: X=10.00, Y=-2.00; SAR Peak: 0.35 W/kg



Plot 3:

Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BLE_ GFSK(2Mbps)
Frequency	2440
SAR 10g (W/Kg)	0.069
SAR 1g (W/Kg)	0.125
ConvF	2.30
Relative permittivity	39.84
Conductivity (S/m)	1.79

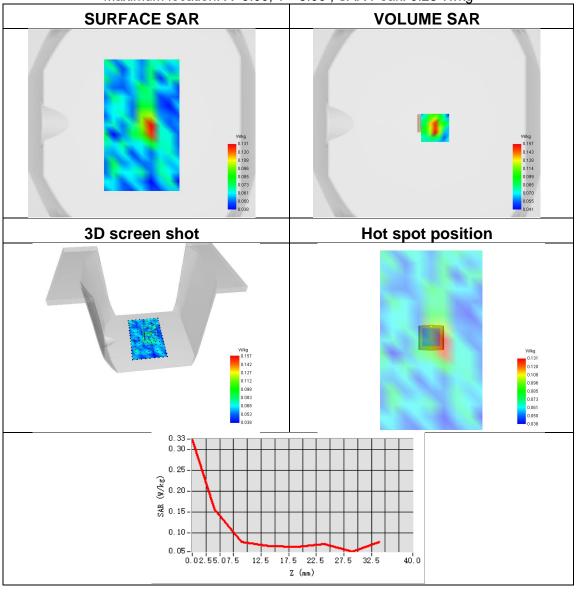
Maximum location: X=10.00, Y=-2.00; SAR Peak: 0.29 W/kg



Plot 4:

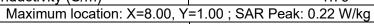
Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BR/EDR
Frequency	2480
SAR 10g (W/Kg)	0.098
SAR 1g (W/Kg)	0.210
ConvF	2.30
Relative permittivity	39.97
Conductivity (S/m)	1.84

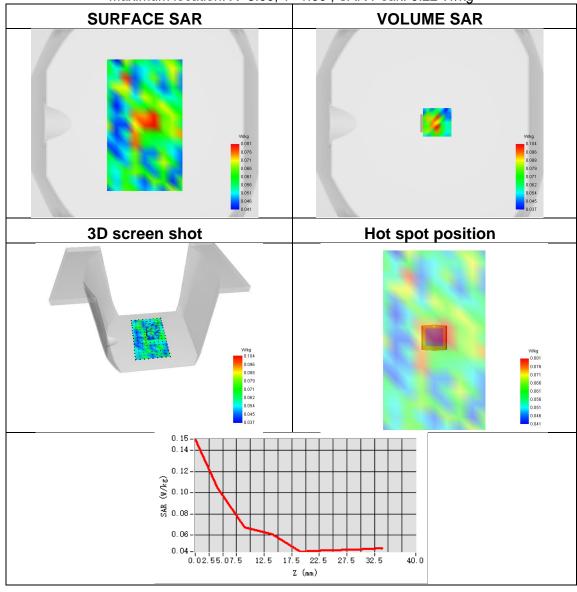
Maximum location: X=18.00, Y=8.00; SAR Peak: 0.47 W/kg



Plot 5:

Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BLE_ GFSK(1Mbps)
Frequency	2402
SAR 10g (W/Kg)	0.073
SAR 1g (W/Kg)	0.139
ConvF	2.30
Relative permittivity	39.60
Conductivity (S/m)	1.73


Maximum location: X=9.00, Y=-5.00 ; SAR Peak: 0.28 W/kg



Plot 6:

Test Date	2024-12-04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	ELLI
Device Position	Back Side
Band	Bluetooth
Signal	BLE_ GFSK(2Mbps)
Frequency	2440
SAR 10g (W/Kg)	0.057
SAR 1g (W/Kg)	0.100
ConvF	2.30
Relative permittivity	39.84
Conductivity (S/m)	1.79

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT***

Reprot No.: LGT25B032HA02 Page 34 of 34