
Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Morlab

Shenzhen City

Certificate No.

EX-7608_Mar25

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7608

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

March 20, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched. Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301_Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched. Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave_20240930s)	Sep-25

Name

Function

Signature

Calibrated by

Aidonia Georgiadou

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: March 20, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7608_Mar25

Page 1 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratur S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

ConvF DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C, D Polarization φ

 φ rotation around probe axis

Polarization θ

 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is

normal to probe axis

Connector Angle

Certificate No: EX-7608_Mar25

information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvE.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).

 No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

March 20, 2025 EX3DV4 - SN:7608

Parameters of Probe: EX3DV4 - SN:7608

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)$ A	0.68	0.65	0.70	±10.1%
DCP (mV) B	109.0	106.8	109.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
			dB	dB√μV		dB	m۷	dev.	Unc ^E
				, -					k=2
0	CW	X	0.00	0.00	1.00	0.00	126.0	±1.8%	±4.7%
		Y	0.00	0.00	1.00		128.3		
		Z	0.00	0.00	1.00		127.2		
10352	Pulse Waveform (200Hz, 10%)	X	1.65	61.13	6.65	10.00	60.0	±2.9%	±9.6%
		Y	1.68	61.26	6.73		60.0		
		Z	1.65	61.13	6.64		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.85	60.00	5.04	6.99	80.0	±2.5%	±9.6%
	, , , , , , , , , , , , , , , , , , ,	Y	10.00	72.00	9.00		80.0		
		Z	0.85	60.00	5.03		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.46	60.00	3.93	3.98	95.0	±2.8%	±9.6%
		Y	0.00	118.66	0.96		95.0		
		Z	0.47	60.00	3.93		95.0		
10355	Pulse Waveform (200Hz, 60%)	Х	13.80	155.28	12.55	2.22	120.0	±1.6%	±9.6%
		Υ	0.69	158.31	1.39		120.0		
		Z	13.98	155.20	13.38		120.0		
10387	QPSK Waveform, 1 MHz	X	0.56	62.93	11.67	1.00	150.0	±4.0%	±9.6%
		Y	0.70	63.22	11.36		150.0		
		Z	0.59	63.11	11.76		150.0		
10388	QPSK Waveform, 10 MHz	X	1.32	65.13	13.42	0.00	150.0	±1.5%	±9.6%
		Y	1.40	64.45	13.10		150.0		
		Z	1.34	65.18	13.50		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.78	65.09	15.96	3.01	150.0	±0.9%	±9.6%
		Y	1.61	63.22	15.13		150.0		
		Z	1.77	65.02	15.92		150.0		
10399	64-QAM Waveform, 40 MHz	Х	2.81	66.07	14.82	0.00	150.0	±2.0%	±9.6%
		Υ	2.73	64.80	14.15		150.0		
		Z	2.83	66.05	14.83		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.81	65.77	15.03	0.00	150.0	±3.7%	±9.6%
		Y	4.01	65.54	14.97		150.0		
		Z	3.84	65.72	15.04		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

March 20, 2025

Parameters of Probe: EX3DV4 - SN:7608

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	$T1$ ms V^{-2}	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	10.3	72.03	31.68	4.33	0.00	4.90	0.60	0.00	1.00
V	13.1	94.33	33.00	2.61	0.00	4.91	0.40	0.00	1.01
Z	10.7	75.41	31.88	4.41	0.00	4.90	0.61	0.00	1.00

Other Probe Parameters

	T
Sensor Arrangement	Triangular
Connector Angle	-25.4°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job.