

TEST REPORT

100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, 17396, Korea Tel: 031-637-8898 / Fax: 0505-116-8895

1. Client				
• Name	:	IDRO Co.,Ltd		
• Address:		11, Jiphyeondong-ro,	Sejong-si,	Republic of Korea
2. Use of Repo	ort :	FCC Approval		
3. Sample Des	scription			
Product N	Name:	UHF USB RFID Reade	r/Writer	
 Model Na 	ime :	IDRO900RWe		
4. Date of Rec	eipt:	2024-11-04		
5. Date of Tes	t :	2024-11-15 ~ 2024-	11-20	
6. Test Method	:	FCC Part 15 Subpart (C 15.247	
7. Test Results	7. Test Results Refer to the test results			
	rt is prepared acc	eport are the results of tes ording to the requirements	s of ISO / IEC	17025.
Affirmation	Tested by Jong-Myoung	g, Shin (Sign)	Technical N Kyung-Ta	
				Nov 27, 2024
	EMC	Labs Co., L	td.	

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 1 / 23

<u>Contents</u>

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information	5
3.	Test Summary	6
4.	Used equipment on test······	7
5.	Antenna Requirement·····	7
9.	TX Radiated Spurious Emission and Conducted Spurious Emission	9
10.	Conducted Emission	17
	APPENDIX	

APPENDIX I	TEST SETUP	20
ΑΡΡΕΝΠΙΧ ΙΙ	UNCERTAINTY	22

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION	
KR0140-RF2411-005	Nov 27, 2024	Initial Issue	

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 3 / 23

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant IDRO Co.,Ltd	
Applicant Address	11, Jiphyeondong-ro, Sejong-si, Republic of Korea
Contact Person	Khyung-Joo, Min
Telephone No.	+82-44-866-9560
Fax No.	+82-44-866-9559
E-mail	kjmin@idro.co.kr

1.2. Manufacturer Information

Manufacturer IDRO Co.,Ltd	
Manufacturer Address	11, Jiphyeondong-ro, Sejong-si, Republic of Korea

1.3 Test Laboratory Information

Laboratory	EMC Labs Co., Ltd.		
Laboratory Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of		
Laboratory Address	Korea		
Contact Person	Jong-Myoung, Shin		
Telephone No.	+82-31-637-8895		
Fax No.	+82-505-116-8895		
FCC Designation No.	KR0140		
FCC Registration No.	580000		
IC Site Registration No.	28751		

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name UHF USB RFID Reader/Writer	
Model Name IDRO900RWe	
FCC ID	XVY-IDRO900RWE
Rated Voltage	DC 5.0 V

2.2 Additional Information

Operating Frequency	2 402 MHz ~ 2 480 MHz
Number of channel	40
Modulation Type	GFSK
Antenna Type & Gain	PCB Pattern Antenna (with Max. gain: 1.33 dBi)
Firmware Version	1.0
Hardware Version	1.0

2.3 Test Frequency

Test mode	Test Frequency (MHz)				
	Low Frequency	Middle Frequency	High Frequency		
BLE 1M	2 402 2 442 2 480				

2.4 Mode of operation during the test

 The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.5 Modifications of EUT

- None

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
\square	15.203	-	Antenna Requirement		С
	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		NT ^{Note2}
	_	RSS GEN (6.7)	Occupied Bandwidth (99%)		NT ^{Note2}
	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power	Conducted	NT ^{Note2}
	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		NT ^{Note2}
	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission		NT ^{Note2}
\square	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С
\square	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>Note 2</u>: This test item was tested on the certified RF Module.

[Certified RF Module Information]

- FCC ID: 2APDI-BCM-DC100-XS (Test Report No.: KES-RF1-22T0190-R1)

The sample was tested according to the following specification: ANSI C63.10:2013.

Compliance was determined by specification limits of the applicable standard according to customer requirements.

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2025.11.06
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2025.11.06
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2025.11.07
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2025.11.07
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2025.11.07
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2025.11.07
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2025.11.07
ATTENUATOR	AGILENT	8493C	73193	2025.11.07
TERMINATION	HEWLETT PACKARD	909D	07492	2025.11.07
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2025.11.07
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2025.11.07
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2025.04.04
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2025.02.22
USB Peak Power Sensor	Anritsu	MA24408A	12321	2025.11.08
High Pass Filter	WT Microwave INC.	WT-A3314-HS	WT22111804-1	2025.11.07
High Pass Filter	WT Microwave INC.	WT-A1935-HS	WT22111804-2	2024.12.08
SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSU26	200444	2025.02.22
ATTENUATOR	Mini-Circuits	BW-K3-2W44+	2318-1	2025.06.28
ATTENUATOR	Mini-Circuits	BW-K3-2W44+	2318-2	2025.06.28
Balanced Temperature and Humidity Control System	ESPEC CORP.	SH-241	92004650	2025.06.13
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2024.12.22
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2026.04.01
Biconilog ANT	Schwarzbeck	VULB9168	902	2026.08.28
Horn ANT	Schwarzbeck	BBHA9120D	974	2024.11.30
Horn ANT	Schwarzbeck	BBHA9120D	1497	2025.01.04
Amplifier	TESTEK	TK-PA18H	200104-L	2025.03.14
Horn ANT	Schwarzbeck	BBHA9170	01188	2025.03.19
Horn ANT	Schwarzbeck	BBHA9170	01189	2025.03.19
AMPLIFIER	TESTEK	TK-PA1840H	220105-L	2025.03.14
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW44	101952	2025.03.14
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2025.06.27
LISN	ROHDE & SCHWARZ	ENV216	100409	2025.01.04
PULSE LIMITER	lignex1	EPL-30	NONE	2025.01.04
RF Cable	OSI MICROWAVE	PLH16D	EMC-C-009	2025.07.26
RF Cable	OSI MICROWAVE	PLH16D	RF-K-001	2025.07.26

* RF cables are managed by self-inspection per one year.

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 7 / 23

5. Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a PCB Pattern Antenna. The directional peak gain of the antenna is 1.33 dBi.)

6. TX Radiated Spurious Emission and Conducted Spurious Emission

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)							
0.009 ~ 0.490	2400/F (kHz)	300							
0.490 ~ 1705	24000/F (kHz)	30							
1705 ~ 30.0	30	30							
30 ~ 88	100 **	3							
88 ~ 216	150 **	3							
216 ~ 960	200 **	3							
Above 960	500	3							

radiator shall not exceed the field strength levels specified in the following table

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

001011		
MHz	MHz	GHz
16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
3600 ~ 4400	322 ~ 335.4	Above 38.6
	$\begin{array}{r} \mbox{MHz} \\ 16.42 \sim 16.423 \\ 16.69475 \sim 16.69525 \\ 16.80425 \sim 16.80475 \\ 25.5 \sim 25.67 \\ 37.5 \sim 38. \\ 25.73 \sim 74.6 \\ 74.8 \sim 75.2 \\ 108 \sim 121.94 \\ 149.9 \sim 150.05 \\ 156.52475 \sim 156.52525 \\ 156.7 \sim 156.9 \\ 162.0125 \sim 167.17 \\ 3345.8 \sim 3358 \\ 3600 \sim 4400 \\ 3345.8 \sim 3358 \\ \end{array}$	MHzMHz $16.42 \sim 16.423$ $399.90 \sim 410$ $16.69475 \sim 16.69525$ $608 \sim 614$ $16.80425 \sim 16.80475$ $960 \sim 1240$ $25.5 \sim 25.67$ $1300 \sim 1427$ $37.5 \sim 38.$ $1435 \sim 1626.5$ $25.73 \sim 74.6$ $1645.5 \sim 1646.5$ $74.8 \sim 75.2$ $1660 \sim 1710$ $108 \sim 121.94$ $1718.8 \sim 1722.2$ $149.9 \sim 150.05$ $2200 \sim 2300$ $156.52475 \sim 156.52525$ $2310 \sim 2390$ $156.7 \sim 156.9$ $2483.5 \sim 2500$ $162.0125 \sim 167.17$ $2690 \sim 3267$ $3600 \sim 4400$ $3332 \sim 3339$ $3345.8 \sim 3358$ $240 \sim 285$

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

6.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3.75 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

```
Peak Measurement
RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,
Trace mode = Max Hold until the trace stabilizes
```

Average Measurement RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 11 / 23

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than tuning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

6.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below. Frequency range: 30 MHz ~ 26.5 GHz
 RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak, Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

6.5 Test Result

9 kHz \sim 25 GHz Data for BLE 1M

• Low frequency

Frequency	Rea	ding	T.C.		T C D O C		Limits		Result		rgin	
Trequency	(dBu	V/m)	Pol.	I.F (dB)	T.F DCF (dB) (dB)		(dBuV/m)		(dBuV/m)		(dB)	
(MHz)	AV /	' Peak	(UD)			AV /	Peak	AV / Peak		AV / Peak		
2 378.29	38.19	41.32	V	9.00	1.80	54.0	74.0	49.0	50.3	5.0	23.7	

• Middle frequency

Fraguanay	Rea	ding		тc			Limits		Result		rgin
Frequency	(dBu	V/m)	Pol. (dB)		(dB)	(dBuV/m) AV / Peak		(dBuV/m) AV / Peak		(dB) AV / Peak	
(MHz)	AV ,	/ Peak		(00)	(48)						

High frequency

	Rea	ding			7.5 0.05		Limits		Result		Margin	
Frequency	(dBu	V/m)	Pol.	T.F (dB)	DCF (dB)	(dBuV/m)		(dBuV/m)		(dB)		
(MHz)	AV /	/ Peak		(00)	(UD)	AV /	Peak	AV /	Peak	AV /	Peak	
2 483.57	21.27	35.18	V	9.84	1.80	54.0	74.0	32.9	45.0	21.1	29.0	

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCF(Duty Cycle Factor)

- T_{on} = 0.414 ms / T_{off} = 0.212 ms

- Duty Cycle = T_{on} / ($T_{on}+T_{off}$) = 0.414 / (0.414+0.212) = 0.661

- DCF = $10 \times \log(1/\text{Duty Cycle}) dB = 10 \times \log(1/0.661) dB = 1.80 dB$

Note 3: Sample Calculation.

Margin = Limit - Result / Peak Result = Peak Reading + TF / Average Result = Average Reading + TF + DCF

TF = Ant factor + Cable Loss + Filter Loss - Amp Gain + Distance Factor

Distance Factor = 20log(applied distance/required distance) = 20log(3.75m/3m) = 1.94

6.6 Test Plot for Radiated Spurious Emission

• BLE 1M _ Low frequency

					F	lestricte	ed Bano	d – Peak
MultiView 🗄 Spectrum	Spectrum 2	X Spect	trum 3 🛛 🔉	Spectrur	m 4 🕅			∇
Ref Level 97.00 dBµV Att 0 dB SW Input 1 AC PS	● RBW 1 T 1.01 ms ● VBW 3 On Notch		o Sweep	<u> </u>		Fre	equency 2.35	500000 GHz
1 Frequency Sweep							M1[1]	 1Pk Max 41.32 dBμV
90 dBµV							2	3782917 GHz
80 dBµV								
70 dBµV								
60 dBµV								
50 dBµV								
40 dBµV							M1	
30 dBµV				~				A
20 dBpV	hopen and have been and have	www.mww.m	unabellow	v when	Watermarker	Makagunghash	WWW TWA	
10 dBµV								
0 dBµV								
2.31 GHz	1 1	1001 pts	1	8,	0 MHz/			2.39 GHz
					Rest	ricted E	Band –	Average
MultiView 🗄 Spectrum	Spectrum 2		trum 3	Spectru	m 4 🛛 🕱			\Box
Ref Level 97.00 dBµV Att 0 dB SW Input 1 AC PS	● RBW 1 T 1.01 ms ● VBW 3 On Notch	MHz MHz Mode Aut Off	SGL o Sweep Coun	t 100/100		Fre	equency 2.35	500000 GHz
1 Frequency Sweep							M1[1]	 1Rm Avg 38.19 dBµV 3779720 GHz
90 dBµV								
80 dBµV								
70 dBµV								
60 dBµV								
50 dBµV								
40 dBµV							M1	
							$ \rangle$	
30 dBµV								
30 dBµV 20 dBµV		han the second	hanne	$\Lambda_{\rm res}$	and a star and a star and a	-		men and a second
		and and a second	harrow	A	مورد و مربور	-g10,1499-yello/sold/soc		n man an a
20 dBµV		1001 pts	Jameska VIII ja mila	A	یمی میں میں میں میں میں میں میں میں میں	-gstyle=glittingstatingstatingstating		2.39 GHz

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 14 / 23

• BLE 1M _ High frequency

ign it.	equenc					F	Restrict	ed Bai	nd – Pea
MultiView 🗄	Spectrum	Spectru	m 2 🕱	Spectrum 3	X Spectru	um 4 🕅 🕱	1		▽
Ref Level 97 Att Input	7.00 dBµV 0 dB SWT 1 AC PS	1.01 ms 🖷 VBV	N/ 1 MHz N/ 3 MHz Mode ch Off	e Auto Sweep			Fr	equency 2.	4917500 GHz
Frequency S							Ν	1[1]	 1Pk Max 35.18 dBμV
90 dBµV									2.4835742 GHz
80 dBµV									
′0 dBµV									
іО dBµV									
60 dBµV									
Ю dBµV									
	and a								
30 dBµV ———	and the second state of th	a when the work of the	Multimether	ninnanullin	hundrendry	Munanmen	ador when a show	monostan	Vilahummun
20 dBµV									
10 dBµV									
0 dBµV									
2 402E CU-			1001 pt		1				2.5.045
2,4835 GHz			1001 pt	S	1.	.65 MHz/			2.5 GHz
2.4835 GHz			1001 pt:	S	1.		tricted	Band -	2.5 GHz - Averag
	Spectrum	X Spectrum		s Spectrum 3	1. X Spectru	Rest	tricted	Band -	
MultiView : Ref Level 97 Att	7.00 dBµV 0 dB SWT	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3		Rest			- Averag
MultiView = Ref Level 97 Att Input	7.00 dBµV 0 dB SWT 1 AC PS	= RBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	- Averag
MultiView E Ref Level 97 Att Input Frequency S	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr		- Averag v 4917500 GH;
MultiView Ref Level 97 Att Input Frequency S 20 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Ref Level 97 Att Input Frequency S 20 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView 3 Ref Level 97 Att Input I Frequency S 90 dbµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView P Ref Level 97 Att Input Frequency 9 90 dsµv	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView P Ref Level 97 Att Input Frequency \$ 80 dbµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide Ref Level 97 Att Input Input Input B0 B0 dBµV 90 dBµV 70 dBµV 50 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide Ref Level 97 Att Input Input 90 dbµv B0 dbµv 90 dbµv B0 dbµv 50 dbµv B0 dbµv 50 dbµv B0 dbµv	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide the second sec	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
Att	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Image: The second seco	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide Ref Level 97 Att Input Input 1000 B0 90 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide Ref Level 97 Att Input Input 1000 B0 90 dBµV	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3	Spectru SGL	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV
MultiView Provide the second sec	7.00 dBµV 0 dB SWT 1 AC PS	● RBV 1.01 ms ● VBV	m 2 🗶 🕷	Spectrum 3 e Auto Sweep	SGL Count 100/100	Rest	Fr	equency 2.	 Average 4917500 GH: 18m Avg 21.27 dBµV

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 15 / 23

6.7 Test Plot for Duty Cycle

IultiView 🔠 Spectrum	X Spectrum 2	X Spectrum 3	X Spectr	um 4 🛛 🗶			▽
Input 1 AC PS RG:VID	● RBW 3 MH 1 ms ● VBW 10 MH On Notch 0	z			Fre	quency 2.4420	
Zero Span						D2[1]	 1Pk Max -0.25 dt
00 dBµV			M1			M1[1]	- 414.000-µ 89.35 dBµ\
) dBµV					D3		414.000 µ
0 dBµV							
9-d8µV TRG 70.000 di	3μV						
о dвµv							
) dвµv							
wentur mentalista			horsonuk	whomenteento	and		
) dBµV							
0.0854							
) dBµV							
) dвµvТRG							
F 2.442 GHz		10	01 pts				100.0 µs

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 16 / 23

7. Conducted Emission

7.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

7.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

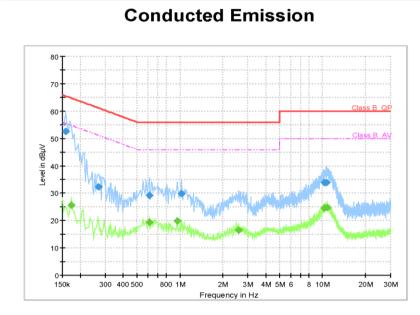
Fraguana	y Range (MHz)	Conducted Limit (dBuV)					
Frequenc	y Range (MHZ)	Quasi-Peak	Average				
0.1	5~0.5	66 to 56 *	56 to 46 *				
0	.5 ~ 5	56	46				
5	5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

7.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

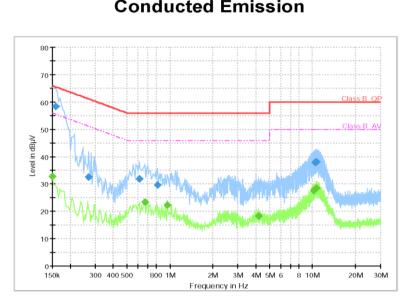
- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 17 / 23

7.4 Test Result

• AC Line Conducted Emission (Graph)

IDRO900RWe_BLE_L1



Final_Result

Frequency	QuasiPeak (dBµV)	CAverage	Limit (dBµV)	Margin	Bandwidth (kHz)	Line	Corr. (dB)
(MHz)		(dBµV)		(dB)		14	
0.158	52.55		65.57	13.02	9	L1	19.7
0.174		25.56	54.77	29.21	9	L1	19.8
0.270	32.29		61.12	28.83	9	L1	19.5
0.610		19.45	46.00	26.55	9	L1	19.7
0.610	29.30		56.00	26.70	9	L1	19.7
0.960		19.90	46.00	26.10	9	L1	19.7
1.030	29.84		56.00	26.16	9	L1	19.7
2.570		16.56	46.00	29.44	9	L1	19.7
10.300		24.45	50.00	25.55	9	L1	19.9
10.340	33.77		60.00	26.23	9	L1	19.9
10.710	33.98		60.00	26.02	9	L1	19.9
10.770		24.84	50.00	25.16	9	L1	19.9

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 18 / 23

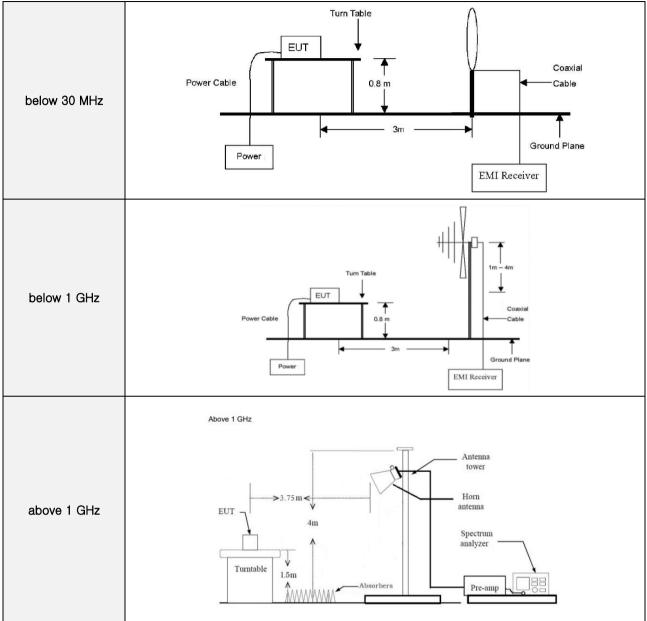
Conducted Emission

Final_Result

IDRO900RWe_BLE_N

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.150	(abpt)	32.78	56.00	23.22	9	N	19.6
0.158	58.38		65.57	7.19	9	N	19.7
0.270	32.57		61.12	28.55	9	N	19.6
0.610	31.91		56.00	24.09	9	N	19.8
0.670		23.34	46.00	22.66	9	N	19.8
0.820	29.62		56.00	26.38	9	N	19.8
0.960		22.30	46.00	23.70	9	N	19.8
4.210		18.34	46.00	27.66	9	N	19.8
10.160		27.60	50.00	22.40	9	N	20.0
10.380	37.96		60.00	22.04	9	N	20.0
10.680		28.53	50.00	21.47	9	N	20.0
10.690	38.05		60.00	21.95	9	N	20.0

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 19 / 23


APPENDIX I

TEST SETUP

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 20 / 23

Radiated Measurement

• Conducted Measurement

Conducted	EUT Attenuator Spectrum Analyzer

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 21 / 23

APPENDIX II

UNCERTAINTY

EMCLabs-QPF-26-25 [Revision_01 / 2024. 04. 15] Page 22 / 23

Measurement Item	Expanded Uncertainty U = <i>k</i> Uc (<i>k</i> =2)
Conducted RF power	0.34 dB
Conducted Spurious Emissions	0.34 dB
Radiated Spurious Emissions	5.82 dB
Conducted Emissions	2.00 dB