FCC TEST REPORT					
	FCC ID: 2AXCT-Y60				
Report No.	SSP24080309-1E				
Applicant :	Shenzhen Xiang Xiang Yu Technology Co., Ltd				
Product Name	Bluetooth wireless stereo headset				
Model Name :	<u>Y60</u>				
Test Standard :	FCC Part 15.247				
Date of Issue :	2024-09-09				
CCUT					
Shenzhen CCUT Quality Technology Co., Ltd.					
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)					
This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.					

Test Report Basic Information

Applicant: Address of Applicant	Shenzhen Xiang Xiang Yu Technology Co., Ltd A601, A301, No.6, Qinhui Road, Guxing community, Xixiang street, Bao'an District, Shenzhen, China			
Manufacturer: Address of Manufacturer:	Shenzhen Xiang Xiang Yu Technology Co., Ltd A601, A301, No.6, Qinhui Road, Guxing community, Xixiang street, Bao'an District, Shenzhen, China			
Product Name	Bluetooth wireless stereo headset			
Brand Name:	-			
Main Model	Y60			
Series Models	-			
Test Standard	FCC Part 15 Subpart C ANSI C63.4-2014 ANSI C63.10-2013			
Date of Test	2024-08-31 to 2024-09-06			
Test Result	PASS			
Tested By	Leonis Cai (Leonis Cai) Lieber Owang (Lieber Ouyang)			
Reviewed By	Lieber Ouyang (Lieber Ouyang)			
Authorized Signatory	Lahn Peng (Lahm Peng)			
_	to the above client company and the product model only. It may not be ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in e to presented test sample.			

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	-
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	
4.1 Standard and Limit	
4.2 Test Procedure	
4.3 Test Data and Results	
5. Radiated Emissions	
5.1 Standard and Limit	
5.2 Test Procedure	
5.3 Test Data and Results	
6. Band-edge Emissions(Radiated)	
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	
7. Frequency Hopping System	
7.1 Standard and Limit	
7.2 Test Procedure	
7.3 Test Data and Results	
8. Dwell Time	
8.1 Standard and Limit	
8.2 Test Procedure 8.3 Test Data and Results	
9. Maximum Peak Conducted Output Power	
•	
9.1 Standard and Limit	
9.2 Test Procedure	
10. Occupied Bandwidth(-20dB)	
10.1 Standard and Limit.	
10.1 Standard and Limit. 10.2 Test Procedure	
10.2 Test Procedure	
11. Carrier Frequencies Separation	
11.1 Standard and Limit	
11.2 Test Procedure	
11.3 Test Data and Results	
12. Number of Hopping Channel	
12.1 Standard and Limit	
12.1 Standard and Emile 12.2 Test Procedure	
12.3 Test Data and Results	
13. Band-edge Emission(Conducted)	
13.1 Standard and Limit	
13.2 Test Procedure	
13.2 Test Procedure 13.3 Test Data and Results	39
	39 39
13.3 Test Data and Results	39 39 44
13.3 Test Data and Results	39 39 44 44
13.3 Test Data and Results 14. Conducted RF Spurious Emissions 14.1 Standard and Limit	

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-09-06	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Bluetooth wireless stereo headset		
Trade Name:	-		
Main Model:	Y60		
Series Models:	-		
Rated Voltage:	DC 3.7V by battery, USB 5V Charging		
Battery:	DC 3.7V, 25mAh		
Test Sample No:	SSP24080309-1		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Wireless Specification	
Wireless Standard:	Bluetooth BR/EDR
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	-5.71dBm
Number of Channel:	79
Channel Separation:	1MHz
Modulation:	GFSK, Pi/4 DQPSK
Antenna Gain:	1.95dBi
Type of Antenna:	SMD Antenna
Type of Device:	Portable Device Mobile Device Modular Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	escription		Remark			
TM1	Low	est Channel		2402MHz(DH5)	/2DH5)		
TM2	Mide	dle Channel		2441MHz(DH5/2DH5)			
TM3	High	est Channel		2480MHz(DH5,	/2DH5)		
TM4	ŀ	Hopping		2402MHz~2480MHz			
TM5	Playing	with charging		Bluetooth playing			
List and Detai	ls of Auxiliary	y Cable					
Descri	Description Length (cm)			Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-			-	-			
List and Detai	List and Details of Auxiliary Equipment						
Description Manufacturer		r	Model	Serial Number			
Adap	Adapter HUAWEI			HW-110600C02	JL28L4P2D06114		
					-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	21	2422	41	2442	61	2462
02	2403	22	2423	42	2443	62	2463
03	2404	23	2424	43	2444	63	2464
04	2405	24	2425	44	2445	64	2465
05	2406	25	2426	45	2446	65	2466
~	~	~	~	~	~	~	~
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	methodology		
ECC Dout 15 Submout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C65.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emissions					
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
		Conducted RF Testing	5		•		
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A		
DUT Test Software	JL	FCC_assist_1.0.2.2.exe	N/A	N/A	N/A		

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(a)(1), (g), (h)	Frequency Hopping System	Passed
FCC Part 15.247(a)(1)(iii)	Dwell Time	Passed
FCC Part 15.247(b)(1)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.215(c)	Occupied Bandwidth(-20dB)	Passed
FCC Part 15.247(a)(1)	Carrier Frequencies Separation	Passed
FCC Part 15.247(a)(1)(iii)	Number of Hopping Channel	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the essen Failed: The EUT does not comply with th N/A: Not applicable	ntial requirements in the standard e essential requirements in the standard	

3. Antenna Requirement

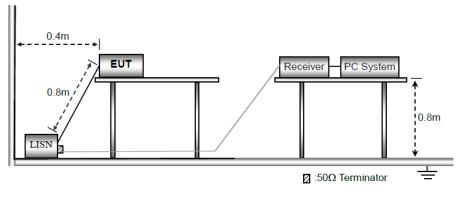
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an SMD antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)							
(MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56	56 to 46						
0.5-5	56	46						
5-30	50							
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz								
Note 2: The lower limit applies	Note 2: The lower limit applies at the band edges							

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

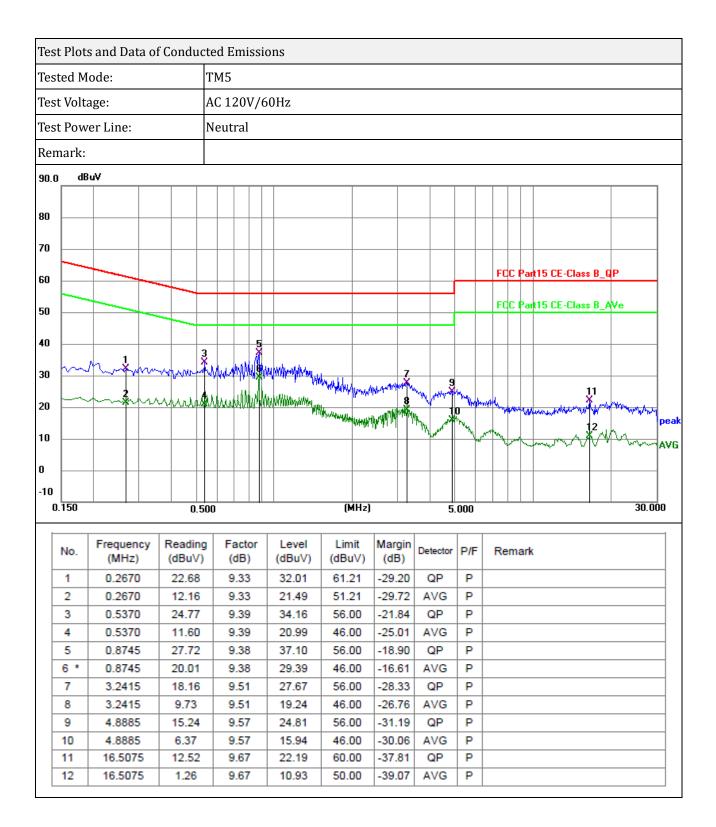
Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiverAttenuation: 10dBStart Frequency: 0.15MHzStop Frequency: 30MHzIF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.


e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below: Remark: Level = Reading + Factor, Margin = Level - Limit

Test	t Plot	s and Data of	Conduct	ed Emissic	ons						
Tes	ted M	ode:	T	`M5							
Tes	t Volta	age:	A	C 120V/6	0Hz						
Tes	t Pow	er Line:	L	live							
Ren	nark:										
90.0		uΨ									
											1
80	<u> </u>										-
70											
10											
60										FCC Part15 CE-Class B_QP	-
50										FCC Part15 CE-Class B_AVe	
40		1		3	5						-
30	~	man	and many	. Anna Musika	whether whether whether	N					-
	h				5	m manual with	www.plut	The war	MILA.	11	
20			conner	CPROVER AND	Contraction of the second	Herrier and Marine and Marin And Marine and	B Literate		0	and the second water and the second	peak
10	<u> </u>			11 14 14 14 14 14 14 14 14 14 14 14 14 14 1						man 12	AVG
0											
-10											
	.150		0.50	<u> </u> 0		(MHz)		5.	000	30.0)00
L											_
	No.	Frequency (MHz)	Reading (dBuV)	Factor	Level	Limit	Margin	Detector	P/F	Remark	
	1	0.2490	24.38	(dB) 9.49	(dBuV) 33.87	(dBuV) 61.79	(dB) -27.92	QP	P		_
	2	0.2490	13.02	9.49	22.51	51.79	-29.28	AVG	P		-
	3	0.8745	24.55	9.57	34.12	56.00	-21.88	QP	Ρ		
	4 *	0.8745	17.10	9.57	26.67	46.00	-19.33	AVG	Ρ		
	5	1.2705	23.34	9.63	32.97	56.00	-23.03	QP	P		
	6 7	1.2705 2.9670	12.35	9.63 9.69	21.98 27.95	46.00 56.00	-24.02 -28.05	AVG QP	P P		_
	8	2.9670	18.26 5.73	9.69	15.42	46.00	-28.05	AVG	P		-
	9	5.0640	14.25	9.76	24.01	60.00	-35.99	QP	P		\neg
	10	5.0640	1.37	9.76	11.13	50.00	-38.87	AVG	Ρ		
	11	16.2285	11.49	9.80	21.29	60.00	-38.71	QP	Ρ		
	12	16.2285	0.47	9.80	10.27	50.00	-39.73	AVG	Ρ		

5. Radiated Emissions

5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

	According to the rule r co r art 15.207, K	certaing to the rule ree rare 13.203, Radiated emission milit for a whereas device as below.							
	Erequer que et emission (MUz)	Radiated emissions (3m)							
	Frequency of emission (MHz)	Quasi-peak (dBuV/m)							
	30-88	40							
	88-216	43.5							

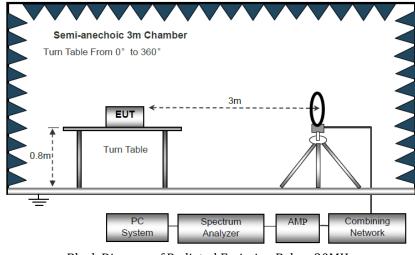
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

Note: The more stringent limit applies at transition frequencies.

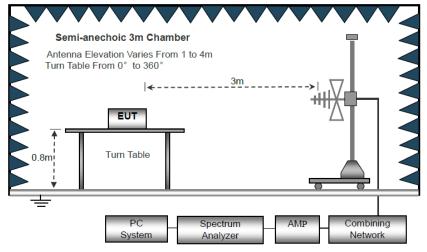
The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

46

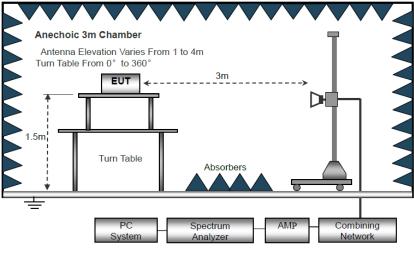
54


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


216-960

Above 960


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.

f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Rad	iated	Emission Te	est Data (3	0MHz to	1GHz)										
Test	ted M	ode:		TM	ТМ1										
Test	t Ante	nna Polariza	ation:	Но	rizontal										
Ren	nark:														
80.0	dB	uV/m													
50.0															1
70															
70															1
60															
DU								FI	CC Part15	RE-Class	B 30-	1000	Hz		1
50									argin -6 dl						
									aryın -o u						
40															
30													6		
											, 5		Manan	Now MARK	١
20		1				3			4	hamen	Mundary .				
	ManyAll	and when when when	with may any	2	fransister shifterd a	Walter Martin	Hunnelin	magnotic	Weat conflict.						
10	<u> </u>			(The Property of the Property											-
0.0															
	0.000		60.00			(MHz)		30	00.00					1000	_ .00
ſ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Rei	mark		
F	1	44.2752	27.06	-8.26	18.80	40.00	-21.20	QP	100	348	Р				
	2	74.3955	26.88	-12.22	14.66	40.00	-25.34	QP	100	83	Ρ				
	3	143.3261	26.65	-8.06	18.59	43.50	-24.91	QP	100	185	Ρ				
Ļ	4	327.8873	26.33	-7.13	19.20	46.00	-26.80	QP	100	297	P				
┝	5	547.0977	28.17	-2.79	25.38	46.00	-20.62	QP	100	266	P				_
	6 *	787.8513	28.69	1.36	30.05	46.00	-15.95	QP	100	83	P				

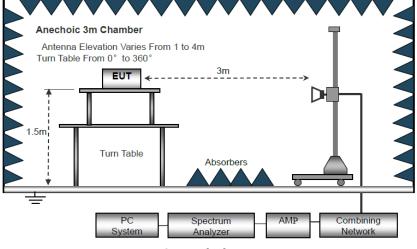
Radiated Emission Test Data (30MHz to 1GHz)														
Test	ed M	ode:		1	CM1									
Test	: Ante	nna Polariza	ation:	V	Vertical									
Rem	ıark:													
80.0	dB	uV/m												
,0.0														
70														
70														
50														
50								F	CC Part15	RE-Class	B 30-	-1000MI	Hz	
50									argin -6 d l					Γ
									aryın -o u					
40														
							+-							
30													6 X	_
										5		man	without	re-Alt
20					3		_		4	ALL AND A	WWWWWW	Mar		
	HAMAN MAN	and an and a start of the start	We wanter and have	2	3	unthermours	du under 14	entrylytogenerite	4 Walthanerdryd					
0	<u> </u>			nter in the second s	M WW		, and the had too .							
0.0														
	0.000		60.00			(MHz)		3()0.00				1	000.00
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Rem	ark	
F	1	49.5328	26.53	-8.39	18.14	40.00	-21.86	QP	100	33	Р			
	2	78.1389	27.16	-12.64	14.52	40.00	-25.48	QP	100	12	Ρ			
	3	134.0882	26.93	-8.57	18.36	43.50	-25.14	QP	100	33	Ρ			
	4	322.1886	26.08	-7.18	18.90	46.00	-27.10	QP	100	214	P			
	5	459.1144	26.52	-4.29	22.23	46.00	-23.77	QP	100	97	P			
	6 *	787.8513	29.39	1.36	30.75	46.00	-15.25	QP	100	358	P			

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lo	west Channel ([GFSK_2402M]	Hz)		
4804	74.17	-14.72	59.45	74	-14.55	Н	РК
4804	59.43	-14.72	44.71	54	-9.29	Н	AV
7206	64.67	-8.41	56.26	74	-17.74	Н	РК
7206	49.32	-8.41	40.91	54	-13.09	Н	AV
4804	77.57	-14.72	62.85	74	-11.15	V	РК
4804	60.21	-14.72	45.49	54	-8.51	V	AV
7206	63.18	-8.41	54.77	74	-19.23	V	РК
7206	47.83	-8.41	39.42	54	-14.58	V	AV
		Mi	ddle Channel (GFSK_2441M	Hz)		
4882	76.59	-14.64	61.95	74	-12.05	Н	РК
4882	62.1	-14.64	47.46	54	-6.54	Н	AV
7323	62.79	-8.28	54.51	74	-19.49	Н	РК
7323	50.8	-8.28	42.52	54	-11.48	Н	AV
4882	74.66	-14.64	60.02	74	-13.98	V	РК
4882	60.83	-14.64	46.19	54	-7.81	V	AV
7323	62.46	-8.28	54.18	74	-19.82	V	РК
7323	46.28	-8.28	38	54	-16	V	AV
		Hig	ghest Channel	(GFSK_2480M	Hz)		
4960	77.69	-14.53	63.16	74	-10.84	Н	РК
4960	61.99	-14.53	47.46	54	-6.54	Н	AV
7440	62.53	-8.13	54.4	74	-19.6	Н	РК
7440	47.68	-8.13	39.55	54	-14.45	Н	AV
4960	73.8	-14.53	59.27	74	-14.73	V	РК
4960	57.25	-14.53	42.72	54	-11.28	V	AV
7440	64.68	-8.13	56.55	74	-17.45	V	РК
7440	45.23	-8.13	37.1	54	-16.9	V	AV

Note 1: All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested. This EUT was tested in 3 orthogonal positions and the worst case position data of GFSK was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case GFSK as below:

Test Mode	Frequency	Limit	Result	
Test Mode	MHz dBuV/dBc		Result	
Louroat	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Uighost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Em	ission Test Dat	ta (Band edge	emissions)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lov	west Channel (GFSK_2402MI	Hz)		
2310	67.19	-21.34	45.85	74	-28.15	Н	РК
2310	49.37	-21.34	28.03	54	-25.97	Н	AV
2390	69.65	-20.96	48.69	74	-25.31	Н	РК
2390	50.47	-20.96	29.51	54	-24.49	Н	AV
2400	71.75	-20.91	50.84	74	-23.16	Н	РК
2400	53.67	-20.91	32.76	54	-21.24	Н	AV
2310	68.86	-21.34	47.52	74	-26.48	V	РК
2310	50.06	-21.34	28.72	54	-25.28	V	AV
2390	67.91	-20.96	46.95	74	-27.05	V	РК
2390	52.73	-20.96	31.77	54	-22.23	V	AV
2400	68.58	-20.91	47.67	74	-26.33	V	РК
2400	52.93	-20.91	32.02	54	-21.98	V	AV
		Hig	hest Channel	(GFSK_2480M)	Hz)		
2483.50	72.01	-20.51	51.5	74	-22.5	Н	РК
2483.50	53.96	-20.51	33.45	54	-20.55	Н	AV
2500	69.77	-20.43	49.34	74	-24.66	Н	РК
2500	52.66	-20.43	32.23	54	-21.77	Н	AV
2483.50	68.11	-20.51	47.6	74	-26.4	V	РК
2483.50	56.53	-20.51	36.02	54	-17.98	V	AV
2500	69.66	-20.43	49.23	74	-24.77	V	РК
2500	52.28	-20.43	31.85	54	-22.15	V	AV

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Frequency Hopping System

7.1 Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.2 Test Procedure

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

7.3 Test Data and Results

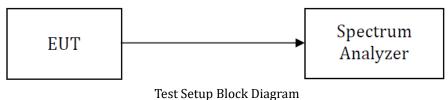
Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

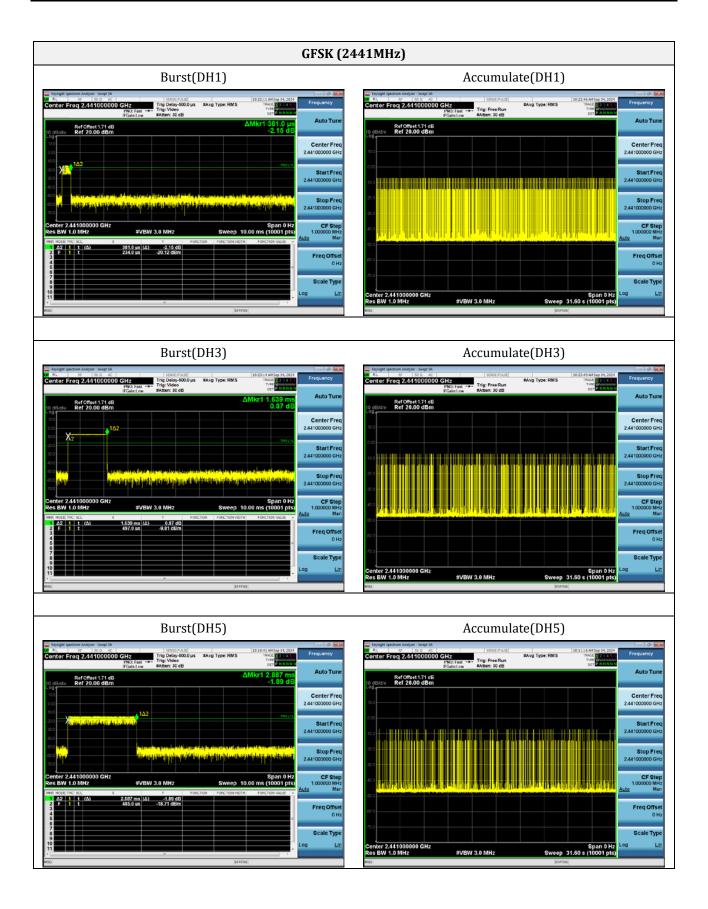
8. Dwell Time

8.1 Standard and Limit


According to 15.247 (a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

8.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Spectrum Setting: RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak

- 3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- 4) Sweep Time is more than once pulse time.
- 5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 6) Measure the maximum time duration of one single pulse.
- 7) Set the EUT for packet transmitting.
- 8) Measure the maximum time duration of one single pulse.
- 9) The EUT was set to the Hopping Mode for Dwell Time Test.

Test Setup Diock Diagra

Test Mode	Data Packet	Channel (MHz)	Pulse Duration (ms)	Dwell Time (ms)	Limit (ms)	Result
	DH1	2441	0.381	121.158	<400	Pass
GFSK	DH3	2441	1.639	250.767	<400	Pass
	DH5	2441	2.887	259.83	<400	Pass
	2DH1	2441	0.391	125.12	<400	Pass
Pi/4 DQPSK	2DH3	2441	1.644	256.464	<400	Pass
	2DH5	2441	2.892	332.58	<400	Pass

9. Maximum Peak Conducted Output Power

9.1 Standard and Limit

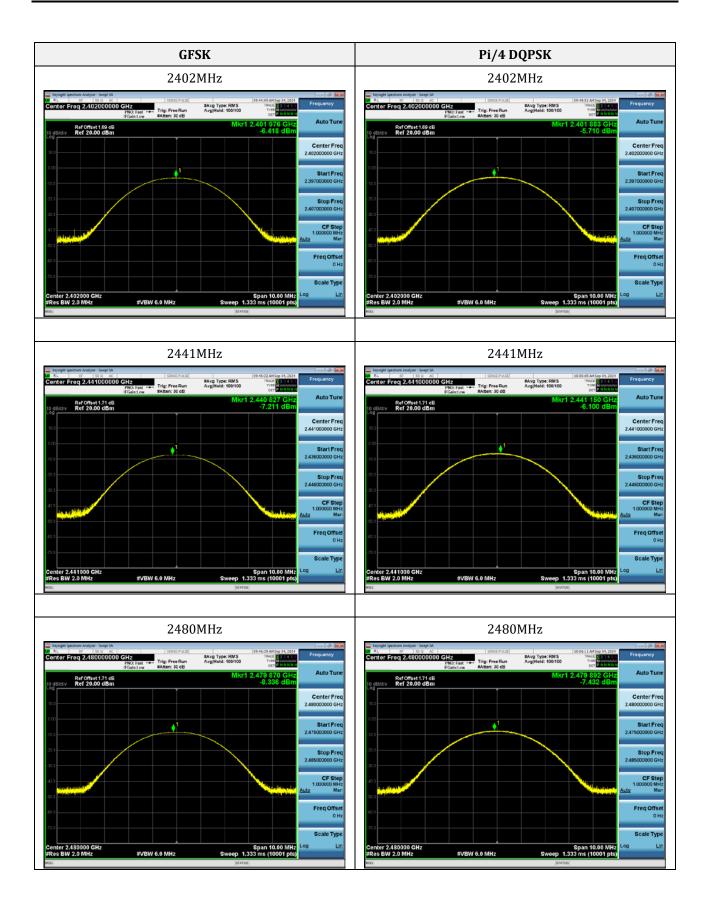
According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

9.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.


4) Measure the highest amplitude appearing on spectral display and mark the value.

5) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2402	-6.42	21	Pass
GFSK	2441	-7.21	21	Pass
	2480	-8.34	21	Pass
	2402	-5.71	21	Pass
Pi/4 DQPSK	2441	-6.1	21	Pass
	2480	-7.43	21	Pass

10. Occupied Bandwidth(-20dB)

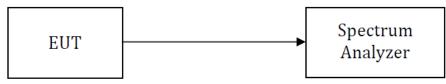
10.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.


5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel	20dB Bandwidth	99% Bandwidth	
Test Mode	(MHz)	(MHz)	(kHz)	
	2402	1	868.42	
GFSK	2441	0.988	892.50	
	2480	1.018	889.06	
	2402	1.316	1.1871	
Pi/4 DQPSK	2441	1.306	1.1924	
	2480	1.282	1.1869	

11. Carrier Frequencies Separation

11.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

11.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto, Detector = Peak.

4) By using the Max Hold function, record the separation of two adjacent channels.

5) Measure the frequency difference of these two adjacent channels by spectrum analyzer mark function. and then plot the result on the screen of the spectrum analyzer.

6) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel	Test Freq. 1 (MHz)	Test Freq. 2 (MHz)	CFS (MHz)	Limit (MHz)
GFSK	Lowest	2401.984	2402.982	0.998	0.667
	Middle	2440.98	2441.958	0.978	0.659
	Highest	2478.96	2479.984	1.024	0.679
Pi/4 DQPSK	Lowest	2401.978	2402.98	1.002	0.877
	Middle	2440.964	2441.842	0.878	0.871
	Highest	2478.82	2479.974	1.154	0.855

11.3 Test Data and Results

Note: CFS(Channel Frequency Separation) = Test Freq. 2 - Test Freq. 1

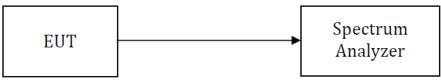
12. Number of Hopping Channel

12.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

12.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Set the spectrum analyzer on Max hold mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.

5) Set the spectrum analyzer on View mode and then plot the result on the screen of the spectrum analyzer.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Number of Hopping Channel	Limit	Test Result
GFSK	79	15	Pass
Pi/4 DQPSK	79	15	Pass

13. Band-edge Emission(Conducted)

13.1 Standard and Limit

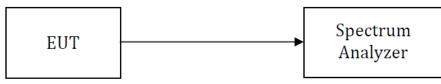
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

13.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

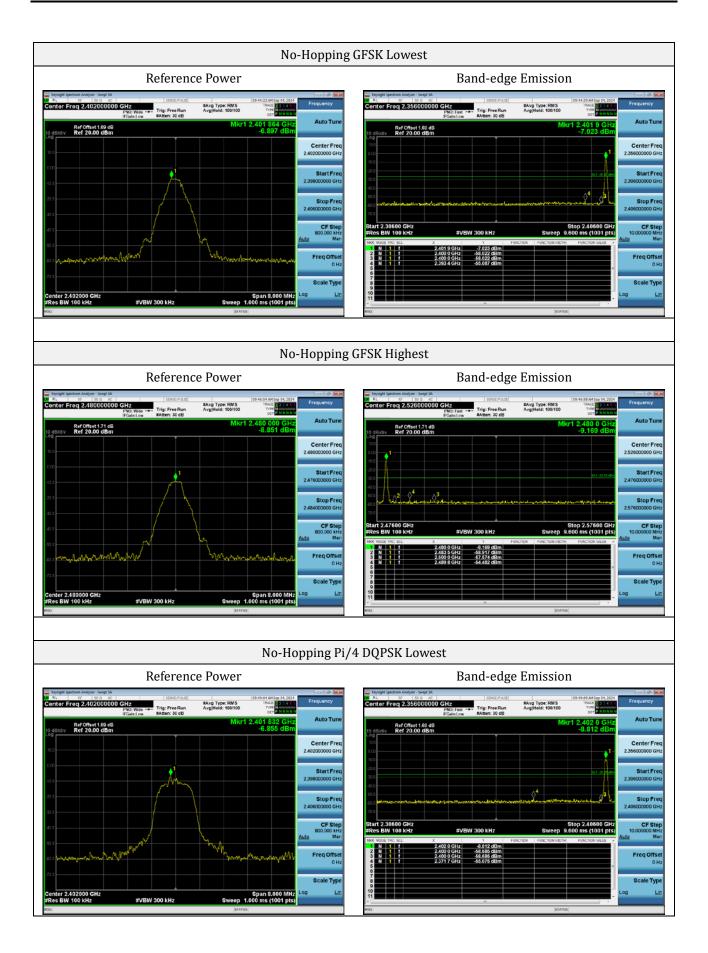
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

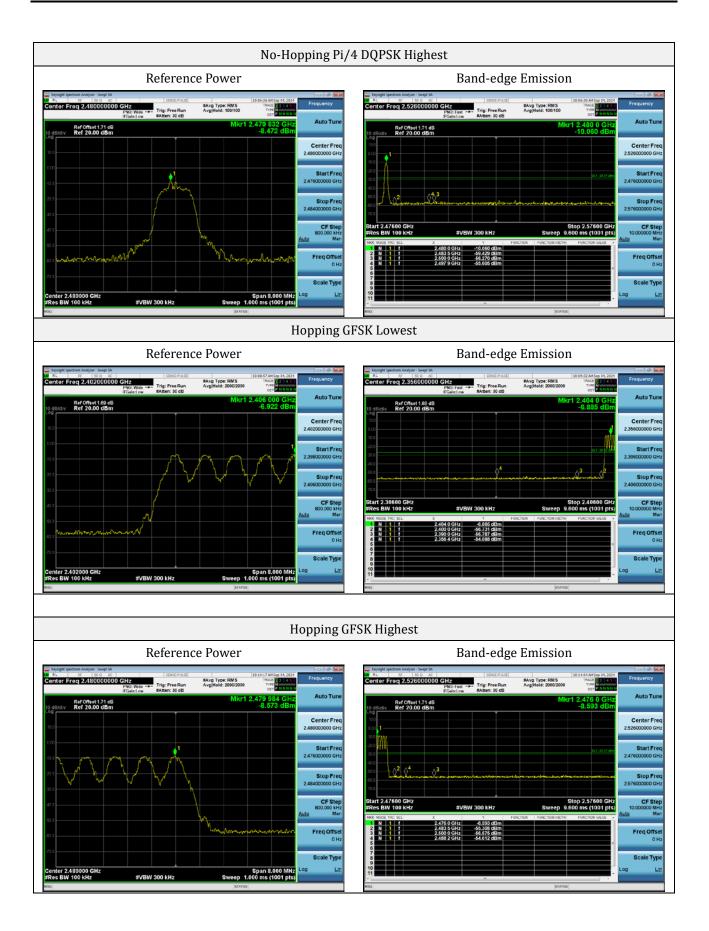
2) Set the spectrum analyzer to any one measured frequency within its operating range.


3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.


6) Measure the emission and marking the edge frequency.


7) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result		
No-Hopping							
GFSK	Lowest	2402	-48.18	-20	Pass		
	Highest	2480	-45.63	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-48.22	-20	Pass		
	Highest	2480	-47.13	-20	Pass		
Hopping							
GFSK	Lowest	2402	-47.16	-20	Pass		
	Highest	2480	-46.04	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-47.59	-20	Pass		
	Highest	2480	-45	-20	Pass		

FCC Test Report

14. Conducted RF Spurious Emissions

14.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

14.2 Test Procedure

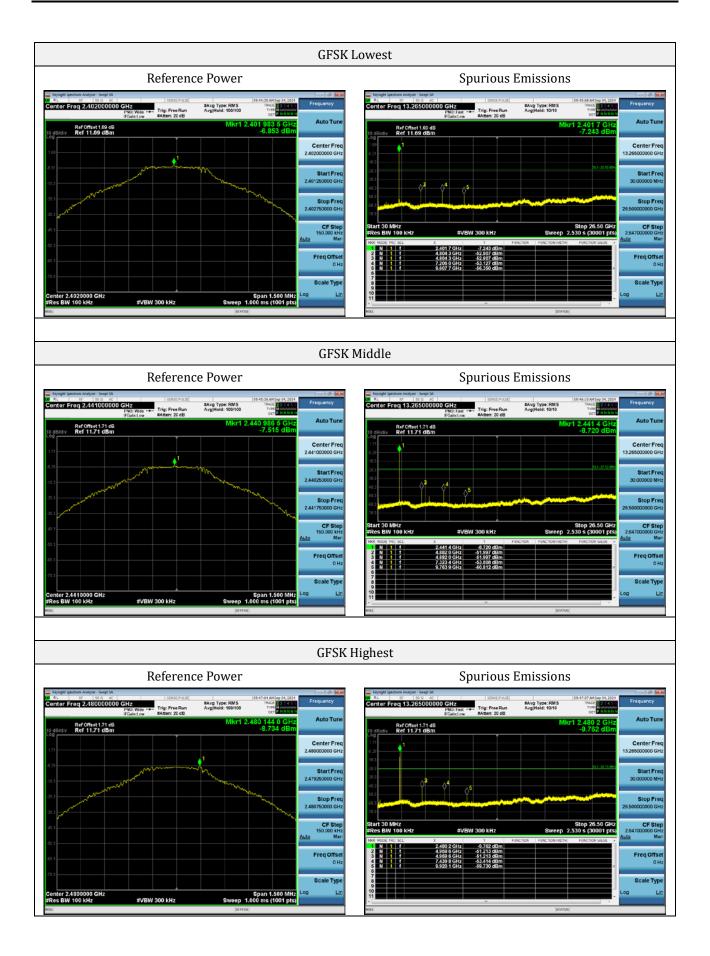
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

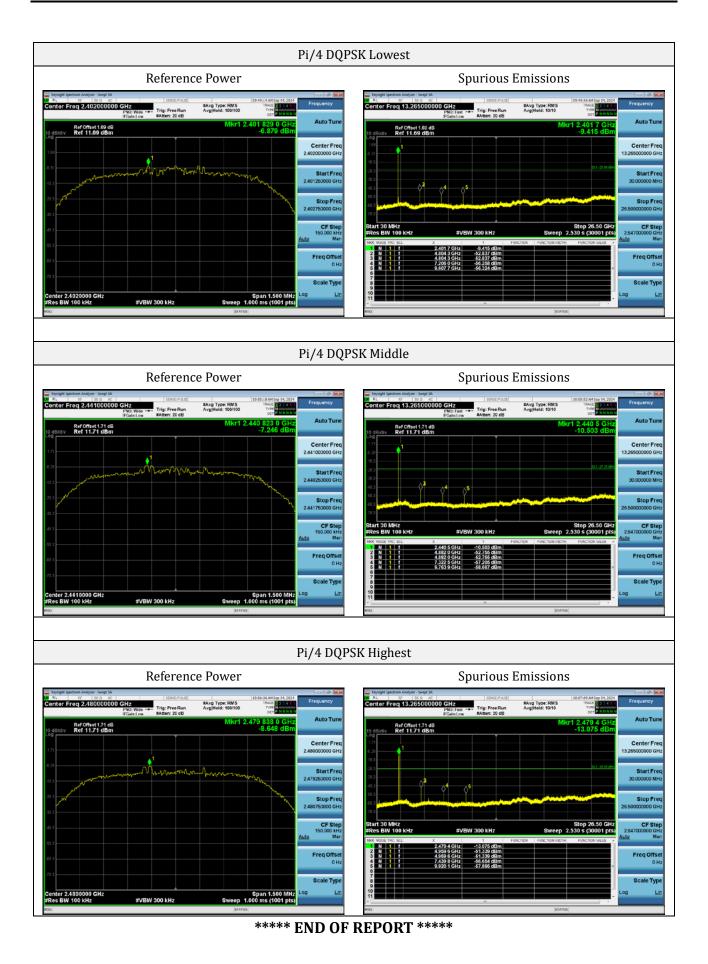
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.


6) Repeat above procedures until all measured frequencies were complete.

14.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

