

Report Seal

TEST REPORT

Product : Hybrid ANC TWS Earbud

Trade mark : VOKALEN

Model/Type reference: Air Pro

Serial Number : N/A

Report Number : EED32Q80115201

FCC ID : MV3-TWSBT013

Date of Issue : Mar. 08, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Country Mate Technology Ltd 5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Mark Chen

Mark Chen

Frazer Li

Approved by:

Aaron Ma

Reviewed by:

Frazer Li

Mar. 08, 2024

Check No.: 9248240124

Report No.: EED32Q80115201 Page 2 of 58

Content

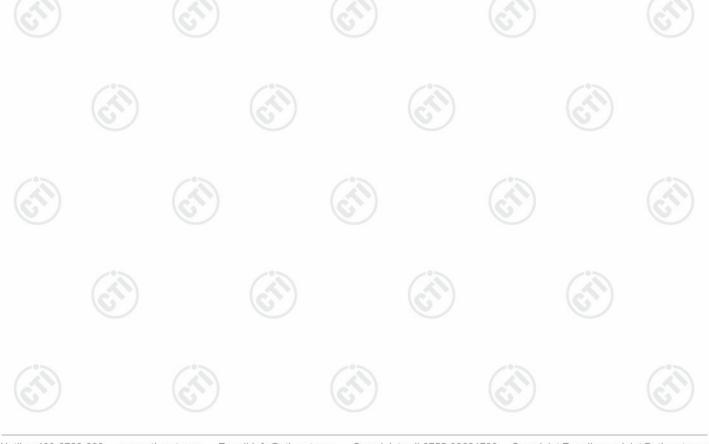
1 COVER PAGE		 1
2 CONTENT		
3 VERSION		 3
4 TEST SUMMARY		 4
5 GENERAL INFORMATION		
5.1 CLIENT INFORMATION	LEVELS, K=2)	5 5 5
6 EQUIPMENT LIST		 9
7 TEST RESULTS AND MEASUREMENT DATA		12
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTED SP 7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BAI	URIOUS EMISSION	13 14 15
8 APPENDIX BLUETOOTH LE		 28
9 PHOTOGRAPHS OF TEST SETUP		 29
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL D	ETAILS	 32

Report No.: EED32Q80115201

3 Version

Version No. Date		Date Description		
00	Mar. 08, 2024	Original		
		10	0	
((50)	(60)	(57)	(0,7)

Report No. : EED32Q80115201 Page 4 of 58


4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

N/A: When the EUT charging, BT will not work, So Not Applicable.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Country Mate Technology Ltd
Address of Applicant:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong
Manufacturer:	Country Mate Technology Ltd
Address of Manufacturer:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong

5.2 General Description of EUT

Product Name:	Hybrid ANC TWS Earbud	
Model No.:	Air Pro	
Trade mark:	VOKALEN	
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location	_
Operation Frequency:	2402MHz~2480MHz	
Modulation Type:	GFSK	
Transfer Rate:	⊠1Mbps □2Mbps	
Number of Channel:	40	
Antenna Type:	FPC Antenna	
Antenna Gain:	L(ear): -1.20dBi, R(ear): -1.20dBi	
Power Supply:	Battery DC 3.7V	
Test Voltage:	DC 3.7V	
Sample Received Date:	Jan. 24, 2024	O.
Sample tested Date:	Jan. 24, 2024 to Feb. 05, 2024	,

Page 6 of 58 Report No.: EED32Q80115201

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	Settings:					
Test Software: Non Signaling Test tool						
EUT Power Grade:	Default (Poselected)	Default (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the E	set the lowest frequenc UT.	y, the middle freque	ency and the highest	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	Mode a GFSK		CH0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Report No. : EED32Q80115201 Page 7 of 58

5.4 Test Environment

	Operating Environment	Operating Environment:								
	Radiated Spurious Emissions:									
11	Temperature:	22~25.0 °C	(4)		(41)		(4)			
1	Humidity:	50~55 % RH	0		(0)		6			
	Atmospheric Pressure:	1010mbar								
	Conducted Emissions:									
	Temperature:	22~25.0 °C		(2)		(20)				
	Humidity:	50~55 % RH		(0,)		(0,)				
	Atmospheric Pressure:	1010mbar								
	RF Conducted:									
	Temperature:	22~25.0 °C	(°)		(3)					
·)	Humidity:	50~55 % RH	(6,2)		(6,7)		(6.7)			
	Atmospheric Pressure:	1010mbar								

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	TPN-Q207	FCC&CE	СТІ

5.6 Test Location

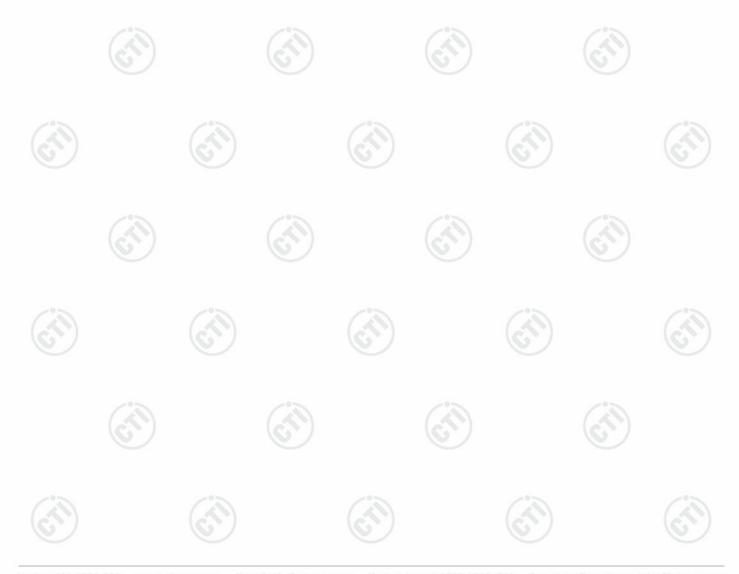
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



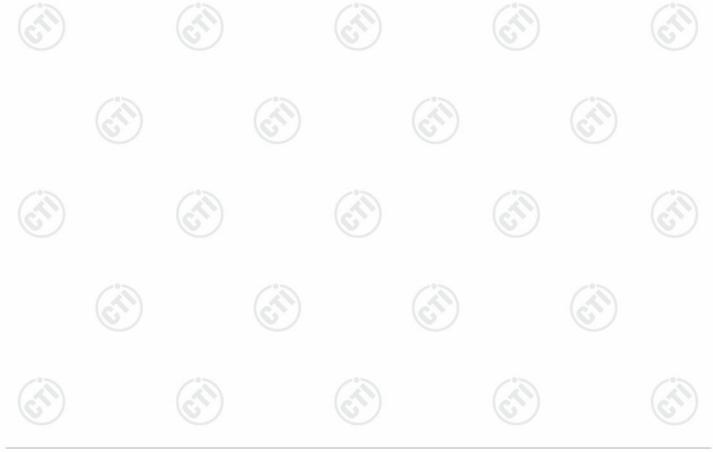
5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE newer conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	(0.)	3.3dB (9kHz-30MHz)	
2	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
10%		3.4dB (18GHz-40GHz)	
57	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	



Report No. : EED32Q80115201 Page 9 of 58

6 Equipment List


		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(File)	

Page 10 of 58 Report No.: EED32Q80115201

					(100)
	3M Semi-ar	nechoic Chamber (2)-	Radiated disturb	ance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09-22-2023	09-21-2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Multi device Controller	maturo	NCD/070/10711112	<u> </u>		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023	06/19/2024
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		

Report No. : EED32Q80115201 Page 11 of 58

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 6
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u> </u>
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	Ci ll	(2
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	©
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/	<i>(</i> 2)
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		D
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(2

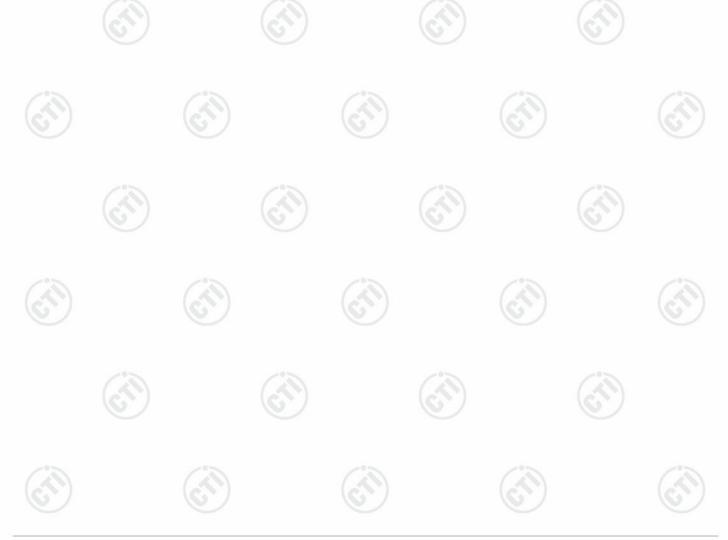
Report No. : EED32Q80115201 Page 12 of 58

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna are left ear: -1.20dBi, right ear: -1.20dBi.

7.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		(3)
	Control Computer Power Supply Power Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	(C)
Limit:	30dBm	_°>
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix Bluetooth LE	



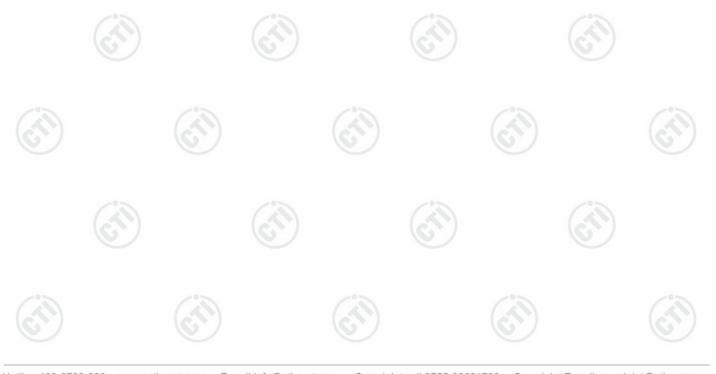
Report No. : EED32Q80115201 Page 14 of 58

7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Conputer Power Supply Attenuator Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

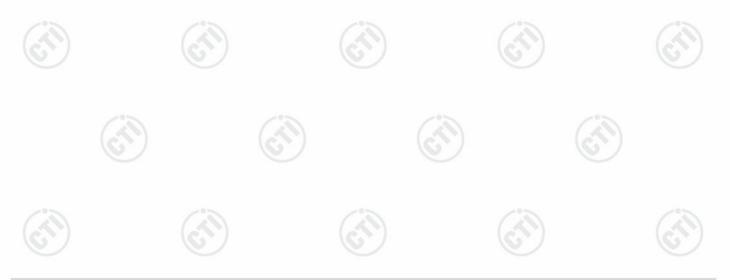
7.4 Maximum Power Spectral Density

47 CFR Part 15C Section 15.247 (e)
ANSI C63.10 2013
Control Contro
Remark: Offset=Cable loss+ attenuation factor.
a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
≤8.00dBm/3kHz
Refer to clause 5.3
Refer to Appendix Bluetooth LE



7.5 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	RF test System Fower port Table RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE



7.6 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6					
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak				
	Above 10Hz		Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10kHz	Average					
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m				
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30				
	1.705MHz-30MHz		30	-	-6	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz	10	200	46.0	Quasi-peak	3				
	960MHz-1GHz		500	54.0	Quasi-peak	3				
	Above 1GHz		500	54.0	Average	3				
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20d quip	IB above the i oment under to	maximum est. This p	permitted ave	erage emission				

Report No.: EED32Q80115201 Page 18 of 58

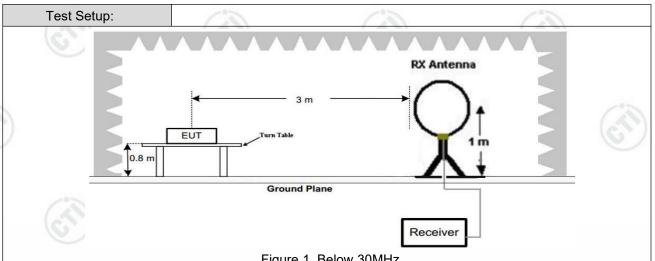
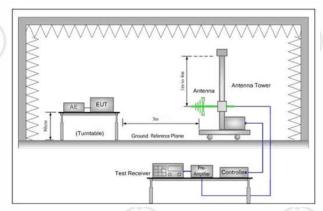



Figure 1. Below 30MHz

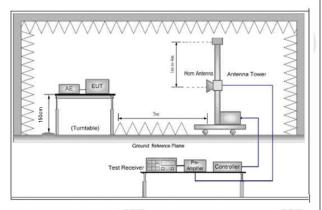


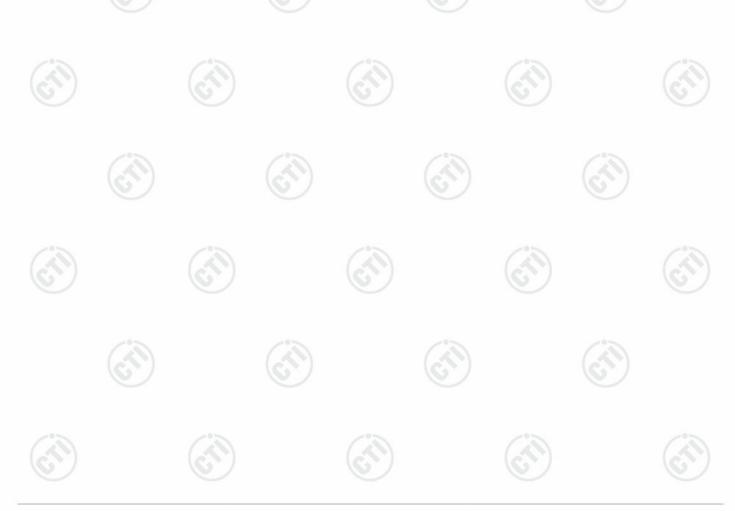
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

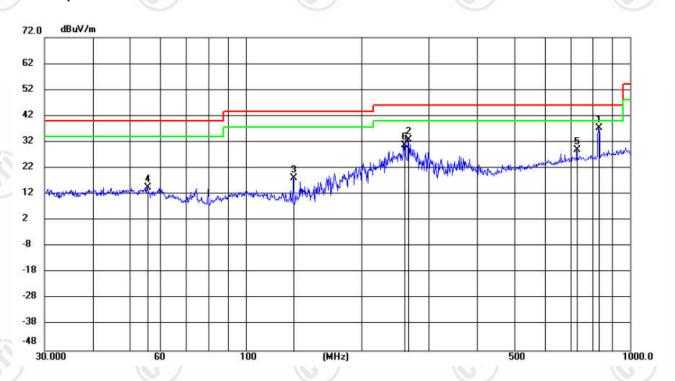
Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q80115201 Page 19 of 58

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



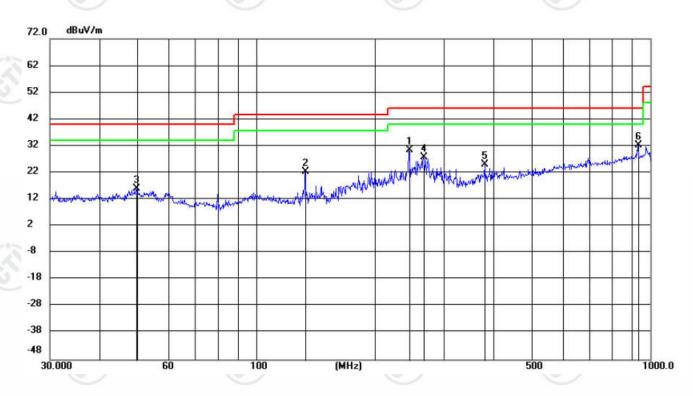
Page 20 of 58 Report No.: EED32Q80115201

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M of left ear was recorded in the report.

Horizontal:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	828.5096	11.11	26.27	37.38	46.00	-8.62	peak	199	352	
	265.5358	17.54	15.30	32.84	46.00	-13.16	peak	100	270	
	133.2211	8.38	9.92	18.30	43.50	-25.20	peak	100	219	
	55.4924	0.91	13.68	14.59	40.00	-25.41	peak	199	352	
	727.3151	4.35	24.65	29.00	46.00	-17.00	peak	100	128	
	258.7797	15.80	15.04	30.84	46.00	-15.16	peak	100	290	
		MHz * 828.5096 265.5358 133.2211 55.4924 727.3151	Mk. Freq. Level MHz dBuV * 828.5096 11.11 265.5358 17.54 133.2211 8.38 55.4924 0.91 727.3151 4.35	Mk. Freq. Level Factor MHz dBuV dB * 828.5096 11.11 26.27 265.5358 17.54 15.30 133.2211 8.38 9.92 55.4924 0.91 13.68 727.3151 4.35 24.65	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 828.5096 11.11 26.27 37.38 265.5358 17.54 15.30 32.84 133.2211 8.38 9.92 18.30 55.4924 0.91 13.68 14.59 727.3151 4.35 24.65 29.00	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m * 828.5096 11.11 26.27 37.38 46.00 265.5358 17.54 15.30 32.84 46.00 133.2211 8.38 9.92 18.30 43.50 55.4924 0.91 13.68 14.59 40.00 727.3151 4.35 24.65 29.00 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dBuV/m dB * 828.5096 11.11 26.27 37.38 46.00 -8.62 265.5358 17.54 15.30 32.84 46.00 -13.16 133.2211 8.38 9.92 18.30 43.50 -25.20 55.4924 0.91 13.68 14.59 40.00 -25.41 727.3151 4.35 24.65 29.00 46.00 -17.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height * 828.5096 11.11 26.27 37.38 46.00 -8.62 peak 199 265.5358 17.54 15.30 32.84 46.00 -13.16 peak 100 133.2211 8.38 9.92 18.30 43.50 -25.20 peak 100 55.4924 0.91 13.68 14.59 40.00 -25.41 peak 199 727.3151 4.35 24.65 29.00 46.00 -17.00 peak 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 828.5096 11.11 26.27 37.38 46.00 -8.62 peak 199 352 265.5358 17.54 15.30 32.84 46.00 -13.16 peak 100 270 133.2211 8.38 9.92 18.30 43.50 -25.20 peak 100 219 55.4924 0.91 13.68 14.59 40.00 -25.41 peak 199 352 727.3151 4.35 24.65 29.00 46.00 -17.00 peak 100 128



Page 21 of 58 Report No.: EED32Q80115201

Vertical:

No. Mi	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	244.7465	15.93	14.49	30.42	46.00	-15.58	peak	200	148	
2	133.2445	12.36	9.92	22.28	43.50	-21.22	peak	100	198	
3	49.5676	1.95	14.16	16.11	40.00	-23.89	peak	100	178	
4	265.7223	12.43	15.31	27.74	46.00	-18.26	peak	100	352	
5	379.9141	6.88	18.26	25.14	46.00	-20.86	peak	100	136	
6 *	931.2913	4.77	27.60	32.37	46.00	-13.63	peak	100	198	

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M of left ear was recorded in the report.

Мс	de:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1320.232	7.82	38.16	45.98	74.00	28.02	Pass	Н	PK
2	1987.4988	8.98	37.03	46.01	74.00	27.99	Pass	Н	PK
3	3603.0402	-17.66	55.07	37.41	74.00	36.59	Pass	Н	PK
4	4804.1203	-13.44	51.38	37.94	74.00	36.06	Pass	Н	PK
5	7741.3161	-4.52	47.14	42.62	74.00	31.38	Pass	Н	PK
6	12158.6106	0.59	44.84	45.43	74.00	28.57	Pass	Н	PK
7	1259.2259	7.84	38.90	46.74	74.00	27.26	Pass	V	PK
8	2035.9036	9.19	37.50	46.69	74.00	27.31	Pass	V	PK
9	3193.0129	-18.53	60.48	41.95	74.00	32.05	Pass	V	PK
10	3603.0402	-17.66	57.50	39.84	74.00	34.16	Pass	V	PK
11	4804.1203	-13.44	51.15	37.71	74.00	36.29	Pass	V	PK
12	9451.4301	-0.91	44.96	44.05	74.00	29.95	Pass	V	PK

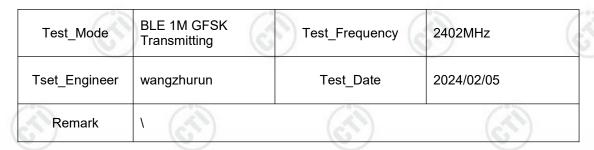
Mode:			Bluetooth LE G	SFSK Transmi	Channel:		2440 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1242.8243	7.88	38.08	45.96	74.00	28.04	Pass	Н	PK
2	1870.087	8.82	36.93	45.75	74.00	28.25	Pass	Н	PK
3	3769.0513	-17.40	54.23	36.83	74.00	37.17	Pass	Н	PK
4	4880.1253	-13.46	52.34	38.88	74.00	35.12	Pass	Н	PK
5	8089.3393	-2.91	45.26	42.35	74.00	31.65	Pass	Н	PK
6	14203.7469	7.12	41.95	49.07	74.00	24.93	Pass	Н	PK
7	1381.6382	8.14	38.36	46.50	74.00	27.50	Pass	V	PK
8	1850.6851	8.72	37.80	46.52	74.00	27.48	Pass	V	PK
9	3660.044	-17.63	55.05	37.42	74.00	36.58	Pass	V	PK
10	4880.1253	-13.46	53.03	39.57	74.00	34.43	Pass	V	PK
11	7776.3184	-4.18	46.10	41.92	74.00	32.08	Pass	V	PK
12	14169.7446	7.23	40.47	47.70	74.00	26.30	Pass	V	PK

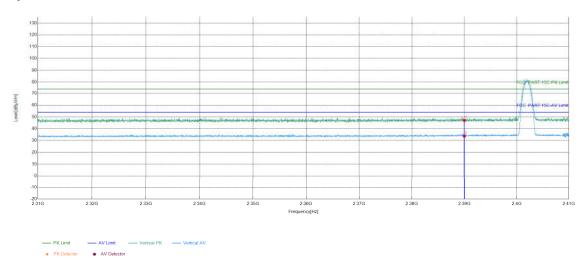
Report No.: EED32Q80115201 Page 23 of 58

	100				20%		-	0.	
Mode	Mode:		Bluetooth LE G	SFSK Transmi	Channel:		2480 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1343.2343	7.94	38.11	46.05	74.00	27.95	Pass	Н	PK
2	1898.6899	8.95	37.18	46.13	74.00	27.87	Pass	Н	PK
3	3720.048	-17.53	54.93	37.40	74.00	36.60	Pass	Н	PK
4	4959.1306	-13.35	52.04	38.69	74.00	35.31	Pass	Н	PK
5	8095.3397	-2.82	45.65	42.83	74.00	31.17	Pass	Н	PK
6	13657.7105	5.60	42.55	48.15	74.00	25.85	Pass	Н	PK
7	1267.2267	7.82	38.99	46.81	74.00	27.19	Pass	V	PK
8	2042.9043	9.23	37.17	46.40	74.00	27.60	Pass	V	PK
9	3194.0129	-18.52	58.26	39.74	74.00	34.26	Pass	V	PK
10	4960.1307	-13.35	51.34	37.99	74.00	36.01	Pass	V	PK
11	8132.3422	-3.12	46.22	43.10	74.00	30.90	Pass	V	PK
12	14255.7504	6.71	41.69	48.40	74.00	25.60	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

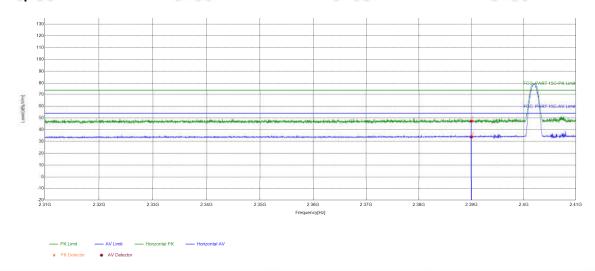


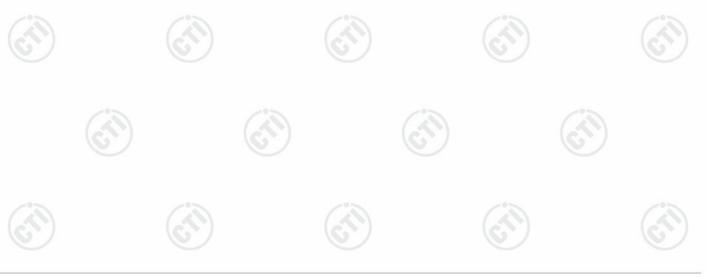


Restricted bands:

Test plot as follows:

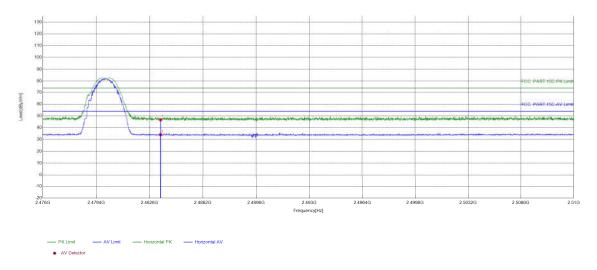
Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	9.96	37.19	47.15	74.00	26.85	PASS	Vertical	PK		
2	2390	9.96	23.86	33.82	54.00	20.18	PASS	Vertical	AV		

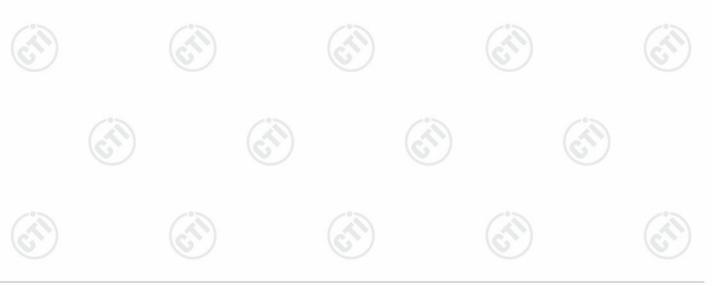




Page 25 of 58 Report No.: EED32Q80115201

C. 7)	(0.7)	(C.)	102
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	wangzhurun	Test_Date	2024/02/05
Remark	1		

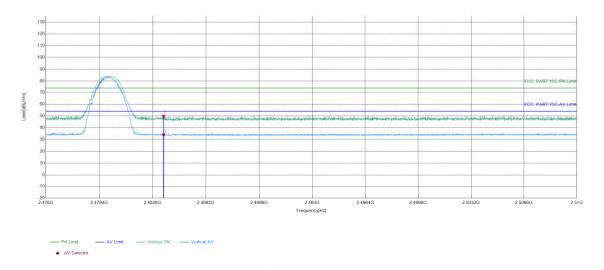

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	37.35	47.31	74.00	26.69	PASS	Horizontal	PK
2	2390	9.96	24.02	33.98	54.00	20.02	PASS	Horizontal	AV



Page 26 of 58 Report No.: EED32Q80115201

	1627	16.7	1627
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2024/02/05
Remark	\		

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	36.43	46.81	74.00	27.19	PASS	Horizontal	PK
2	2483.5	10.38	23.76	34.14	54.00	19.86	PASS	Horizontal	AV



Report No.: EED32Q80115201 Page 27 of 58

	1627	16.7	1627
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	wangzhurun	Test_Date	2024/02/05
Remark	\		

Test Graph

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	39.38	49.76	74.00	24.24	PASS	Vertical	PK
	2	2483.5	10.38	23.76	34.14	54.00	19.86	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix Bluetooth LE

Refer to Appendix: Bluetooth LE of left ear of EED32Q80115201 and Appendix: Bluetooth LE of right ear of

