

Issue Date : September 2, 2004 Page 1 of 36

EMC EMISSION - TEST REPORT

Final Judgement	: passed
Receive date of EUT	: July 20, 2004
Address	: <u>2-13-1, Iida Hachihonmatsu, Higashihiroshima-city,</u> : <u>Hiroshima 739-0192, JAPAN</u>
Manufacturer	: Sharp Corporation, Communication Systems Group
Address	: <u>2-13-1</u> , Iida Hachihonmatsu, Higashihiroshima-city, : <u>Hiroshima 739-0192</u> , JAPAN
Address	· 0.12.1. Jida Hashikan matay. Hissakikinashima situ
Applicant	: Sharp Corporation, Communication Systems Group
FCC ID	: APYHRO00036
Model/Type No.	: GX25
Name of Product	: GSM Cellular-Phone
JQA APPLICATION No.	: <u>KL80040153R</u>

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) under METI Japan and National Institute of Information and Communications Technology(NICT) under MPHPT Japan.

THE TEST RESULTS only responds to the test sample. This test report shall not be reproduced except in full.

Authorized by:

Jamanale

Takashi Yamanaka, Director JQA KITA-KANSAI Testing Center

Page 2 of 36

DIRECTORY

	Page
A) Documentation	
Directory	2
Test Regulation / General Information	3 - 4
Test Conditions	5 - 18
Configuration of EUT / Operation mode of the EUT	19 - 20
EUT Modification / Responsible Party / Deviation from Standard	21
Test results / Measurement Uncertainty	22 - 24
Summary	25
Test System-Arrangement (Drawings)	26
Test-setup (Photographs) at worst case	27
B) Test data	
- PCS1900 -	
Transmitter Power(TP)	28
Antenna Conducted Spurious Emission	29 - 30
Transmitter Power(EIRP)	31
Unwanted Radiation	32 - 33
Occupied Bandwidth	34
Band-Edge Emission	35
Frequency Stability	36

Page 3 of 36

TEST REGULATION

FCC Rules and Regulations Part 24 (October 1, 2003)

1900 MHz systems (Part 24)

- - Narrowband PCS
- - Broadband PCS

Test procedure:

The tests were performed according to FCC Rules and Regulations Part 2 (October 1, 2003), and ANSI C63.4 (2001).

GENERAL INFORMATION

Test facility:

1) Test Facility located at Kita-Kansai	: 1st Open Site (3 m Site)
Test Facility located at Kameoka	: 1st Open Site (3, 10 and 30 m, on common plane)
	: 2nd Open Site (3 and 10 m, on common plane)
FCC filing No. : 31040/SIT 1300F2	

2) KITA-KANSAI TESTING CENTER is recognized under the National Voluntary Laboratory Accreditation Program for satisfactory compliance established in Title 15, Part 285 Code of Federal Regulations. NVLAP Lab Code: 200191-0

Definitions for symbols used in this test report:

- - Black box indicates that the listed condition, standard or equipment is applicable for this Report.
- \bigcirc Blank box indicates that the listed condition, standard or equipment is not applicable for this Report.

Page 4 of 36

Description of the Equipment Under Test (EUT):

1) Name	: GSM Cellular-Phone
2) Model/Type No.	: GX25
3) Product Type	: Pre-production(Serial No.: TA-256)
4) Category	: Broadband PCS
5) EUT Authorization	: \bigcirc - Verification \bigcirc - Certification \bigcirc - D.o.C.
6) Transmitting Frequency	: 1850.2 MHz (512 ch) - 1909.8 MHz (810 ch)(PCS1900)
7) Receiving Frequency	: 1930.2 MHz (512 ch) - 1989.8 MHz (810 ch) (PCS1900)
8) Integrated Antenna	: Inverted F type antenna
9) Emission Designations	: 243KGXW(PCS1900)
10) Maximum RF Output Power	: 1.319W(EIRP)(PCS1900)
11) Power Rating	: 3.9VDC
12) Channel Numbers and Frequencies	:

PCS1900

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

TX frequency (in MHz) = $1850.2 + 0.2 \times (n - 512)$ RX frequency (in MHz) = $1930.2 + 0.2 \times (n - 512)$ Where n : Channel Number ($512 \le n \le 810$)

13) Modulation Type : GMSK

14) Type of Communication System : GSM

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 5 of 36

TEST CONDITIONS

Transmitter Power (TP) Measurement (§2.1046(a))

Test Procedure :

The Transmitter Power was measured with a power meter, two 10 dB attenuators and a short, low loss cable.

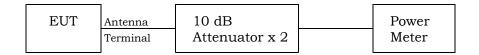


Fig.1 Transmitter Power Measurement

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
O - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
O - Shielded room

Used test instruments and sites :

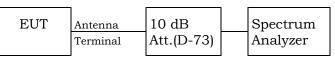
Model No.	Device ID	Last Cal. Date	Cal. Interval
 E4417A E9321A - 6-20 - 4T-10 - 4T-10 - 2-10 - 2-10 - 54-10 	B - 51 B - 52 D - 27 D - 73 D - 74 D - 79 D - 80 D - 82	August, 2003 May, 2004 November, 2003	1 Year 1 Year 1 Year
• - 54-10	D - 83	November, 2003	1 Year

Environmental conditions :

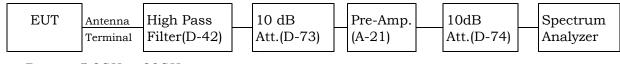
Temperature: <u>23 °C</u> Humidity: <u>58 %</u>

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 6 of 36


Antenna Conducted Spurious Emission Measurement (§2.1051,§24.238)

Test Procedure :


The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

PCS1900

1) Frequency Range : 9kHz - 2.2GHz

2) Frequency Range : 2.2GHz -5.8GHz

3) Frequency Range : 5.8GHz - 20GHz

EUT	Antenna	High Pass	10 dB	Pre-Amp.	10dB	Spectrum
	Terminal	Filter(D-42)	Att.(D-73)	(A-33)	Att.(D-74)	Analyzer

Fig.2 Antenna Conducted Spurious Emission Measurement

The setting of the spectrum analyzer are shown as follows :

Frequency Range	9 kHz - 30 MHz	30 MHz - 20 GHz
Res. Bandwidth	10 kHz	1 MHz
Video Bandwidth	30 kHz	3 MHz
Sweep Time	AUTO	AUTO
Trace	Maxhold	Maxhold

Page 7 of 36

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
● - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - Shielded room

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
● - 8566B ○ - 8593A ○ - MP721C	A - 13 A - 15 D - 65	March, 2004	1 Year
● - 4T-10 ● - 4T-10 ○ - 2-10 ○ - 2-10 ○ - WJ-6611-513	D - 73 D - 74 D - 79 D - 80 A - 23	May, 2004 May, 2004	1 Year 1 Year
 - WJ-6882-824 - DBL-0618N515 - UHP-127 - UHP-128 	A - 21 A - 33 D - 42 D - 43	May, 2004 May, 2004 May, 2004	1 Year 1 Year 1 Year

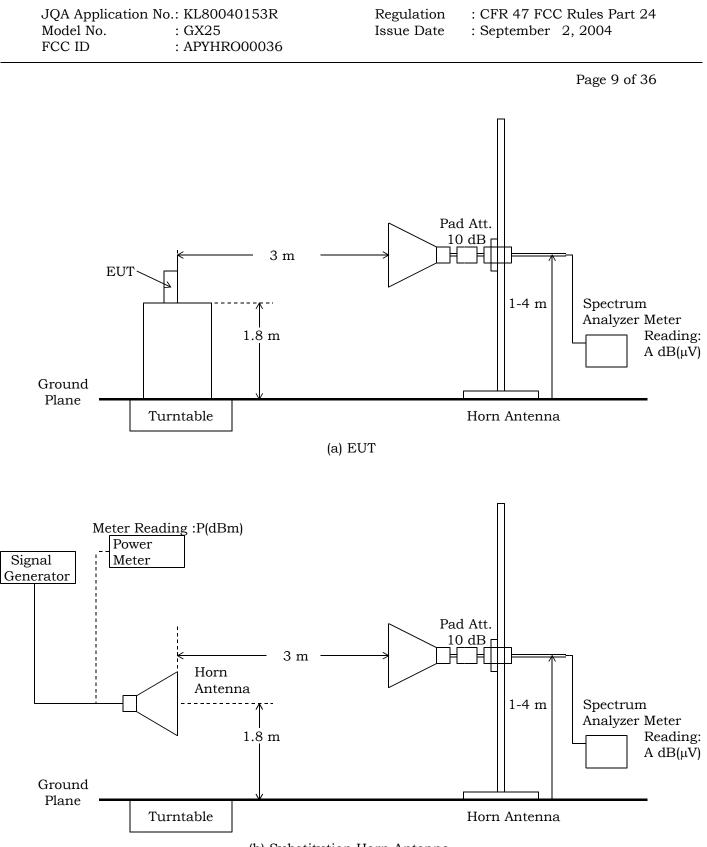
Environmental conditions:

Temperature: <u>23 °C</u> Humidity: <u>58 %</u>

Page 8 of 36

Transmitter Power (EIRP) Measurement (§24.232)

Test Procedure :


Step 1) The test was set-up shown as Fig.3 (a). In order to obtain the maximum emission, the EUT is placed at the height 1.8m on the non-conducted support, at the distance 3m from the receiving antenna (Horn Antenna) and rotated around 360 degrees. The receiving antenna height was varied from 1 m to 4 m. The EUT on the table was placed to be maximum emission against the receiving antenna polarized (Vertical and Horizontal). Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2) The test was set-up shown as Fig.3 (b). The EUT was replaced to Horn antenna at the same polarized under the same condition as step 1. The RF power was fed to the transmitting Antenna (Horn Antenna) through the RF amplifier from the signal generator. In order to obtain the maximum emission level, the height of the receiving antenna is varied from 1 m to 4 m. The level of the signal generator was adjusted so that the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V), same as the recorded level in step 1. Then the RF power into the substitution horn antenna was P(dBm).

The EIRP is calculated in the following equation.

EIRP (dBm) = P (dBm) + Gh (dBi)

Where, Gh (dBi) : Gain of the substitution horn antenna

(b) Substitution Horn Antenna

Fig.3 Maximum Transmitter Power (EIRP) Measurement

Page 10 of 36

Test location:

KITA-KANSAI Testing Center						
7-7, Ishimaru, 1-Chome, Mino	7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan					
• - 1st open test site (3 meters)						
KAMEOKA EMC Branch						
9-1, Ozaki, Inukanno, Nishibet	suin-Cho, K	Kameoka-Shi,	, Kyoto, 621-0126, Japan			
\odot - 1st open test site	O - 3 m	○ - 10 m	○ - 30 m			
\odot - 2nd open test site	O - 3 m	○ - 10 m				

Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
○ - ESCS 30	A - 1		
○ - ESCS 30	A - 9		
● - 8566B	A - 13	March, 2004	1 Year
○ - 8593A	A - 15		
\bigcirc - ESV	А-б		
• - 4T-10	D - 73	May, 2004	1 Year
○ - 4T-10	D - 74		
○ - 2-10	D - 79		
○ - 2-10	D - 80		
○ - WJ-6611-513	A - 23		
○ - WJ-6882-824	A - 21		
○ - DBL-0618N515	A - 33		
● - 91888-2	C - 40 - 1	May, 2004	1 Year
● - 91888-2	C - 41 - 1	May, 2004	1 Year
○ - 91889-2	C - 41 - 2		
○ - 94613-1	C - 41 - 3		
○ - 91891-2	C - 41 - 4		
○ - 94614-1	C - 41 - 5		
0 - 3160-09	C - 48		
○ - 355C	D - 22		
0 - 355D	D - 23		
○ - MZ5010C	D - 81		
• - Cable	C - 40 - 11	May, 2004	1 Year
• - Cable	C - 40 - 12	May, 2004	1 Year
• - E4417A	B - 51	August, 2003	1 Year
• - E9321A	B - 52	May, 2004	1 Year
O - MG3681A	B - 3		
● - 6062A	B - 44	May, 2004	1 Year

Temperature: <u>24 °C</u> Humidity: <u>65 %</u>

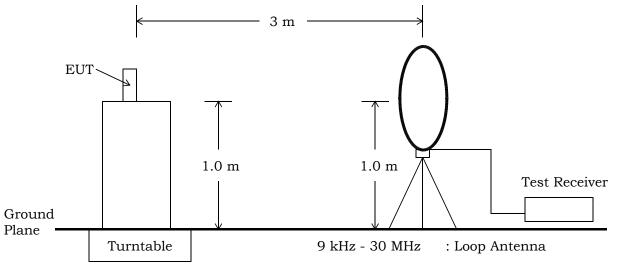
Page 11 of 36

Unwanted Radiation Measurement (§2.1053,§22.917,§24.238) - ERP method -

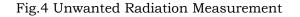
Test Procedure :

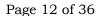
Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 1.0 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

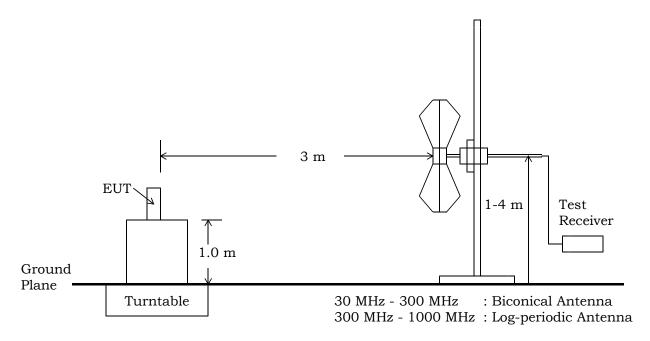
This test was carried out using the loop antenna for up to 30 MHz, using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

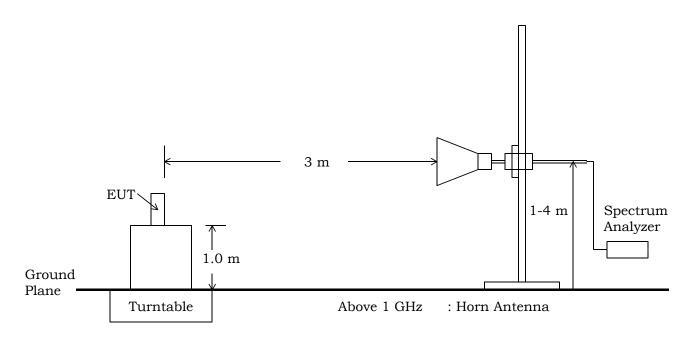

Step 2) The ERP measurement was carried out with according to Step 2 in page 9. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The EIRP is calculated in the following equation.


A) Up to 1 GHz ERP(dBm) = P (dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)


B) Above 1 GHz ERP(dBm) = P (dBm) + Gh(dBi)- Gd(dBi) Where, Gh(dBi) : Gain of the substitution horn antenna Gd(dBi) : Gain of the substitution half-wave dipole antenna


The respective calculated ERP of the spurious and harmonics were compared with the EIRP and ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.


⁽a) Measurement set up for up to 30 MHz

(b) Measurement set up for up to 1 GHz

(c) Measurement set up for above 1GHz

Fig.4 Unwanted Radiation Measurement

Page 13 of 36

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
● - 1st open test site (3 meters)
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - 1st open test site
○ - 3 m
○ - 10 m
○ - 30 m
○ - 3 m
○ - 10 m

Validation of Site Attenuation:

1) Last Confirmed Date	:	October 9, 2003
2) Interval	:	1 Year

Used test instruments :

Model No.	Device ID	Last Cal. Date	Cal. Interval
• - ESCS 30	A - 1	August, 2003	1 Year
○ - ESCS 30	A - 9		
○ - ESH 2	A - 2		
\bigcirc - ESH 2	A - 3		
• - HFH2-Z2	C - 2	July, 2004	1 Year
\bigcirc - HFH2-Z2	C - 3		
• - Cable	H - 28	July, 2004	1 Year
\odot - ESV/ESV-Z3	A - 7 / A - 17		
\odot - ESV/ESV-Z3	A - 6 / A - 18		
\odot - ESV/ESV-Z3	A - 4 / A - 20		
\odot - ESV/ESV-Z3	A - 8 / A - 19		
\odot - ESVS 10	A - 5		
• - VHA9103/BBA9106	C - 43	August, 2003	1 Year
• - UHALP9107	C - 42	August, 2003	1 Year
\odot - VHA9103/FBAB9177	C - 27		
○ - UHALP9108-A1	C - 26		
• - KBA-511	C - 12	August, 2003	1 Year
● - KBA-611	C - 22	August, 2003	1 Year
 Cable 	Н - 5	August, 2003	1 Year
	- con	tinue -	

JQA Application	No.: KL80040153R
Model No.	: GX25
FCC ID	: APYHRO00036

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 14 of 36

Used test instruments :

Model No.	Device ID	Last Cal. Date	Cal. Interval
● - 8566B ○ - 8593A	A - 13 A - 15	March, 2004	1 Year
● - 4T-10 ○ - 4T-10	D - 73 D - 74	May, 2004	1 Year
● - WJ-6611-513	A - 23	May, 2004	1 Year
● - WJ-6882-824	A - 21	May, 2004	1 Year
● - DBL-0618N515	A - 33	May, 2004	1 Year
● - 91888-2	C - 40 - 1	May, 2004	1 Year
● - 91889-2	C - 40 - 2	May, 2004	1 Year
• - 94613-1	C - 40 - 3	May, 2004	1 Year
• - 91891-2	C - 40 - 4	May, 2004	1 Year
• - 94614-1	C - 40 - 5	May, 2004	1 Year
● - 91888-2	C - 41 - 1	May, 2004	1 Year
● - 91889-2	C - 41 - 2	May, 2004	1 Year
• - 94613-1	C - 41 - 3	May, 2004	1 Year
• - 91891-2	C - 41 - 4	May, 2004	1 Year
• - 94614-1	C - 41 - 5	May, 2004	1 Year
• - 3160-09	C - 48	December, 2003	1 Year
○ - 355C	D - 22		
O - 355D	D - 23		
• - MZ5010C	D - 81	December, 2003	1 Year
• - 8673D	B - 2	April, 2003	1 Year
• - Cable	C - 40 - 11	May, 2004	1 Year
• - Cable	C - 40 - 12	May, 2004	1 Year
• - UHP-127	D - 42	May, 2004	1 Year
○ - UHP-128	D - 43		

Environmental conditions :

Temperature: <u>24 °C</u> Humidity: <u>65 %</u>

JQA Application	No.: KL80040153R
Model No.	: GX25
FCC ID	: APYHRO00036

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 15 of 36

Occupied Bandwidth Measurement (§2.1049, §24.238)

Test Procedure :

The measurement test-setup is shown in Fig.5.

Fig.5 Occupied Bandwidth Measurement

The setting of the spectrum analyzer are shown as follows :

	PCS 1900
Res. Bandwidth	10 kHz
Video Bandwidth	30 kHz
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

Test location :

KITA-KANSAI Testing Center

7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan

• - Shielded room

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan \bigcirc - Shielded room

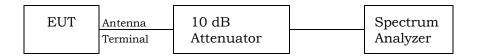
Used test instruments:

Model No.	Device ID	Last Cal. Date	Cal. Interval
● - 8566B ○ - 8593A	A - 13	March, 2004	1 Year
• - 4T-10	A - 15 D - 73	May, 2004	1 Year
○ - 4T-10 ○ - 2-10	D - 74 D - 79		
○ - 2-10	D - 80		

Environmental conditions:

Temperature: 23 °C Humidity: 58 %

JQA Application	No.: KL80040153R
Model No.	: GX25
FCC ID	: APYHRO00036


: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 16 of 36

Band-Edge Emission Measurement (§2.1049, §22.917, §24.238)

Test Procedure :

The measurement test-setup is shown in Fig.6.

Fig.6 Band-Edge Emission Measurement

The setting of the spectrum analyzer are shown as follows :

	PCS 1900	
TX Frequency	1850.20 MHz / 1909.8 MHz	
Band-edge Frequency	1850.00 MHz / 1910.0 MHz	
Res. Bandwidth	3 kHz	
Video Bandwidth	10 kHz	
Span	1 MHz	
Sweep Time	AUTO	
Trace	Maxhold	

Test location :

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
● - Shielded room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
○ - Shielded room

Used test instruments:

● - 8566B	A - 13	March, 2004	1 Year
○ - 8593A	A - 15		
• - 4T-10	D - 73	May, 2004	1 Year
○ - 4T-10	D - 74		
○ - 2-10	D - 79		
○ - 2-10	D - 80		

Environmental conditions:

Temperature: <u>23 °C</u> Humidity: <u>58 %</u>

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 17 of 36

Frequency Stability Measurement(§2.1055, §24.235)

Test Procedure :

a) Frequency Stability Measurement versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

b) Frequency Stability Measurement versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the Ending Voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

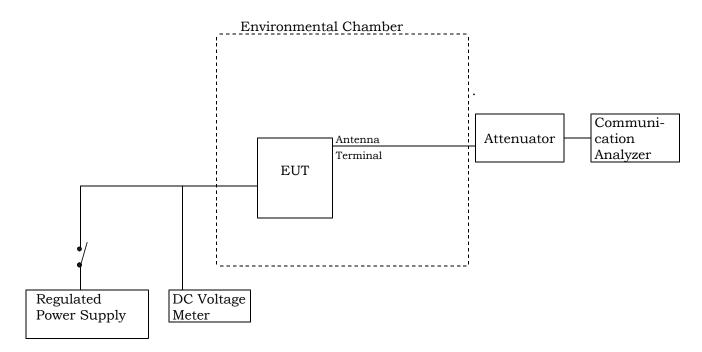


Fig.7 Frequency Stability Measurement

Page 18 of 36

Test location:

KITA-KANSAI Testing Center
7-7, Ishimaru, 1-Chome, Mino-Shi, Osaka, 562-0027, Japan
- Shielded room
- Environment Testing Room
KAMEOKA EMC Branch
9-1, Ozaki, Inukanno, Nishibetsuin-Cho, Kameoka-Shi, Kyoto, 621-0126, Japan
- Shielded room

Used test instruments and sites :

Model No.	Device ID	Last Cal. Date	Cal. Interval
 PL-3G EL100-06T4 2011-39 6032A TR5212 	02304009 14201089 B - 33 F - 5 B - 30	July, 2004 July, 2004 April, 2004 April, 2004	1 Year 1 Year 1 Year 1 Year
• - CMU200	B - 21	April, 2004	1 Year

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 19 of 36

CONFIGURATION OF EUT

The Equipment Under Test (EUT) consists of :

Description	ApplicantModel No.(Manufacturer)(Serial No.)		FCC ID	
GSM Cellular-Phone	Sharp Corporation (Sharp Corporation)	GX25 (TA-256)	APYHRO00036	
Lithium-ION Battery	Sharp Corporation (Sharp Corporation)	XN-1BT30 ()	N/A	
AC Charger	Sharp Corporation (Sharp Corporation)	XN-1QC08 ()	N/A	
Head Set	Sharp Corporation (Sharp Corporation)	 ()	N/A	

The measurement was carried out with the following equipment connected :

De	scription	Grantee/Distributor	Model No. (Serial No.)	FCC ID	
None					

Type of Interference Cable(s) and the AC Power Cord used with the EUT :

	Description	Port	Shielded Cable	Shell Material	Ferrite Core	Cable Length
1	EUT	USB	NO	Nonmetal	NO	1.8 m
	AC Charger		NO	Nonmetal	NO	1.8 m
2	EUT	Head Set	NO	Nonmetal	NO	1.2 m
2	Head Set		INO	Nonmetal	NO	1.2 m

Page 20 of 36

Test Configuration:

Operation - mode of the EUT:

The tests were carried out under one modulation type shown as follows : Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission tests were carried under 3 test configurations in page 26 shown as follows:

	Test Configuration	The condition of the transmitting antenna
1	Single Unit	Integrated antenna
2	AC Charger used	Integrated antenna
3	HeadPhone used	Integrated antenna

The test configuration on the worst data at the unwanted radiation measurement is Single Unit.

Test system:

The EUT has 2 ports shown as follows :

- 1) Head Set port : is connected to the Head Set.
- 2) USB port : is connected to the AC Charger or the personal computer.

Special accessories:

None

Detailed Transmitter portion:

PCS1900	
Transmitting frequency	: 1850.2 MHz(512ch) - 1909.8 MHz(810ch)
Local frequency	: 3860.4 MHz(512ch) - 3979.6 MHz(810ch)

Detailed Receiver portion:

PCS1900	
Receiving frequency	: 1930.2 MHz(512ch) - 1989.8 MHz(810ch)
Local frequency	: 3860.4 MHz(512ch) - 3979.6 MHz(810ch)

Other Clock Frequency:

RTC	: 32.768 kHz
Reference frequency	: 26.0 MHz

Page 21 of 36

EUT Modification

- - No modifications were conducted by JQA to achieve compliance to applied levels.
- \bigcirc To achieve compliance to applied levels, the following change(s) were made by JQA during the compliance test.

- The modification(s) will be implemented in all production models of this equipment.

Applicant	:	N/A	Da	te	:	N/A
Typed Name	:	N/A	Pos	sition	:	N/A

Responsible Party

	Test Item(Product)		·
Responsible party	:		
Contact Person	:	Signatory	

Deviation from Standard

• - No deviations from the standard described in page 3.

 \odot - The following deviations were employed from the standard described in page 3.

Page 22 of 36

TEST RESULTS PCS1900

Transmitter Power(TP)

Remarks:		(· -	,		()
Uncertainty of measurement results	+0.6	dB(2σ	·)	-0.6	dB(2σ)
The transmitter power is	933.3	mW	at	1850.20	MHz

Antenna Conducted Spurious Emission

The requirements are	• - Pa	ssed		○ - Not F	Passed
Min. limit margin	36.1	dB	at	5729.400	MHz
Max. limit exceeding		dB	at		MHz
Uncertainty of measurement results	+2.4	_ dB(2	σ)	-2.4 0	dB(2σ)

Remarks:

Transmitter Power(EIRP)

The requirements are	• - Passed	\odot - Not Passed
The Maximum EIRP is	<u>1.319</u> W at	<u>1880.00</u> MHz
Min. limit margin	<u>1.8</u> dB at	<u>1880.00</u> MHz
Max. limit exceeding	dB at	MHz
Uncertainty of measurement results	<u>+1.3</u> dB(2σ)	<u>-1.3</u> dB(2σ)
Remarks:		

Page 23 of 36

Unwanted Radiation (9 kHz - 20 GHz)

The requirements are		• - Passed		\circ - Not]	Passed
Min. limit margin		<u>16.8</u> dB	at	9549.00	MHz
Max. limit exceeding		dB	at		MHz
Uncertainty of measurement results	9 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	+2.5 dB(2 +4.1 dB(2 +3.1 dB(2	σ)	-4.2	dB(2σ) dB(2σ) dB(2σ)

Remarks:

Occupied Bandwidth

The requirements are	• - Passed O - Not	Passed
The 26dB Bandwidth is The 99% Bandwidth is The results(Occupied Bandwidth)	<u>309</u> kHz at <u>1880.00</u> 243 kHz at <u>1880.00</u> Refer to pages* 2 - 4	MHz MHz
Uncertainty of measurement results at Frequency Uncertainty of measurement results at Amplitude		
Remarks: <u>*:</u> The Page is one in the Attachment A.		

Band-Edge Emission

The requirements are	• - Passed	\bigcirc - Not Passed
The Band-Edge level is	<u>-42.3</u> dBc	at <u>1850.00</u> MHz
The results(Band-edge Emission)	Refer to pages*	6 - 7
Uncertainty of measurement results at Frequ Uncertainty of measurement results at Ampli	<i></i>)

Remarks: *: The Page is one in the Attachment A.

JQA Application N Model No. FCC ID	o.: KL80040153R : GX25 : APYHRO00036	Regulation Issue Date		FCC Rules Part 24 ber 2, 2004
				Page 24 of 36
Frequency Stability				
Frequency Stability :		-0.06	ppm at	<u>1880.000</u> MHz
Uncertainty of measurem	ent results	±10	Hz	
Remarks:				

Page 25 of 36

SUMMARY

GENERAL REMARKS :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 24 (October 1, 2003) under the test configuration, as shown in page 26.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgement.

FINAL JUDGEMENT :

The "as received" sample;

- - fulfill the test requirements of the regulation mentioned on page 3.
- - fulfill the test requirements of the regulation mentioned on page 3, but with certain qualifications.
- \bigcirc doesn't fulfill the test regulation mentioned on page 3.

Begin of testing : July 24, 2004

End of testing

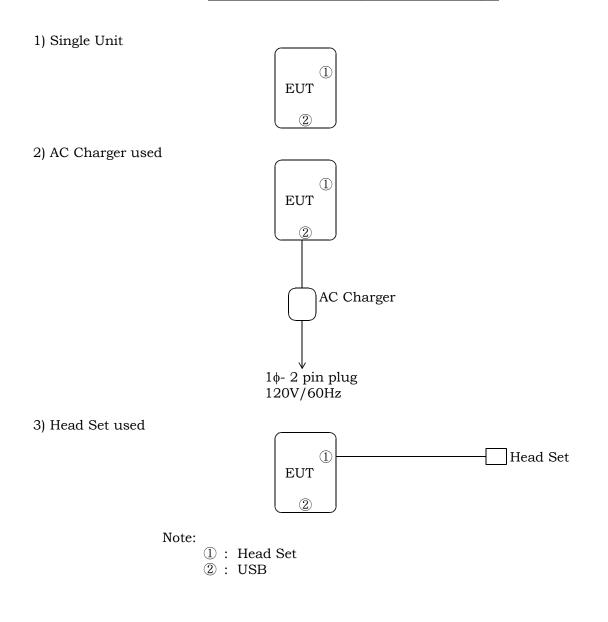
: August 2, 2004

- JAPAN QUALITY ASSURANCE ORGANIZATION -

Approved by :

A. Hosoda

Akio Hosoda Manager EMC Div. JQA KITA-KANSAI Testing Center


Issued by :

Saimo

Shigeru Kinoshita Deputy Manager EMC Div. JQA KITA-KANSAI Testing Center

Page 26 of 36

Test System-Arrangement (Drawings)

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 28 of 36

Transmitter Power (TP) Measurement (PCS 1900 MHz Band)

<u>Test Date: July 23, 2004</u> <u>Temp.: 23 °C, Humi: 58 %</u>

Transm	itting Frequency	Correction Factor	Meter Reading (Peak)	Results	(Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
512	1850.200	20.00	9.70	29.70	933.3
661	1880.000	20.00	9.54	29.54	899.5
810	1909.800	20.00	9.44	29.44	879.0

Correction Factor	=	20.00 dBm	
+) Meter Reading	=	9.70 dB	
Result	=	29.70 dBm = 933.3 mW	

Note: The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Tester: Shigeru Kinoshita

JQA Application	No.:	KL80040153R
Model No.	:	GX25
FCC ID	:	APYHRO00036

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 29 of 36

Antenna-Conducted Spurious Emission Measurement (PCS 1900 MHz Band)

<u>Test Date: July 23, 2004</u> Temp.: 23 °C, Humi: 58 %

F	ansmitting `requency	Measured Frequency	Corr. Factor	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	[dB]					
512	1850.200	3700.400	-20.0	-41.8	-13.0	-61.8	+48.8	С
		3855.100	-20.0	-42.9	-13.0	-62.9	+49.9	С
		5550.600	-20.1	-31.9	-13.0	-52.0	+39.0	С
		7400.800	-17.7	-54.9	-13.0	-72.6	+59.6	С
		9251.000	-17.4	-43.7	-13.0	-61.1	+48.1	С
		11101.200	-16.0	-43.0	-13.0	-59.0	+46.0	С
		12951.400	-15.9	-42.1	-13.0	-58.0	+45.0	С
		14801.600	-16.1	-49.9	-13.0	-66.0	+53.0	С
661	1880.000	3760.000	-19.8	-38.1	-13.0	-57.9	+44.9	С
		3919.400	-19.8	-43.7	-13.0	-63.5	+50.5	С
		5640.000	-19.9	-29.5	-13.0	-49.4	+36.4	С
		7520.000	-17.1	-53.9	-13.0	-71.0	+58.0	С
		9400.000	-17.4	-43.8	-13.0	-61.2	+48.2	С
		11280.000	-15.1	-43.3	-13.0	-58.4	+45.4	С
		13160.000	-15.1	-43.5	-13.0	-58.6	+45.6	С
		15040.000	-16.1	-46.7	-13.0	-62.8	+49.8	С
810	1909.800	3819.600	-20.0	-30.9	-13.0	-50.9	+37.9	С
		3976.100	-20.0	-43.4	-13.0	-63.4	+50.4	С
		5729.400	-19.9	-29.2	-13.0	-49.1	+36.1	С
		7639.200	-17.0	-56.0	-13.0	-73.0	+60.0	С
		9549.000	-16.7	-47.8	-13.0	-64.5	+51.5	С
		11458.800	-16.2	-42.5	-13.0	-58.7	+45.7	С
		13368.600	-15.2	-47.1	-13.0	-62.3	+49.3	С
		15278.400	-15.9	-49.2	-13.0	-65.1	+52.1	С

Page 30 of 36

Sample of calculated result at	t 5729.4 MH	Hz, as the Minimum Margin point:						
Corr. Factor	=	-19.9 dB						
+) Meter Reading	=	-29.2 dB(μV)						
Result	=	-49.1 dB(µV)						
Minimum Margin: -13.0 - (-49.1) = 36.1 (dB)								
The point shown on "" i	The point shown on "" is the Minimum Margin Point.							

Applied Limits: -13.0 [dBm] = 10log(TP[mW]) - (43 + 10log(tp[W])) = 10log(TP[mW]) - (43 + (10 log(TP[mW]) - 30)) where tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal 10log(tp[W]) = 10log(TP[mW]) - 30

Correction factor details: Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2.2 GHz) Cable Loss + 20dB Pad Att. + High Pass Filter Loss (D-42) - Pre-Amp. Gain [dB] (over 5.8 GHz)

Note: 1) The spectrum was scanned 9 kHz to 20 GHz and all emissions not reported were more than 20 dB below the applied limits.

2) The spectrum analyzer displays were printed out in Attachment B.

emarks	5:				
Γ		Detector Function	RES B.W.	V.B.W.	Sweep Time
	А	Peak	10 kHz	30 kHz	20 msec.
	В	Peak	100 kHz	300 kHz	20 msec.
	С	Peak	1 MHz	3 MHz	20 msec.

Tester : Shigeru Kinoshita

Page 31 of 36

Transmitter Power (EIRP) Measurement (PCS 1900 MHz Band)

Test Date: August 1, 2004 Temp.: 24 °C, Humi: 65 %

T

1. Measurement Results

Transmitting Frequency			Emission Measurement S [dB(µV)]		Measurement μV)]	Supplied Power to Substitution Antenna	Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dBm]	[dB]
512	1850.200	94.4	94.6	77.0	77.1	- 0.6	13.9
661	1880.000	94.4	94.8	77.1	77.1	- 0.6	14.1
810	1909.800	94.0	94.8	77.3	77.3	- 0.6	14.2

2. Calculation Results

٢

Transmi	itting Frequency	Peak El	[RP [dBm]	Maximum Peak EIRP	Limits	Margin
СН	[MHz]	(EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	30.7	30.8	1.192	33.0	+ 2.2
661	1880.000	30.8	31.2	1.319	33.0	+ 1.8
810	1909.800	30.3	31.1	1.300	33.0	+ 1.9

Sample of calculated result at 1880.000 MHz, as t	he Minimu	um Margin poir	nt:
Emission Measurment Mv	=	94.8	dB(μV)
Substitution Measurement Msv	=	-77.1	dB(μV)
Supplied Power to Substitution Antenna	=	-0.6	dBm
+) Gain of Substitution Antenna	=	14.1	dB
Result	=	31.2	dBm = 1.319 W
EIRPh = Mh - Msh + Ps + Gs			
EIRPv = Mv - Msv + Ps + Gs			
Minimum Margin: 33.0 - 31.2 = 1.8 (dB) The point shown on "" is the Minimum Marg	in Point.		

Detector Function Resolution B.W. V.B.W. Sweep Time Peak 1 MHz 1 MHz 20 msec.	Remarks	:			
Peak 1 MHz 1 MHz 20 msec	[Detector Function	Resolution B.W.	V.B.W.	Sweep Time
		Peak	1 MHz	1 MHz	20 msec.

Tester: Akio Hosoda

JQA Application No.: KL80040153R : GX25 : APYHRO00036

Regulation Issue Date : CFR 47 FCC Rules Part 24 : September 2, 2004

Page 32 of 36

Test Date: August 1, 2004

Temp.: 24 °C, Humi: 65 %

Unwanted Radiation Measurement (PCS 1900 MHz Band)

Test Configuration : Single Unit

ERP Transmitting Measured Limits Margin Remarks [dB] Frequency Frequency [dBm] [dBm] СН Hori. Vert. [MHz] [MHz] 512 1850.200 3700.400 -41.3 -42.3-13.0 +28.3 С С 5550.600 -34.0 -34.2 -13.0 +21.0 7400.800 С -33.3 -34.8 -13.0 +20.3 С 9251.000 -34.8 -35.4 -13.0 +21.8 С 11101.200 -33.8 -33.8 -13.0 +20.8 С 12951.400 < -32.7 < -32.7 -13.0 > +19.7 14801.600 < -32.1 < -32.1 -13.0 > +19.1 С С 16651.800 < -33.7 < -33.7 -13.0 > +20.7 С 18502.000 < -32.7 < -32.7 > +19.7 -13.0 1880.000 С 661 3760.000 -39.6 -40.6 -13.0 +26.6 С 5640.000 -33.9 -35.5 -13.0 +20.9 7520.000 -32.4 -32.1 -13.0 +19.1 С С 9400.000 < -41.9 < -41.9 -13.0 > +28.9 -32.8 -32.4 -13.0 С 11280.000 +19.4 С 13160.000 < -31.8 < -31.8 -13.0 > +18.8 15040.000 < -31.9 < -31.9 -13.0 > +18.9 С С 16920.000 < -33.7 < -33.7 -13.0 > +20.7 18800.000 < -32.4 < -32.4 -13.0 > +19.4 С 3819.600 С 810 1909.800 -38.0 -37.5 -13.0 +24.5 С -97.3 5729.400 -97.3 -13.0 +84.3 С 7639.200 -38.0 -37.5 -13.0 +24.5 9549.000 -29.8 -29.8 -13.0 +16.8 С С 11458.800 -42.8 -43.1 -13.0 +29.8 -34.4 -35.4 С 13368.600 -13.0 +21.4 С 15278.400 -36.1 -35.0 -13.0 +22.0 < -31.1 < -31.1 С -13.0 17188.200 > +18.1 С 19098.000 < -32.8 < -32.8 -13.0 > +19.8

Page 33 of 36

Sample of calculated result at 9549.0 MHz, as the Minimum Margin point: Minimum Margin: -13.0 - (-29.8) = 16.8 (dB) The point shown on "____" is the Minimum Margin Point.

Applied Limits: -13.0 [dBm] = 10log(TP[mW]) - (43 + 10log(tp[W])) = 10log(TP[mW]) - (43 + (10 log(TP[mW]) - 30)) where tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal 10log(tp[W]) = 10log(TP[mW]) - 30

Test system connection setup: Cable (9 kHz - 1 GHz) Cable + 20dB Pad Att. + High Pass Filter (D-43) - Pre-Amplifier (1.0 GHz - 3.6 GHz) Cable + 20dB Pad Att. + High Pass Filter (D-42) - Pre-Amplifier (3.6 GHz - 7.6 GHz) Cable + 10dB Pad Att. + High Pass Filter (D-42) - Pre-Amplifier (7.6 GHz - 18 GHz) Cable + 10dB Pad Att. + High Pass Filter (D-42) - Pre-Amplifier + Frequency Mixer (over 18 GHz)

Note: The spectrum was scanned 9 kHz to 20 GHz and all emissions not reported were more than 20 dB below the applied limits.

Remarks:

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	10 kHz	30 kHz	20 msec.
В	Peak	100 kHz	300 kHz	20 msec.
С	Peak	1 MHz	3 MHz	20 msec.

Tester: Akio Hosoda

Test Date: July 23, 2004

Page 34 of 36

Occupied Bandwidth Measurement PCS1900

			Ter	mp.: <u>23 °C</u> ; Hu	mi.: 58 %
011	π		00%	Dete	
CH	Transmitting	26dB	99%	Data	
No.	Frequency(MHz)	Bandwidth	Bandwidth	Page*	
512	1850.200	309 kHz	242 kHz	Page 2	
661	1880.000	309 kHz	243 kHz	Page 3	_
810	1909.800	309 kHz	241 kHz	Page 4	-

Note) 1. *: The Data Page is one in Attachment A. 2. The point shown on "_____" is the Maximum Margin Point.

Tester : Shigeru Kinoshita

JQA Application No.: KL80040153R Model No. : GX25 FCC ID : APYHRO00036 Regulation Issue Date : CFR 47 FCC Rules Part 24 : September 2, 2004

Page 35 of 36

Band-Edge Emission Measurement PCS1900

Test Date: <u>July 23, 2004</u> Temp.: <u>23 °C</u>; Humi.: <u>58 %</u>

					- I -	-
1) Low	[,] Band-Eo	lge Measurement				
	CH	Transmitting	Band-Edge	Band-Edge	Data	
		Frequency(MHz)	Frequency(MHz)	Level[dBc]	Page*	
	512	1850.200	1850.000	-43.1	Page 6	
2) Higl	h Band-E	dge Measurement				
	CH	Transmitting	Band-Edge	Band-Edge	Data	
		Frequency(MHz)	Frequency(MHz)	Level[dBc]	Page*	
	810	1909.800	1910.000	-45.0	Page 7	

Note) 1. *: The Data Page is one in Attachment A.2. The point shown on "_____" is the Minimum Point.

Tester : <u>Shigeru Kinoshita</u>

: CFR 47 FCC Rules Part 24 : September 2, 2004

Page 36 of 36

Frequency Stability Measurement (PCS 1900 MHz Band)

Test Date: August 2, 2004

1. Frequency Stability Measurement versus Temperature

Transmitting Frequency DC Supply Voltage		: 1880.000 MHz (: 3.9 VDC	(661 ch)			
Ambient		Deviation [ppm]			Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	- 0.06	- 0.05	- 0.03	- 0.03	N/A	N/A
-20	- 0.06	- 0.02	- 0.02	+ 0.01	N/A	N/A
-10	- 0.04	+ 0.02	+ 0.03	+ 0.02	N/A	N/A
0	- 0.02	+ 0.02	+ 0.02	+ 0.02	N/A	N/A
10	+ 0.02	+ 0.02	+ 0.02	- 0.01	N/A	N/A
20	+ 0.01	+ 0.01	- 0.01	- 0.01	N/A	N/A
30	+ 0.00	- 0.03	+ 0.00	+ 0.00	N/A	N/A
40	- 0.05	- 0.01	- 0.01	- 0.01	N/A	N/A
50	- 0.03	- 0.02	- 0.01	- 0.01	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Free DC Supply Voltag		: 1880.000 MHz (: 20 °C	661 ch)			
Ambient Temperature	Startup	Deviati 2 minutes	ion [ppm] 5 minutes	10 minutes	Limits [ppm]	Margin [ppm]
[°C]	. 0.01	. 0.01	0.01	0.01	N/A	N/A
3.9 3.7(Ending)	+ 0.01 - 0.01	+ 0.01 + 0.01	- 0.01 - 0.02	- 0.01 - 0.02	N/A N/A	N/A

Test condition example as the Maximum Deviation point:					
Ambient Temperature	: -30 °C / Startup				
DC Supply Voltage	: 3.9 VDC				
The Maximum Deviation Point is shown on a thick letter.					

Note: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.

Tester: Akio Hosoda