

FCC CFR47 PART 22 SUBPART H AND PART 24 SUBPART E CLASS II PERMISSIVE CHANGE CERTIFICATION TEST REPORT FOR

EXPRESS MINI-PCI USB WIRELESS CDMA MODEM MODULE

MODEL NUMBER: MC5720

FCC ID: N7N-MC5720

REPORT NUMBER: 06U10160-1

ISSUE DATE: MARCH 30, 2006

Prepared for SIERRA WIRELESS 2290 COSMOS CT. CARLSBAD, CA 92009, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

Revision History

Rev.	Date	Revisions	Revised By
	3/30/06	Initial Issue	Thu

Page 2 of 17

TABLE OF CONTENTS

1.	АТ	FTESTATION OF TEST RESULTS	4
2.	TE	EST METHODOLOGY	5
3.	FA	ACILITIES AND ACCREDITATION	5
4.	CA	ALIBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	
4	4.2.	MEASUREMENT UNCERTAINTY	
5.	EQ	QUIPMENT UNDER TEST	6
5	5.1.	DESCRIPTION OF EUT	
5	5.2.	CLASS II PERMISSIVE CHANGE DESCRIPTION	
5	5.3.	MAXIMUM OUTPUT POWER	
5	5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	
5	5.5.	SOFTWARE AND FIRMWARE	7
5	5.6.	WORST-CASE CONFIGURATION AND MODE	
5	5.7.	DESCRIPTION OF TEST SETUP	
6.	TE	EST AND MEASUREMENT EQUIPMENT	9
7.	LI	IMITS AND RESULTS	
7	7.1.	RADIATED RF POWER OUTPUT	
7	7.2.	FIELD STRENGTH OF SPURIOUS EMISSION	13
8.	SE	ЕТИР РНОТОЗ	

Page 3 of 17

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SIERRA WIRELESS 2290 COSMOS CT. CARLSBAD CALIFORNIA 92009 U.S.A				
EUT DESCRIPTION:	EXPRESS MINI-PCI USB WIRELESS CDMA MODEM MODULE			
MODEL:	MC5720			
SERIAL NUMBER:	LV-A0096			
DATE TESTED:	MARCH 21-22, 2006			
APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 22 SUBF	PART H NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

FCC PART 24 SUBPART E

Hsin-Fr Shih

NO NON-COMPLIANCE NOTED

HSIN FU SHIH EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 17

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA/EIA 603C (2004), ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15 and FCC CFR 47 Part 22H and 24E.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a dual band 800 / 1900 MHz Express Mini-PCI USB Wireless CDMA Modem Module, and manufactured by Sierra Wireless, Inc.

5.2. CLASS II PERMISSIVE CHANGE DESCRIPTION

Add one 15" Laptop of ThinkPad R60 series.

5.3. MAXIMUM OUTPUT POWER

The transmitter has maximum ERP and EIRP output powers as follows:

Part 22 (824 - 849MHz) & Part 24 (1850 - 1910MHz) Authorized Band:

Frequency Range	Modulation	ERP	ERP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
824.7 - 848.31	CDMA	25.90	389.05

Frequency Range	Modulation	ERP	ERP
		Peak Power	Peak Power
(MHz)		(dBm)	(mW)
1851.25 - 1908.75	CDMA	25.90	389.05

NOTE: RBW=VBW=3MHz

Page 6 of 17

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an inverted F antenna, with a maximum gain of -0.8 dBi for Cellular band and -0.52 dBi for PCS band.

5.5. SOFTWARE AND FIRMWARE

The test utility software used during testing was Hyperterminal.

5.6. WORST-CASE CONFIGURATION AND MODE

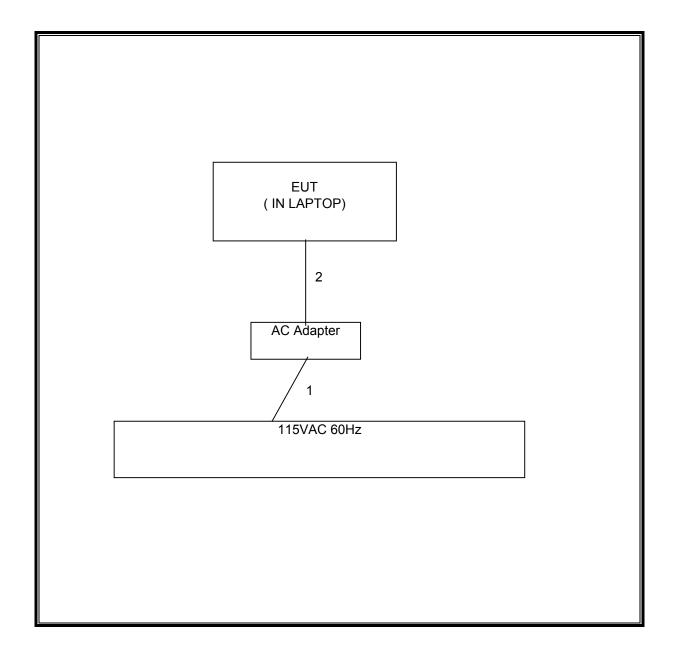
The worst-case channel is determined as the channel with the highest output power. Please refer to the previous project 05U3389.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter	IBM	92P1154	11S92P1154Z1ZACU5CM32V	NA
Laptop	IBM	Thinkpad R60	LV-A0096	DoC

I/O CABLES


	I/O CABLE LIST					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	US 115V	Un-shielded	2m	NA
2	DC	1	DC	Un-shielded	0.5m	NA

TEST SETUP

The EUT is installed inside the ThinkPad R60 during the tests. The HyperTerminal exercised the EUT.

Page 7 of 17

RADIATED TEST SETUP DIAGRAM

Page 8 of 17

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due	
Antenna, Bilog 30 MHz~2 Ghz	Sunol Sciences	JB1	A121003	9/3/06	
Preamplifier, 1300 MHz	HP	8447D	1937A02062	1/7/07	
Spectrum Analyzer, 26.5 GHz	HP	8593EM	3710A00205	7/26/06	
EMI Test Receiver	R&S	ESHS 20	827129/006	6/3/06	
LISN, 10 kHz ~ 30 MHz	FCC	LISN-50/250-25-2	2023	8/30/06	
Preamplifier, 1~26.5 GHz	H₽	8449B	3008A00369	8/17/06	
Spectrum Analyzer, 26.5 GHz	HP	8593EM	3710A00205	7/6/06	
Signal Generator, 1024 MHz	R&S	SMY01	DE 12311	04/11/06	
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42510266	10/19/06	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	04/22/06	
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	04/22/06	

Page 9 of 17

7. LIMITS AND RESULTS

7.1. **RADIATED RF POWER OUTPUT**

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. 24.232(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17 The transmitter output is connected to the spectrum analyzer.

RESULTS

No non-compliance noted.

800 MHz CELL CDMA Modulation

Channel	Frequency	ERP	ERP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	824.7	23.60	229.09
Middle	836.5	24.20	263.03
High	848.3	25.90	389.05

1900 MHz PCS CDMA Modulation

Channel	Frequency	EIRP	EIRP
		Peak Power	Peak Power
	(MHz)	(dBm)	(mW)
Low	1851.25	24.50	281.84
Middle	1880.00	25.90	389.05
High	1908.75	24.30	269.15

NOTE: RBW=VBW=3MHz.

Page 10 of 17

CDMA Cellular Band Output Power (ERP)

03/22/06	High Frequency Substitution Measurement
Compliance	$Certification\ Services,\ Morgan\ Hill\ 5m\ Chamber\ Site$

Test Engr: Sunny Shih Project #: 06U10160-1 Company: Sierra Wireless EUT Descrip.: Express Mini-PCI USB CDMA Modem Module EUT M/N: MC5720 Test Target: FCC 22 Mode Oper: TX, Fundamental

<u>Test Equipment:</u> Receiving: Sunol T122, and 5m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, and 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	ERP	Limit	Margin	Notes
MHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
824.70	101.0	v	24.1	0.5	0.0	23.6	38.5	-14.9	
824.70	99.8	H	21.5	0.5	0.0	21.0	38.5	-17.5	
836.52	100.8	v	24.8	6.0	0.0	24.2	38.5	-14.2	
836.52	100.1	H	21.9	6.0	0.0	21.3	38.5	-17.1	
848.31	102.0	v	26.6	0.7	0.0	25.9	38.5	-12.5	
848.31	99.6	Н	21.5	0.7	0.0	20.8	38.5	-17.6	

NOTE: RBW=VBW=3MHz

Page 11 of 17

PCS Output Power (EIRP)

3/22/06 High Frequency Fundamental Measurement
Compliance Certification Services, Morgan Hill 5m Chamber Site

Test Engr: Sunny Shih Project #: 06U10160-1 Company: Sierra Wireless EUT Descrip.: Express Mini-PCI USB CDMA Modem Module EUT M/N: MC5720 Test Target: FCC 24 Mode Oper: TX, Fundamental

<u>Test Equipment:</u> Receiving: Horn T73, and 12ft S/N: 197209005 (Setup this one for testing EUT) Substitution: Horn T60 Substitution, 4ft SMA Cable Warehouse S/N: 177081002

f	SA reading	Ant. Pol.	SG reading	CL	Gain	EIRP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
1.851	94 <i>3</i>	Н	17.1	0.9	8.3	24.5	33.0	-8.5	
851	94.5	v	17.1	0.9	8.3	24.5	33.0	-8.5	
L.880	93.6	Н	16.7	0.9	8.3	24.2	33.0	-8.9	
L.880	96.1	v	18.4	0.9	83	25.9	33.0	-7.2	
.909	91.2	Н	14.6	0.9	8.4	22.1	33.0	-10.9	
l .9 09	93.8	v	16.8	0.9	8.4	24.3	33.0	-8.7	

NOTE: RBW=VBW=3MHz

Page 12 of 17

7.2. FIELD STRENGTH OF SPURIOUS EMISSION

LIMIT

22.917 (e) and 24.238 (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.12, FCC 22.917 (h), & FCC 24.238 (b)

RESULTS

No non-compliance noted.

Note: No emissions were found within 30-1000MHz of 20dB below the system noise.

Page 13 of 17

800MHz Band CDMA Spurious & Harmonic (ERP)

- Test Eng	High Frequ ace Certificati g: Sunny Shih : 06U1060-1		ution Measure: Morgan Hill	ment						
EUT Des EUT M/N Test Targ	7: Sierra Wirel scrip.: Express N: MC5720 get: FCC 22 per: TX, 800 M	s Mini-PCI U	SB Wireless C	DMA Mod	lem Module					
<u>Test Equ</u>	ipment:									
1	EMCO Horn 1-1	8 GHz		Horn >	18GHz			Limit		🔽 High Pass Filter
Te	60; S/N: 2238 @	3m -				•	FCC	22	-	
Гні	Frequency Cables					Pre-amplifer l	-26GHz		Pre-amplifer	26-40 GHz
	(2 ft)	(2~3 ft) 🗖	(4~6 ft) 💌 (1)	2 ft)	Γ	T34 HP 8449E	3 –			•
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	ERP	Limit	Margin	Notes
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
L-Ch								140		
1.649 2.474	51.2 46.7	v v	-60.1 -62.8	1.6	75 95	5.4	-56.3 -57.3	-13.0 -13.0	-43.3 -44.3	
3.298	40.7	v	-61.1	23	9.5	75	-57.5	-13.0	-44.5	
1.649	49.0	H	-61.6	1.6	75	54	-57.8	-13.0	-44.8	
2.474	46.2	Н	-63.1	19	95	7.4	-57.6	-13.0	-44.6	
3.298	45.1	H	-60.7	2.3	9.6	75	-55.5	-13.0	-42.5	
M-Ch								100		
1.673 2.509	54.3 47.5	v v	-56.9 -61.8	1.6 1.9	7.6 9.5	5A 7A	-53.1 -56.4	-13.0 -13.0	-40.1 -43.4	
3.346	4/5	v V	-01.8 -59.5	23	95 9.6	75	-50.4	-13.0	-43.A -41.3	
1.673	51.4	H	-59.1	1.6	7.6	54	-55.3	-13.0	-42.3	
2.509	46.5	H	-62.6	1.9	9.5	7.4	-57.2	-13.0	-44.2	
3.346	45.4	Н	-60.2	2.3	9.6	7.5	-55.0	-13.0	-42.0	
H-Ch										
1.696	59.5	v	-51.6	1.6	7.6	5.5	-47.8	-13.0	-34.8	
2.544	50.6	<u>v</u>	-58.6	2.0	95	7.4	-53.1	-13.0	-40.1	
3.393	45.3	V	-60.2	2.3	9.6	7.5	-55.0	-13.0	-42.0	
1.696 2.544	53.9 47.5	H H	-56.5	1.6	7.6 9.5	55	-52.6	-13.0	-39.6 -43.0	
2.544 3.393	47.5	н Н	-61.5 -60.2	2.0	95 9.6	7.4	-56.D -55.D	-13.0 -13.0	-43.U -42.0	
	42.4	п	: -00.4	4.3	. 20	10	-55.0	-120	-44.0	

Page 14 of 17

PCS Spurious & Harmonic (EIRP):

03/22/06	/22/06 High Frequency Substitution Measurement										
Compliance Certification Services, Morgan Hill											
Project # Compan EUT De EUT M/ Test Tai Mode O	gr: Sunny Shih #: 06U1060-1 y: Sierra Wirel scrip.: Expres: N: MC5720 rget: FCC 24 Iper: TX, 1900 uipment:	less Inc., GS s Mini-PCI U	SB Wireless C	DMA Moo	lem Module						
	EMCO Horn 1-1	IS CHZ		Ноги	• 18GHz			Limit			
				1101 A	100111		FCC	24		🔽 High Pass Filter	
T	160; S/N: 2238 @	3m -				-	ree	24	•		
	li Frequency Cables		(4~6 ft) ▼ (12	2 ft)	Γ	Pre-amplifer l- T34 HP 8449H		Γ	Pre-amplifer	26-40 GHz	
				a r		- a :	ETDD	T · · ·		DT /	
f	SA reading	Ant. Pol.	SG reading	CL	Gain	Gain	EIRP	Limit	Margin	Notes	
GHz	(dBuV/m)	(H/V)	(dBm)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)		
3.702	51.25 MHz) 54.4	v	-49.8	2.4	9.6	7.4	-42.6	-13.0	-29.6		
5.553	65.0	v	-34.7		7.0	· / / /					
7.405	50.0	•		3.2	10.8	8.6		¢	······································		
3.702	. 2010	v	······································	3.2	10.8	8.6 9.2	-27.1	-13.0	-14.1		
3.704	55.9	V H	-46.4 -48.2	3.7 2.4	10.8 11.3 9.6	8.6 9.2 7.4		¢	······································		
5.553			-46.4	3.7	113	9.2	-27.1 -38.8	-13.0 -13.0	-14.1 -25.8		
5.553 7.405	559 589 530	Н	-46.4 -48.2	3.7 2.4	11.3 9.6	9.2 7.4	-27.1 -38.8 -41.0	-13.0 -13.0 -13.0	-14.1 -25.8 -28.0		
5 <i>5</i> 53 7.405 M-Ch (188	55.9 58.9 53.0 80 MHz)	H H H	-46.4 -48.2 -39.8 -42.6	3.7 2.4 3.2 3.7	11.3 9.6 10.8 11.3	92 74 86 92	-27.1 -38.8 -41.0 -32.2 -35.0	-13.0 -13.0 -13.0 -13.0 -13.0	-14.1 -25.8 -28.0 -19.2 -22.0		
5.553 7.405 M-Ch (188 3.760	55.9 58.9 53.0 80 MHz) 53.4	H H H V	-46.4 -48.2 -39.8 -42.6 -50.5	3.7 2.4 3.2 3.7 2.5	11.3 9.6 10.8 11.3 9.6	92 74 86 92 74	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4	-130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4		
5 553 7.405 M-Ch (18) 3.760 5.640	55.9 58.9 53.0 80 MHz) 53.4 64.8	H H H V V	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9	3.7 2.4 3.2 3.7 2.5 3.3	11.3 9.6 10.8 11.3 9.6 10.9	92 74 86 92 74 8.7	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3		
5 553 7 405 M-Ch (188 3 760 5 640 7 520	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0	H H H V V V V	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2	3.7 2.4 3.2 3.7 2.5 3.3 3.7	113 96 108 113 96 109 114	9.2 7.4 8.6 9.2 7.4 8.7 9.2	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6		
5 553 7.405 M-Ch (188 3.760 5.640 7.520 3.760	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0	H H V V V H	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5	113 96 108 113 96 109 114 96	92 74 86 92 74 8.7 9.2 7.4	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7		
5 553 7 405 M-Ch (188 3.760 5 640 7 520 3.760 5 640	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0 57.0	H H V V V V H H	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8 -41.7	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5 3.3	11.3 9.6 10.8 11.3 9.6 10.9 11.4 9.6 10.9	92 74 86 92 74 8.7 92 7.4 8.7 8.7	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1		
5.553 7.405 M-Ch (184 3.760 5.640 7.520 3.760 5.640 7.520	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0	H H V V V H	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5	113 96 108 113 96 109 114 96	92 74 86 92 74 8.7 9.2 7.4	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7		
5.553 7.405 M-Ch (184 3.760 5.640 7.520 3.760 5.640 7.520	559 589 530 80 MHz) 53.4 64.8 47.0 50.0 57.0 53.4	H H V V V V H H	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8 -41.7	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5 3.3	11.3 9.6 10.8 11.3 9.6 10.9 11.4 9.6 10.9	92 74 86 92 74 8.7 92 7.4 8.7 8.7	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1		
5.553 7.405 M-Ch (184 3.760 5.640 7.520 3.760 5.640 7.520 H-Ch (190	559 589 530 80 MHz) 534 648 470 500 570 570 534 8.75 MHz)	H H V V V H H H V V	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8 -41.7 -42.0	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5 3.3 3.7 2.5 3.3 3.7	113 96 108 113 96 109 114 96 109 114	92 74 86 92 74 8.7 92 74 8.7 92 74 8.7 92	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1 -34.4	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -258 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1 -21.4		
5.553 7.405 M-Ch (184 3.760 5.640 7.520 3.760 5.640 7.520 H-Ch (190 3.817	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0 57.0 53.4 8.75 MHz) 62.5	H H V V V H H H V	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8 -41.7 -42.0 -41.1	3.7 2.4 3.2 3.7 2.5 3.3 3.7 2.5 3.3 3.7 2.5 3.3 3.7 2.5	113 96 108 113 96 109 114 96 109 114 96	92 74 86 92 74 8.7 92 74 8.7 92 74 8.7 92 74	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1 -34.1 -34.1	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -25.8 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1 -21.4 -21.1		
5 553 7 405 M-Ch (184 3.760 5 640 7 520 3.760 5 640 7 520 4.Ch (190 3.817 5.726 7 635 3.817	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0 57.0 53.4 18.75 MHz) 62.5 60.5 52.0 58.2	H H H V V V V H H H V V V V V H	-46.4 -48.2 -39.8 -42.6 -50.5 -33.9 -49.2 -53.8 -41.7 -42.0 -41.1 -39.3 -44.0 -45.4	3.7 24 32 3.7 25 33 3.7 25 33 3.7 25 33 3.7 25 33 3.7 25 33 3.8 25	113 96 108 113 96 109 114 96 109 114 96 109 114 96 110 1110 114 96 110 114 96	92 74 86 92 74 87 92 74 87 92 74 88 87 92 74 88 892 74	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1 -34.4 -34.4 -34.1 -31.6 -36.4 -38.3	-130 -130 -130 -130 -130 -130 -130 -130	-14.1 -258 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1 -21.4 -21.1 -18.6 -23.4 -25.3		
5.553 7.405 M-Ch (184 3.760 5.640 7.520 3.760 5.640 7.520 H-Ch (190 3.817 5.726 7.635	55.9 58.9 53.0 80 MHz) 53.4 64.8 47.0 50.0 57.0 53.4 87.7 MHz) 62.5 60.5 52.0	H H V V V H H H V V V V V	-46.4 -48.2 -39.8 -42.6 -50.5 -34.9 -49.2 -53.8 -41.7 -42.0 -41.1 -39.3 -44.0	3.7 24 32 3.7 25 33 3.7 25 33 3.7 25 33 3.7 25 33 3.7 25 33 3.7 25 33 3.7	113 9.6 10.8 11.3 9.6 10.9 11.4 9.6 10.9 11.4 9.6 11.0 11.1	92 74 86 92 74 8.7 92 74 8.7 92 74 8.7 92 74 8.8 92	-27.1 -38.8 -41.0 -32.2 -35.0 -43.4 -27.3 -41.6 -46.7 -34.1 -34.4 -34.4 -34.1 -31.6 -36.4	-13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0 -13.0	-14.1 -258 -28.0 -19.2 -22.0 -30.4 -14.3 -28.6 -33.7 -21.1 -21.4 -21.4 -21.1 -18.6 -23.4		

Page 15 of 17

8. SETUP PHOTOS

Page 16 of 17

END OF REPORT

Page 17 of 17