TEST REPORT BNetzA-CAB-02/21-102 Test report no.: 1-1479/20-01-06-A ### **Testing laboratory** #### **CTC advanced GmbH** Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: <u>mail@ctcadvanced.com</u> #### **Accredited Testing Laboratory:** The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01. ### **Applicant** #### Panasonic Industrial Devices Europe GmbH Zeppelinstrasse 19 21337 Lüneburg / GERMANY Phone: +49-4131-899-0 Contact: Marcus Nottorf e-mail: marcus.nottorf@eu.panasonic.com #### Manufacturer #### Panasonic Industrial Devices Slovakia s.r.o Tovarenska 13 06401 Stara Lubovna / SLOVAK REPUBLIC #### Test standard/s FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio 15 frequency devices RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices For further applied test standards please refer to section 3 of this test report. **Test Item** Kind of test item: BLE 5 LE LR Module Model name: PAN1781 FCC ID: T7V1781 IC: 216Q-1781 Frequency: DTS band 2400 MHz to 2483.5 MHz Technology tested: Bluetooth® LE Antenna: Integrated antenna Power supply: 3 V DC by external power supply Temperature range: -40°C to +85°C **Radio Communications** This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test report authorized: | Test performed: | | |-------------------------|------------------|--| | | | | | | | | | | | | | Michael Dorongovski | Andreas Kurzkurt | | | Lab Manager | Testing Manager | | **Radio Communications** # 1 Table of contents | 1 | Table | of contents | 2 | |----|----------------|---|------------| | 2 | Genera | al information | | | | 2.1 | Notes and disclaimer | 4 | | | 2.2 | Application details | | | | 2.3 | Test laboratories sub-contracted | | | 3 | Test s | andard/s, references and accreditations | 5 | | 4 | | ing statements of conformity – decision rule | | | 5 | - | nvironment | | | 6 | | em | | | | | | | | | 6.1
6.2 | General description | | | | _ | | | | 7 | Descri | ption of the test setup | 8 | | | 7.1 | Shielded semi anechoic chamber | 9 | | | 7.2 | Shielded fully anechoic chamber | | | | 7.3 | Radiated measurements > 18 GHz | | | | 7.4 | AC conducted | | | | 7.5 | Conducted measurements Bluetooth system | | | 8 | Seque | nce of testing | 14 | | | 8.1 | Sequence of testing radiated spurious 9 kHz to 30 MHz | 14 | | | 8.2 | Sequence of testing radiated spurious 30 MHz to 1 GHz | 1 <i>5</i> | | | 8.3 | Sequence of testing radiated spurious 1 GHz to 18 GHz | | | | 8.4 | Sequence of testing radiated spurious above 18 GHz | 17 | | 9 | Measu | rement uncertainty | 18 | | 10 | Sum | mary of measurement results | 19 | | 11 | Add | itional comments | 20 | | 12 | Mea | surement results | 21 | | | 12.1 | System gain | 21 | | | 12.2 | Power spectral density | | | | 12.3 | DTS bandwidth – 6 dB bandwidth | 23 | | | 12.4 | Occupied bandwidth - 99% emission bandwidth | 24 | | | 12.5 | Maximum output power | | | | 12.6 | Band edge compliance radiated | | | | 12.7 | Band edge compliance conducted | | | | 12.8 | TX spurious emissions conducted | | | | 12.9 | Spurious emissions radiated below 30 MHz | | | | 12.10 | Spurious emissions radiated 30 MHz to 1 GHz | | | | 12.11
12.12 | Spurious emissions radiated above 1 GHzSpurious emissions conducted below 30 MHz (AC conducted) | | | 42 | | • | | | 13 | | ervations | | | 14 | Glos | sary | 52 | | 15 | Document history | 53 | |----|--|----| | 16 | Accreditation Certificate - D-PL-12076-01-04 | 53 | | 17 | Accreditation Certificate - D-PL-12076-01-05 | 54 | #### 2 General information #### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. This test report replaces the test report with the number 1-1479/20-01-06 and dated 2021-04-06. ### 2.2 Application details Date of receipt of order: 2021-01-20 Date of receipt of test item: 2021-03-04 Start of test:* 2021-03-24 End of test:* 2021-03-24 Person(s) present during the test: -/- #### 2.3 Test laboratories sub-contracted None © CTC advanced GmbH Page 4 of 54 ^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software. # 3 Test standard/s, references and accreditations | Test standard | Date | Description | | | | | |---|----------------------|---|--|--|--|--| | FCC - Title 47 CFR Part 15 | | FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices | | | | | | RSS - 247 Issue 2 | February
2017 | Digital Transmission Systems (DTSs), Frequency Hopping
Systems (FHSs) and Licence - Exempt Local Area Network (LE-
LAN) Devices | | | | | | RSS - Gen Issue 5 incl.
Amendment 1 | March
2019 | Spectrum Management and Telecommunications Radio
Standards Specification
- General Requirements for Compliance of Radio Apparatus | | | | | | Guidance | Version | Description | | | | | | KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013 | v05r02
-/-
-/- | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | | | | | | Accreditation | Descriptio | n | | | | | | D-PL-12076-01-04 | | nunication and EMC Canada .dakks.de/as/ast/d/D-PL-12076-01-04e.pdf DAkkS Deutsche Akkrediterungsstelle D-Pl-12076-01-04 | | | | | | D-PL-12076-01-05 | | munication FCC requirements w.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAKS Deutsche Akkreditierungsste | | | | | © CTC advanced GmbH Page 5 of 54 # 4 Reporting statements of conformity – decision rule Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 9 but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong." © CTC advanced GmbH Page 6 of 54 ## 5 Test environment | Temperature | | T _{nom}
T _{max} | +22 °C during room temperature tests No tests under extreme temperature conditions required. | |---------------------------|---|--------------------------------------|---| | | | T _{min} | No tests under extreme temperature conditions required. | | Relative humidity content | : | | 35 % | | Barometric pressure | : | | Not relevant for this kind of testing | | | | V_{nom} | 3.0 V DC by external power supply | | Power supply | : | V_{max} | No tests under
extreme voltage conditions required. | | | | V_{min} | No tests under extreme voltage conditions required. | ## 6 Test item # 6.1 General description | Kind of test item : | BLE 5 LE LR Module | |--|--| | Model name : | PAN1781 | | HMN : | -/- | | PMN : | PAN1781 | | HVIN : | ENW89857A1KF
ENW89857A2KF | | FVIN : | \$113
\$112
\$140 | | S/N serial number : | Rad. CTC Radio 1 34 PES 1
Cond. ctc Radio 2 | | Hardware status : | V1 | | Software status : | S113, S112, S140 | | Frequency band : | DTS band 2400 MHz to 2483.5 MHz | | Type of radio transmission: Use of frequency spectrum: | DTS | | Type of modulation : | GFSK | | Number of channels : | 40 | | Antenna : | Integrated chip antenna with 2dBi peak gain | | Power supply : | 3V DC by external power supply | | Temperature range : | -40°C to +85°C | ## 6.2 Additional information The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing. Test setup and EUT photos are included in test report: 1-1479/20-01-01_AnnexA 1-1479/20-01-01_AnnexB 1-1479/20-01-01_AnnexD © CTC advanced GmbH Page 7 of 54 # 7 Description of the test setup Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard). In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item). #### **Agenda:** Kind of Calibration | k | calibration / calibrated | EK | limited calibration | |-------|--|-----|--| | ne | not required (k, ev, izw, zw not required) | zw | cyclical maintenance (external cyclical | | | | | maintenance) | | ev | periodic self verification | izw | internal cyclical maintenance | | Ve | long-term stability recognized | g | blocked for accredited testing | | vlkl! | Attention: extended calibration interval | | | | NK! | Attention: not calibrated | *) | next calibration ordered / currently in progress | © CTC advanced GmbH Page 8 of 54 #### 7.1 Shielded semi anechoic chamber The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63. Measurement distance: tri-log antenna 10 meter ### **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufact. | Serial No. | INV. No
Cetecom | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|--|------------------|----------------------------------|------------|--------------------|------------------------|---------------------|---------------------| | 1 | Α | Switch-Unit | 3488A | HP | 2719A14505 | 300000368 | ev | -/- | -/- | | 2 | Α | Meßkabine 1 | HF-Absorberhalle | MWB AG 300023 | -/- | 300000551 | ne | -/- | -/- | | 3 | Α | Antenna Tower | Model 2175 | ETS-Lindgren | 64762 | 300003745 | izw | -/- | -/- | | 4 | Α | Positioning
Controller | Model 2090 | ETS-Lindgren | 64672 | 300003746 | izw | -/- | -/- | | 5 | Α | Turntable Interface-
Box | Model 105637 | ETS-Lindgren | 44583 | 300003747 | izw | -/- | -/- | | 6 | А | TRILOG Broadband
Test-Antenna 30
MHz - 3 GHz | VULB9163 | Schwarzbeck Mess -
Elektronik | 318 | 300003696 | vlKI! | 04.09.2019 | 03.09.2021 | | 7 | Α | EMI Test Receiver | ESR3 | Rohde & Schwarz | 102587 | 300005771 | k | 10.12.2020 | 09.06.2022 | © CTC advanced GmbH Page 9 of 54 # 7.2 Shielded fully anechoic chamber Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) #### Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$ ### **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufact. | Serial No. | INV. No
Cetecom | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|--|-------------------------------------|-------------------------|------------|--------------------|------------------------|---------------------|---------------------| | 1 | A, B, C | Anechoic chamber | FAC 3/5m | MWB / TDK | 87400/02 | 300000996 | ev | -/- | -/- | | 2 | A, C | Double-Ridged
Waveguide Horn
Antenna 1-18.0GHz | 3115 | EMCO | 9709-5289 | 300000213 | vlKI! | 14.07.2020 | 13.07.2022 | | 3 | В | Active Loop
Antenna 9 kHz to 30
MHz | 6502 | EMCO | 2210 | 300001015 | vlKI! | 13.06.2019 | 12.06.2021 | | 4 | A, B, C | Switch / Control
Unit | 3488A | HP | * | 300000199 | ne | -/- | -/- | | 5 | A, B, C | EMI Test Receiver
20Hz- 26,5GHz | ESU26 | R&S | 100037 | 300003555 | k | 11.12.2020 | 10.12.2021 | | 6 | A, C | Highpass Filter | WHK1.1/15G-10SS | Wainwright | 3 | 300003255 | ev | -/- | -/- | | 7 | A, C | Highpass Filter | WHKX7.0/18G-8SS | Wainwright | 19 | 300003790 | ne | -/- | -/- | | 8 | A, C | Broadband Amplifier
0.5-18 GHz | CBLU5184540 | CERNEX | 22049 | 300004481 | ev | -/- | -/- | | 9 | A, B, C | 4U RF Switch
Platform | L4491A | Agilent
Technologies | MY50000037 | 300004509 | ne | -/- | -/- | | 10 | A, B, C | NEXIO EMV-
Software | BAT EMC V3.19.1.21 | EMCO | | 300004682 | ne | -/- | -/- | | 11 | A, B, C | PC | ExOne | F+W | | 300004703 | ne | -/- | -/- | | 12 | A, C | RF-Amplifier | AMF-6F06001800-
30-10P-R | NARDA-MITEQ Inc | 2011572 | 300005241 | ev | -/- | -/- | | 13 | С | Band Reject filter | WRCG2400/2483-
2375/2505-50/10SS | Wainwright | 11 | 300003351 | ev | -/- | -/- | © CTC advanced GmbH Page 10 of 54 # 7.3 Radiated measurements > 18 GHz Measurement distance: horn antenna 50 cm FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor) # Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$ ## **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufact. | Serial No. | INV. No
Cetecom | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|--|-----------------------|----------------|---------------------|--------------------|------------------------|---------------------|---------------------| | 1 | Α | Microwave System
Amplifier, 0.5-26.5
GHz | 83017A | НР | 00419 | 300002268 | ev | -/- | -/- | | 2 | А | Std. Gain Horn
Antenna 18.0-26.5
GHz | 638 | Narda | 01096 | 300000486 | vlKI! | -/- | -/- | | 3 | Α | Signal Analyzer 40
GHz | FSV40 | R&S | 101042 | 300004517 | k | 07.12.2020 | 06.12.2021 | | 4 | Α | RF-Cable | ST18/SMAm/SMAm
/48 | Huber & Suhner | Batch no.
600918 | 400001182 | ev | -/- | -/- | | 5 | Α | RF-Cable | ST18/SMAm/SMAm
/48 | Huber & Suhner | Batch no.
127377 | 400001183 | ev | -/- | -/- | | 6 | Α | DC-Blocker 0.1-40
GHz | 8141A | Inmet | -/- | 400001185 | ev | -/- | -/- | © CTC advanced GmbH Page 11 of 54 ## 7.4 AC conducted FS = UR + CF + VC (FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN) # Example calculation: FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$ # **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|---|---------|--------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Two-line V-Network
(LISN) 9 kHz to 30
MHz | ESH3-Z5 | R&S | 892475/017 | 300002209 | vlKI! | 11.12.2019 | 10.12.2021 | | 2 | Α | RF-Filter-section | 85420E | HP | 3427A00162 | 300002214 | NK! | -/- | -/- | | 3 | Α | EMI Test Receiver | ESCI 3 | R&S | 100083 | 300003312 | k | 9.12.2021 | 8.12.2022 | | 4 | Α | Hochpass 150 kHz | EZ-25 | R&S | 100010 | 300003798 | ev | -/- | -/- | | 5 | Α | PC | TecLine | F+W | | 300003532 | ne | -/- | -/- | © CTC advanced GmbH Page 12 of 54 # 7.5 Conducted measurements Bluetooth system OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path) ### Example calculation: OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW) ##
Equipment table: | No. | Lab /
Item | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|--|-----------------------|----------------------|-----------------------|-----------|------------------------|---------------------|---------------------| | 1 | Α | Signal Analyzer 40
GHz | FSV40 | Rohde & Schwarz | 101353 | 300004819 | k | 12.01.2021 | 11.01.2022 | | 2 | Α | Control-PC of OSP | exone Variety | | 060931P1302P
00109 | 300004869 | ne | -/- | -/- | | 3 | Α | RF-Cable WLAN-
Tester Port 1 | ST18/SMAm/SMAm
/36 | Huber & Suhner | Batch no.
601494 | 400001216 | g | -/- | -/- | | 4 | Α | RF-Cable WLAN-
Tester Analyzer | ST18/SMAm/SMAm
/36 | Huber & Suhner | Batch no.
54876 | 400001220 | ev | -/- | -/- | | 5 | А | Tester Software
RadioStar (C.BER2
for BT
Conformance) | Version 1.0.0.X | CTC advanced
GmbH | 0001 | 400001380 | ne | -/- | -/- | © CTC advanced GmbH Page 13 of 54 ### 8 Sequence of testing ## 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz ### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, it is placed on a table with 0.8 m height. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement*** - The turntable rotates from 0° to 315° using 45° steps. - The antenna height is 1 m. - At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions. #### **Final measurement** - Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°. - Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT) - The final measurement is done in the position (turntable and elevation) causing the highest emissions with guasi-peak (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 14 of 54 ^{*)}Note: The sequence will be repeated three times with different EUT orientations. ### 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height changes from 1 m to 3 m. - At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m. - The final measurement is done with quasi-peak detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 15 of 54 ### 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height is 1.5 m. - At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations. - The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 16 of 54 # 8.4 Sequence of testing radiated spurious above 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet. - The measurement distance is as appropriate (e.g. 0.5 m). - The EUT is set into operation. #### **Premeasurement** • The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna. #### Final measurement - The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 17 of 54 # 9 Measurement uncertainty | Measurement uncertainty | | | | | |--|--|--|--|--| | Test case | Uncertainty | | | | | Antenna gain | ± 3 dB | | | | | Spectrum bandwidth | ± 21.5 kHz absolute; ± 15.0 kHz relative | | | | | Maximum output power | ± 1 dB | | | | | Detailed conducted spurious emissions @ the band edge | ± 1 dB | | | | | Band edge compliance radiated | ± 3 dB | | | | | Band edge compliance conducted | ± 1.5 dB | | | | | Spurious emissions conducted | ± 3 dB | | | | | Spurious emissions radiated below 30 MHz | ± 3 dB | | | | | Spurious emissions radiated 30 MHz to 1 GHz | ± 3 dB | | | | | Spurious emissions radiated 1 GHz to 12.75 GHz | ± 3.7 dB | | | | | Spurious emissions radiated above 12.75 GHz | ± 4.5 dB | | | | | Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB | | | | © CTC advanced GmbH Page 18 of 54 # 10 Summary of measurement results | \boxtimes | No deviations from the technical specifications were ascertained | |-------------|--| | | There were deviations from the technical specifications ascertained | | | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. | | TC Identifier | Description | Verdict | Date | Remark | |---------------|-----------------------------------|------------|------------|--------| | RF-Testing | CFR Part 15
RSS - 247, Issue 2 | See table! | 2021-04-19 | -/- | | Test
specification
clause | Test case | Guideline | Temperature conditions | Power source voltages | Mode | С | NC | NA | NP | Remark | |--|--|---|------------------------|-----------------------|------------------|-------------|----|----|----|--------| | §15.247(b)(4)
RSS - 247 /
5.4 (4) | System gain | -/- | Nominal | Nominal | 1 Msps | × | | | | -/- | | §15.247(e)
RSS - 247 /
5.2 (b) | Power spectral density | KDB 558074
DTS clause: 8.4 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(a)(2)
RSS - 247 /
5.2 (a) | DTS bandwidth –
6 dB bandwidth | KDB 558074
DTS
clause: 8.2 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | RSS Gen
clause 4.6.1 | Occupied
bandwidth | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(b)(3)
RSS - 247 /
5.4 (4) | Maximum output
power | KDB 558074
DTS clause:
8.3.1.1 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.205
RSS - 247 /
5.5
RSS - Gen | Band edge
compliance cond.
& rad. | KDB 558074
DTS clause: 8.7.2
or 8.7.3 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(d)
RSS - 247 /
5.5 | TX spurious
emissions
conducted | KDB 558074
DTS clause: 8.5 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.209(a)
RSS - Gen | Spurious
emissions
radiated
below 30 MHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | 15.247(d)
RSS - 247 /
5.5
§15.109
RSS - Gen | Spurious
emissions
radiated
30 MHz to 1 GHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | \boxtimes | | | | -/- | | §15.247(d)
RSS - 247 /
5.5
§15.109
RSS - Gen | Spurious
emissions
radiated
above 1 GHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.107(a)
§15.207 | Conducted
emissions
below 30 MHz
(AC conducted) | -/- | Nominal | Nominal | 1 Msps | \boxtimes | | | | -/- | Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed © CTC advanced GmbH Page 19 of 54 ## 11 Additional comments The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license. Reference documents: 1-1479_20-01-06_Annex_MR_A1.pdf 1-1479_20-01-02_Annex_MR_A1.pdf TESTLAB-Instruction_Radio_PAN1781.docx Customer_Questionnaire_1-1479_20-01.docx WM PAN1781 Product Specification.pdf Special test descriptions: None Configuration descriptions: | Bluetooth Low Energy | | |---|------------------| | Longest Supported payload (37 – 255 Byte) | Tx: 255, RX: 255 | | LE 1M PHY supported | Yes | | LE 2M PHY supported | Yes | | Stable Modulation Index supported (SMI) | No | | LE Coded PHY supported (S=2) | Yes | | LE Coded PHY supported (S=8) | Yes | | Test mode: | \boxtimes | Bluetooth LE Test mode enabled
(EUT is controlled by CMW) | |--|-------------|--| | | | Special software is used.
EUT is transmitting pseudo random data by itself | | Antennas and transmit operating modes: | \boxtimes | Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) | | | | Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. | | | | Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements. | © CTC advanced GmbH Page 20 of 54 # 12 Measurement results # 12.1 System gain Antenna gain declared by manufacturer (see section 6.1). © CTC advanced GmbH Page 21 of 54 # 12.2 Power spectral density ## **Description:** Measurement of the power spectral density of a digital modulated system. | Measurement parameters | | | | |-------------------------|---|--|--| | External result file | 1-1479_20-01-06_Annex_MR_A1.pdf | | | | External result file | FCC Part 15.247 Peak Power Spectral Density DTS | | | | Test setup | See sub clause 7.5 A | | | | Measurement uncertainty | See sub clause 9 | | | ### **Limits:** | FCC | IC | | | | |------------------------|----|--|--|--| | Power spectral density | | | | | For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration. # Results: | | Frequency | | | | | | |--|----------------------------|-------|-------|--|--|--| | | 2402 MHz 2440 MHz 2480 MHz | | | | | | | Power spectral density [dBm / 3kHz]
1 Msps | -10.7 | -10.9 | -10.4 | | | | | Power spectral density [dBm / 3kHz]
2 Msps | -12.5 | -12.6 | -12.1 | | | | | Power spectral density [dBm / 3kHz]
Long range S2 | -0.8 | -0.7 | -0.2 | | | | | Power spectral density [dBm / 3kHz]
Long range S8 | -0.6 | -0.5 | 0.1 | | | | © CTC advanced GmbH Page 22 of 54 # 12.3 DTS bandwidth - 6 dB bandwidth # **Description:** Measurement of the 6 dB bandwidth of the modulated signal. | Measurement parameters | | | | |--|-----------------------------------|--|--| | External result file | 1-1479_20-01-06_Annex_MR_A1.pdf | | | | External result file | FCC Part 15.247 Bandwidth 6dB DTS | | | | Test setup | See sub clause 7.5 A | | | | Measurement uncertainty See sub clause 9 | | | | # Limits: | FCC | IC | | | | |---|----|--|--|--| | DTS bandwidth – 6 dB bandwidth | | | | | | Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz. | | | | | # Results: | | | Frequency | | | | | |--------------------------------|----------------------------|-----------|------|--|--|--| | | 2402 MHz 2440 MHz 2480 MHz | | | | | | | 6 dB bandwidth [kHz]
1 Msps | 697 | 702 | 708 | | | | | 6 dB bandwidth [kHz]
2 Msps | 1131 | 1134 | 1138 | | | | © CTC advanced GmbH Page 23 of 54 # 12.4 Occupied bandwidth - 99% emission bandwidth # **Description:** Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN. | Measurement parameters | | | |-------------------------|--------------------------------------|--| | External result file | 1-1479_20-01-06_Annex_MR_A1.pdf | | | | FCC Part 15.247 Bandwidth 99PCT-20dB | | | Test setup | See sub clause 7.5 A | | | Measurement uncertainty | See sub clause 9 | | ## <u>Usage:</u> | -/- | IC | | |---|----|--| | Occupied bandwidth – 99% emission bandwidth | | | | OBW is necessary for emission designator | | | ## Results: | | Frequency | | | | |-------------------------------|----------------------------|--------|--------|--| | | 2402 MHz 2440 MHz 2480 MHz | | | | | 99% bandwidth [kHz]
1 Msps | 1041.1 | 1046.9 | 1048.7 | | | 99% bandwidth [kHz]
2 Msps | 2038.1 | 2041.3 | 2044.5 | | © CTC advanced GmbH Page 24 of 54 # 12.5 Maximum output power # **Description:** Measurement of the maximum output power conducted. EUT in single channel mode. | Measurement parameters | | | |-------------------------|---|--| | | 1-1479_20-01-06_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 Maximum Peak Conducted Output | | | | Power DTS | | | Test setup | See sub clause 7.5 A | | | Measurement uncertainty | See sub clause 9 | | # Limits: | FCC | IC | | |--|----|--| | Maximum output power | | | | Conducted: 1.0 W – antenna gain max. 6 dBi | | | ## Results: | | Frequency | | | |--|----------------------------|-----|-----| | | 2402 MHz 2440 MHz 2480 MHz | | | | Maximum output power conducted [dBm] 1 Msps | 5.4 | 5.4 | 6.0 | | Maximum output power conducted [dBm] 2 Msps | 5.6 | 5.5 | 6.1 | | Maximum output power conducted [dBm] Long range S2 | 5.3 | 5.4 | 6.1 | | Maximum output power conducted [dBm] Long range S8 | 5.3 | 5.4 | 6.1 | © CTC advanced GmbH Page 25 of 54 # 12.6 Band edge compliance radiated ### **Description:** Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2402 MHz for the lower restricted band and 2480 MHz for the upper restricted band. Measurement distance is 3m. | Measurement parameters | | | |-------------------------|---|--| | Detector | Peak / RMS | | | Sweep time | Auto | | | Resolution bandwidth | 1 MHz | | | Video bandwidth | 3 MHz | | | Span | Lower Band: 2300 – 2400 MHz
higher Band: 2480 – 2500 MHz | | | Trace mode | Max hold | | | Test setup | See sub clause 7.2 A | | | Measurement uncertainty | See sub clause 9 | | ### **Limits:** | FCC | IC | |
--|----|--| | Band edge compliance radiated | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)). | | | | 54 dBμV/m AVG
74 dBμV/m Peak | | | © CTC advanced GmbH Page 26 of 54 # Result: | Scenario | Band edge compliance radiated [dBµV/m] | |-----------------------|--| | Data rate | 1 Msps | | Lower restricted band | 29.5 dBμV/m AVG
40.7 dBμV/m Peak | | Upper restricted band | 51.3 dBμV/m AVG
58.5 dBμV/m Peak | | Data rate | 2 Msps | | Lower restricted band | 33.9 dBμV/m AVG
44.9 dBμV/m Peak | | Upper restricted band | 53.7 dBμV/m AVG
61.8 dBμV/m Peak | © CTC advanced GmbH Page 27 of 54 ## Plots: Plot 1: Lower restricted band, 1 Msps Plot 2: Upper restricted band, 1 Msps © CTC advanced GmbH Page 28 of 54 Plot 3: Lower restricted band, 2 Msps Plot 4: Upper restricted band, 2 Msps © CTC advanced GmbH Page 29 of 54 # 12.7 Band edge compliance conducted # **Description:** Measurement of the radiated band edge compliance with a conducted test setup. | Measurement parameters | | | |-------------------------|---|--| | External result file | 1-1479_20-01-06_Annex_MR_A1.pdf FCC Part 15.247 Restricted Band Edge Conducted Peak DTS | | | Test setup | See sub clause 7.5 A | | | Measurement uncertainty | See sub clause 9 | | ## Limits: | FCC | IC | |--------|-------| | -41.26 | 6 dBm | © CTC advanced GmbH Page 30 of 54 # Results: | | band edge compliance / dBm (included antenna gain) | | |----------------------------|--|--------| | Data rate | 1 Msps | 2 Msps | | Max. lower band edge power | -56.6 | -52.7 | | Max. upper band edge power | -56.1 | -48.7 | © CTC advanced GmbH Page 31 of 54 # 12.8 TX spurious emissions conducted ### **Description:** Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. | Measurement parameters | | | | |-------------------------|---|--|--| | External result file | 1-1479_20-01-06_Annex_MR_A1.pdf
FCC Part 15.247 TX Spurious Conduced | | | | Test setup | See sub clause 7.5 A | | | | Measurement uncertainty | See sub clause 9 | | | ### **Limits:** | FCC | IC | | |---------------------------------|----|--| | TX spurious emissions conducted | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required © CTC advanced GmbH Page 32 of 54 # Results: 1 Msps | TX spurious emissions conducted | | | | | | |--|---------------------------------|-----------------------------------|---|--|---------------------| | | | | | | | | f [MHz] | | amplitude of
emission
[dBm] | limit
max. allowed
emission power | actual attenuation
below frequency of
operation [dB] | results | | 2402 | | 5.0 | 30 dBm | | Operating frequency | | All detected e | emissions are com
dBc limit! | ppliant with the -20 | -20 dBc | | compliant | | 2440 | | 4.4 | 30 dBm | | Operating frequency | | All detected emissions are compliant with the -20 dBc limit! | | -20 dBc | | compliant | | | 2480 | | 4.2 | 30 dBm | | Operating frequency | | All detected emissions are compliant with the -20 dBc limit! | | -20 dBc | | compliant | | # Results: 2 Msps | TX spurious emissions conducted | | | | | | |--|---------------------------------|-----------------------------------|---|--|---------------------| | | | | | | | | f [MHz] | | amplitude of
emission
[dBm] | limit
max. allowed
emission power | actual attenuation
below frequency of
operation [dB] | results | | 2402 | | 5.3 | 30 dBm | | Operating frequency | | All detected e | emissions are com
dBc limit! | ppliant with the -20 | -20 dBc | | compliant | | 2440 | | 2.5 | 30 dBm | | Operating frequency | | All detected emissions are compliant with the -20 dBc limit! | | -20 dBc | | compliant | | | 2480 | | 2.9 | 30 dBm | | Operating frequency | | All detected emissions are compliant with the -20 dBc limit! | | -20 dBc | | compliant | | © CTC advanced GmbH Page 33 of 54 # 12.9 Spurious emissions radiated below 30 MHz ## **Description:** Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10. | Measurement parameters | | | | |-------------------------|----------------------|--|--| | Detector | Peak / Quasi peak | | | | Sweep time | Auto | | | | Resolution bandwidth | F < 150 kHz: 200 Hz | | | | | F > 150 kHz: 9 kHz | | | | Video bandwidth | F < 150 kHz: 1 kHz | | | | | F > 150 kHz: 30 kHz | | | | Span | 9 kHz to 30 MHz | | | | Trace mode | Max hold | | | | Test setup | See sub clause 7.2 B | | | | Measurement uncertainty | See sub clause 9 | | | ## **Limits:** | FCC | | IC | | | |---|-------------------------|----|----------------------|--| | TX spurious emissions radiated below 30 MHz | | | | | | Frequency (MHz) | Field strength (dBµV/m) | | Measurement distance | | | 0.009 - 0.490 | 2400/F(kHz) | | 300 | | | 0.490 - 1.705 | 24000/F(kHz) | | 30 | | | 1.705 – 30.0 | 30 | | 30 | | ### **Results:** | TX spurious emissions radiated below 30 MHz [dBμV/m] | | | | | |---|--|--|--|--| | F [MHz] Detector Level [dBµV/m] | | | | | | All detected emissions are more than 20 dB below the limit. | | | | | © CTC advanced GmbH Page 34 of 54 ## Plots: Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode, 1 Msps Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode, 1 Msps © CTC advanced GmbH Page 35 of 54 Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode, 1 Msps Plot 4: 9 kHz to 30 MHz, 2402 MHz, transmit mode, 2 Msps © CTC advanced GmbH Page 36 of 54 Plot 5: 9 kHz to 30 MHz, 2440 MHz, transmit mode, 2 Msps Plot 6: 9 kHz to 30 MHz, 2480 MHz, transmit mode, 2 Msps © CTC advanced GmbH Page 37 of 54 ### 12.10 Spurious emissions radiated 30 MHz to 1 GHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. | Measurement parameters | | | | | | |-------------------------|----------------------|--|--|--|--| | Detector | Peak / Quasi Peak | | | | | | Sweep time | Auto | | | | | | Resolution bandwidth | 120 kHz | | | | | | Video bandwidth | 3 x RBW | | | | | | Span | 30 MHz to 1 GHz | | | | | | Trace mode | Max hold | | | | | | Measured modulation | GFSK | | | | | | Test setup | See sub clause 7.1 A | | | | | | Measurement uncertainty | See sub clause 9 | | | | | #### Limits: | FCC | IC | | | | | | |--------------------------------|----|--|--|--|--|--| | TX spurious emissions radiated | | | | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | §15.209 | | | | | | | | | |-----------------|-------------------------|----------------------|--|--|--|--|--|--| | Frequency (MHz) | Field strength (dBµV/m) | Measurement distance | | | | | | | | 30 - 88 | 30.0 | 10 | | | | | | | | 88 – 216 | 33.5 | 10 | | | | | | | | 216 – 960 | 36.0 | 10 | | | | | | | |
Above 960 | 54.0 | 3 | | | | | | | © CTC advanced GmbH Page 38 of 54 Plots: Transmit mode Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps #### Final results: | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 41.750 | 9.25 | 30.0 | 20.8 | 1000 | 120.0 | 177.0 | Н | 225 | 14 | | 47.037 | 9.39 | 30.0 | 20.6 | 1000 | 120.0 | 120.0 | ٧ | 198 | 14 | | 67.173 | 10.06 | 30.0 | 19.9 | 1000 | 120.0 | 223.0 | Н | 270 | 11 | | 509.059 | 14.28 | 36.0 | 21.7 | 1000 | 120.0 | 200.0 | ٧ | 270 | 18 | | 725.978 | 17.80 | 36.0 | 18.2 | 1000 | 120.0 | 400.0 | V | 270 | 21 | | 952.088 | 15.25 | 36.0 | 20.8 | 1000 | 120.0 | 223.0 | Н | 0 | 24 | © CTC advanced GmbH Page 39 of 54 Plot 5: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps #### Final results: | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 42.161 | 17.99 | 30.0 | 12.0 | 1000 | 120.0 | 170.0 | Н | 10 | 14 | | 56.803 | 16.40 | 30.0 | 13.6 | 1000 | 120.0 | 142.0 | Н | 2 | 15 | | 61.808 | 9.24 | 30.0 | 20.8 | 1000 | 120.0 | 110.0 | Н | 67 | 12 | | 511.316 | 22.32 | 36.0 | 13.7 | 1000 | 120.0 | 170.0 | Н | 196 | 19 | | 678.946 | 24.75 | 36.0 | 11.3 | 1000 | 120.0 | 161.0 | ٧ | 180 | 21 | | 931.593 | 28.47 | 36.0 | 7.5 | 1000 | 120.0 | 140.0 | V | -22 | 24 | © CTC advanced GmbH Page 40 of 54 ### 12.11 Spurious emissions radiated above 1 GHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2402 MHz, 2440 MHz and 2480 MHz. | Measurement parameters | | | | | | | |-------------------------|--|--|--|--|--|--| | Detector | Peak / RMS | | | | | | | Sweep time | Auto | | | | | | | Resolution bandwidth | 1 MHz | | | | | | | Video bandwidth | 3 x RBW | | | | | | | Span | 1 GHz to 26 GHz | | | | | | | Trace mode | Max hold | | | | | | | Measured modulation | GFSK | | | | | | | Test setup | See sub clause 7.2 C (1 GHz - 18 GHz) | | | | | | | Test setup | See sub clause 7.3 A (18 GHz - 26 GHz) | | | | | | | Measurement uncertainty | See sub clause 9 | | | | | | #### **Limits:** | FCC | IC | |----------------|------------------| | TX spurious em | issions radiated | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | §15.209 | | | | | | | | | |--|----------------|---|--|--|--|--|--|--| | Frequency (MHz) Field strength (dBµV/m) Measurement dist | | | | | | | | | | Above 960 | 54.0 (Average) | 3 | | | | | | | | Above 960 | 74.0 (Peak) | 3 | | | | | | | © CTC advanced GmbH Page 41 of 54 # **Results:** Transmitter mode, 1 Msps | TX spurious emissions radiated [dBμV/m] | | | | | | | | | |---|----------|-------------------|---------------------------------|------|------|----------|----------|-------------------| | 2402 MHz | | | 2440 MHz | | | 2480 MHz | | | | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] Detector Level [dBµV/m] | | | F [MHz] | Detector | Level
[dBµV/m] | | 4804.3 | Peak | 54.0 | 4880.4 | Peak | 55.6 | 4959.7 | Peak | 52.8 | | 4604.3 | AVG | 47.4 | 4000.4 | AVG | 50.7 | 4909.1 | AVG | 45.9 | | -/- | Peak | -/- | 7319.0 | Peak | 55.5 | 7441.1 | Peak | 54.2 | | -/- | AVG | -/- | 1319.0 | AVG | 49.4 | 1441.1 | AVG | 47.8 | # **Results:** Transmitter mode, 2 Msps | TX spurious emissions radiated [dBµV/m] | | | | | | | | | | |---|----------|-------------------|---------------------------------|--------|------|----------|----------|-------------------|--| | 2402 MHz | | | 2440 MHz | | | 2480 MHz | | | | | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] Detector Level [dBµV/m] | | | F [MHz] | Detector | Level
[dBµV/m] | | | 4804.0 | Peak | 58.2 | 58.2 | 4960.0 | Peak | 50.3 | | | | | 4804.0 | AVG | 51.9 | 4679.0 | AVG | 49.1 | 4960.0 | AVG | 40.9 | | | , | Peak | -/- | 7321.2 | Peak | 56.7 | 7438.9 | Peak | 56.2 | | | -/- | AVG | -/- | 7321.2 | AVG | 49.2 | 7436.9 | AVG | 49.5 | | © CTC advanced GmbH Page 42 of 54 ### **Plots:** Transmitter mode Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps Date: 24.MAR.2021 17:25:42 © CTC advanced GmbH Page 43 of 54 Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps Date: 24.MAR.2021 17:27:10 © CTC advanced GmbH Page 44 of 54 Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps Date: 24.MAR.2021 17:28:44 © CTC advanced GmbH Page 45 of 54 Plot 7: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 2 Msps Plot 8: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 2 Msps Date: 24.MAR.2021 17:30:11 © CTC advanced GmbH Page 46 of 54 Plot 9: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps Plot 10: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps Date: 24.MAR.2021 17:31:40 © CTC advanced GmbH Page 47 of 54 Plot 11: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 2 Msps Plot 12: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 2 Msps Date: 24.MAR.2021 17:32:55 © CTC advanced GmbH Page 48 of 54 # 12.12 Spurious emissions conducted below 30 MHz (AC conducted) #### **Description:** Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits. | Measurement parameters | | | | | | | |-------------------------|--|--|--|--|--|--| | Detector | Peak - Quasi peak / average | | | | | | | Sweep time | Auto | | | | | | | Resolution bandwidth | F < 150 kHz: 200 Hz
F > 150 kHz: 9 kHz | | | | | | | Video bandwidth | F < 150 kHz: 1 kHz
F > 150 kHz: 100 kHz | | | | | | | Span: | 9 kHz to 30 MHz | | | | | | | Trace mode: | Max hold | | | | | | | Test setup | See sub clause 7.4. A | | | | | | | Measurement uncertainty | See sub clause 9 | | | | | | #### **Limits:** | FCC | | | IC | | | | |--|------------|------------|------------------|--|--|--| | TX spurious emissions conducted < 30 MHz | | | | | | | | Frequency (MHz) | Quasi-peak | c (dBμV/m) | Average (dBμV/m) | | | | | 0.15 - 0.5 | 66 to 56* | | 56 to 46* | | | | | 0.5 – 5 | 56 | | 46 | | | | | 5 - 30.0 | 6 | 0 | 50 | | | | ^{*}Decreases with the logarithm of the frequency #### **Results:** | Spurious emissions conducted < 30 MHz [dBµV/m] | | | | | |--|----------|----------------|--|--| | F [MHz] | Detector | Level [dBµV/m] | | | | No emissions detected | | | | | | | | | | | | | | | | | © CTC advanced GmbH Page 49 of 54 # Plots: Plot 1: 150 kHz to 30 MHz, phase line ### Final results: | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | 1.004456 | 19.17 | 36.83 | 56.000 | 14.36 | 31.64 | 46.000 | © CTC advanced GmbH Page 50 of 54 Plot 2: 150 kHz to 30 MHz, neutral line # Final results: | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | 0.515663 | 29.31 | 26.69 | 56.000 | 22.06 | 23.94 | 46.000 | | 0.952219 | 21.69 | 34.31 | 56.000 | 15.69 | 30.31 | 46.000 | © CTC advanced GmbH Page 51 of 54 # 13 Observations No observations except those reported with the single test cases have been made. # 14 Glossary | EUT | Equipment under test | |------------------|--| | DUT | Device under test | | UUT | Unit under test | | GUE | GNSS User Equipment |
 FCC | Federal Communications Commission | | FCC ID | Company Identifier at FCC | | IC | Industry Canada | | PMN | Product marketing name | | HMN | Host marketing name | | HVIN | Hardware version identification number | | FVIN | Firmware version identification number | | EMC | | | HW | Electromagnetic Compatibility Hardware | | SW | Software | | Inv. No. | | | S/N or SN | Inventory number Serial number | | | | | C
NC | Compliant | | NA
NA | Not compliant Not applicable | | NP | Not performed | | PP | Positive peak | | QP | Quasi peak | | AVG | Average | | OC | Operating channel | | ocw | Operating channel bandwidth | | OBW | Occupied bandwidth | | OOB | Out of band | | DFS | Dynamic frequency selection | | CAC | Channel availability check | | OP | Occupancy period | | NOP | Non occupancy period | | DC | Duty cycle | | PER | Packet error rate | | CW | Clean wave | | MC | Modulated carrier | | DSSS | Dynamic sequence spread spectrum | | OFDM | Orthogonal frequency division multiplexing | | FHSS | Frequency hopping spread spectrum | | C/N ₀ | Carrier to noise-density ratio, expressed in dB-Hz | | O/ N() | Garner to holde density ratio, expressed in ab 112 | © CTC advanced GmbH Page 52 of 54 # 15 Document history | Version | Applied changes | Date of release | |---------|-----------------|-----------------| | -/- | Initial release | 2021-04-06 | | А | HVIN changed | 2021-04-19 | # 16 Accreditation Certificate - D-PL-12076-01-04 | first page | last page | |---|---| | Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilaterral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards | Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 1.0 Europa-Allee 5.2 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-Pt-12076-01-04 Frankfurt am Main, 09.06.2020 By order (Pta. Ing. (*Pta. File Signer Head of Division) The certificate tagether with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the distinction of accredited bodies of Oversiche Abbrevillerungstein Gmbit. Association of the scope of accreditation of the scope of accreditation can be found in the distinction of decredited bodies. The scope of accreditation of the scope of accreditation can be found in the distinction of decredited bodies. The scope of accreditation of the scope of accreditation can be found in the distinction of decredited bodies. | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAXAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMX-Felles) of 3.1 July 2009 (Federal tawa Gazette) to 2.523 and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and markets surveillance relating to the marketing of products Official Journal of the European Into 12.18 of 9 July 2008, p. 30), DAXS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (EA) and International Julopatory Accreditation Coperation (IJAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilbc.org IAF: www.ilbc.org | Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf © CTC advanced GmbH Page 53 of 54 # 17 Accreditation Certificate - D-PL-12076-01-05 | first page | last page | |--
--| | Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) | Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 10117 Berlin G0327 Frankfurt am Main 38116 Braunschweig Bundesaltee 100 38116 Braunschweig | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by oright Opsi-Imp. (PHPB of Eigner Head of Division) The certificate together with its owner reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the distinctor called the distinctor of accreditation can be called the distinctor of accreditation can be accreditation can be accreditation can be accreditation can be accreditation as account of accreditation can be accreditation as account of accreditation can be accreditation as account of ac | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation assessment body mentioned overleaf. The accreditation was granted gursanat to the Act on the Accreditation Body (AASselleG) of 3.1 July 2009 (feature law Gazate In 2.825) and the Regulation (EQN To 75/2009) of the European Perlament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products Official Journal of the European Livour 1.28 of 9 July 2008, 8.01, DAXS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of memberahip can be retrieved from the following websites: EA: www.lac.org IAAC: www.lac.org IAAC: www.lac.org | Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf © CTC advanced GmbH Page 54 of 54