

RADIO TEST REPORT FCC ID:2BFHLDIESELHD2

Product: Professional Diagnostic Tool

Trade Mark: ECCEPTION Model No.: Diesel Handheld 2 Family Model: N/A Report No.: S24120600504001 Issue Date: Jan. 26, 2025

Prepared for

Diesel Laptops, LLC

7440 Broad River Rd Irmo, SC 29063

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China Tel. 0755-23200050 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 T	TEST RESULT CERTIFICATION	3
2 S	UMMARY OF TEST RESULTS	4
3 F	ACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	
	SENERAL DESCRIPTION OF EUT	
	DESCRIPTION OF TEST MODES	
	ETUP OF EQUIPMENT UNDER TEST	
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.2 6.3	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 T	EST REQUIREMENTS	
7.1	CONDUCTED EMISSIONS TEST	13
7.2	RADIATED SPURIOUS EMISSION	
7.3	NUMBER OF HOPPING CHANNEL	
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
7.6	20DB BANDWIDTH TEST	
7.7	PEAK OUTPUT POWER	
7.8	CONDUCTED BAND EDGE MEASUREMENT	
7.9	SPURIOUS RF CONDUCTED EMISSION	
7.10		
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	34
8 T	EST RESULTS	35
8.1	Dwell Time	
8.2	MAXIMUM CONDUCTED OUTPUT POWER	45
8.3	-20dB Bandwidth	51
8.4	Occupied Channel Bandwidth	57
8.5	CARRIER FREQUENCIES SEPARATION	
8.6	NUMBER OF HOPPING CHANNEL	
8.7	Band Edge	72
8.8	BAND EDGE(HOPPING)	79
8.9	CONDUCTED RF SPURIOUS EMISSION	86

1 TEST RESULT CERTIFICATION

Applicant's name:	Diesel Laptops, LLC
Address:	7440 Broad River Rd Irmo, SC 29063
Manufacturer's Name::	Diesel Laptops, LLC
Address:	7440 Broad River Rd Irmo, SC 29063
Product description	
Product name:	Professional Diagnostic Tool
Trade Mark:	
Model name:	Diesel Handheld 2
Family Model:	N/A
Test Sample number :	S241206005004
Date of Test:	Dec. 06, 2024 ~ Jan. 26, 2025

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.

Prepared By Allen Liu (Project Engineer) Reviewed By Aaron Cheng By Allen Liu (Project Engineer) (Project Engineer) (Supervisor) (Manager)

SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

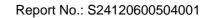
3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS


Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan
	District, Shenzhen, Guangdong, People's Republic of China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±4.7dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Professional Diagnostic Tool	
Trade Mark	DIESEL L A P T O P S	
FCC ID	2BFHLDIESELHD2	
Model No.	Diesel Handheld 2	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	FPC Antenna	
Antenna Gain	0.92 dBi	
Adapter	N/A	
Battery	DC 3.6V,3000mAh, 10.8Wh	
Power supply	DC 3.6V from battery or DC 5V/1.5A from adapter or DC 24V/0.5A from the vehicle battery	
HW Version	N/A	
FW Version	N/A	
SW Version	N/A	

ACCREDITED

Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Note 3: The product comes with different colored rubber sleeves.

Revision History			
Report No.	Version	Description	Issued Date
S24120600504001	Rev.01	Initial issue of report	Jan. 26, 2025

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on

this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

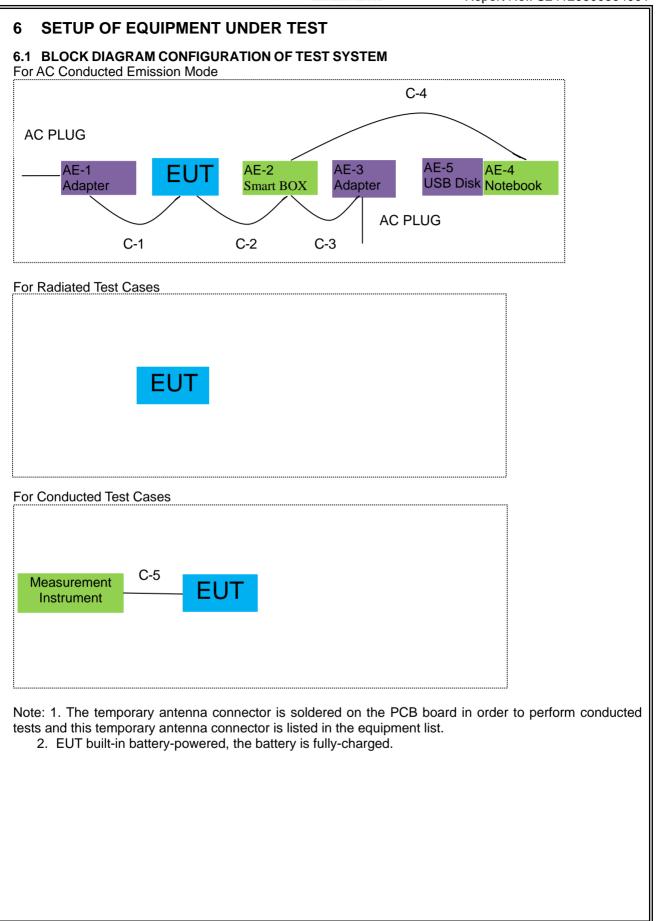
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission
Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases	
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Report No.: S24120600504001

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Smart BOX	N/A	N/A	Peripherals
AE-3	Adapter	N/A	N/A	Peripherals
AE-4	Notebook	N/A	N/A	Peripherals
AE-5	USB Disk	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	0.8m
C-2	RS232 Cable	YES	NO	1.2m
C-3	DC Cable	YES	NO	0.8m
C-4	USB Cable	YES	NO	0.8m
C-5	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		cst cquipment					1
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Čable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

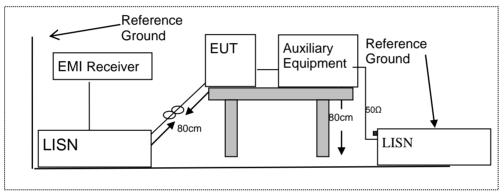
Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

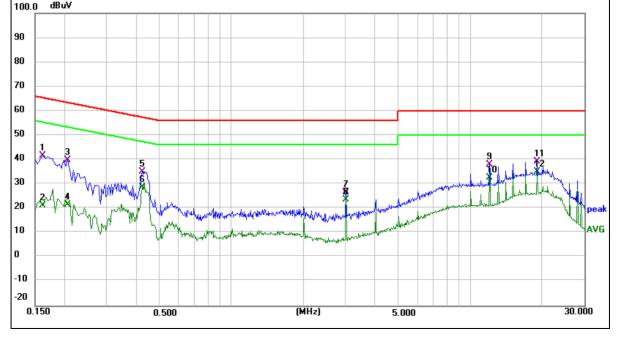
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 **Test Results**

EUT:	Professional Diagnostic Tool	Model Name :	Diesel Handheld 2
Temperature:	22.3 ℃	Relative Humidity:	44.2%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1


[1	
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	31.68	10.02	41.70	65.36	-23.66	QP
0.1620	11.10	10.02	21.12	55.36	-34.24	AVG
0.2060	29.87	10.12	39.99	63.37	-23.38	QP
0.2060	11.52	10.12	21.64	53.37	-31.73	AVG
0.4220	24.60	10.54	35.14	57.41	-22.27	QP
0.4220	18.32	10.54	28.86	47.41	-18.55	AVG
3.0140	16.72	9.88	26.60	56.00	-29.40	QP
3.0140	13.68	9.88	23.56	46.00	-22.44	AVG
12.0580	38.69	-0.78	37.91	60.00	-22.09	QP
12.0580	33.29	-0.78	32.51	50.00	-17.49	AVG
19.0940	26.60	12.60	39.20	60.00	-20.80	QP
19.0940	22.38	12.60	34.98	50.00	-15.02	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBu¥



EUT:	Professional Diagnostic Tool	Model Name :	Diesel Handheld 2
Temperature:	22.3 ℃	Relative Humidity:	44.2%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	37.35	9.44	46.79	65.79	-19.00	QP
0.1539	18.78	9.44	28.22	55.79	-27.57	AVG
0.2340	27.79	9.57	37.36	62.31	-24.95	QP
0.2340	8.86	9.57	18.43	52.31	-33.88	AVG
0.4300	20.29	9.91	30.20	57.25	-27.05	QP
0.4300	13.36	9.91	23.27	47.25	-23.98	AVG
3.0140	18.79	9.14	27.93	56.00	-28.07	QP
3.0140	15.14	9.14	24.28	46.00	-21.72	AVG
12.0620	38.80	-1.58	37.22	60.00	-22.78	QP
12.0620	34.97	-1.58	33.39	50.00	-16.61	AVG
15.0780	26.98	11.06	38.04	60.00	-21.96	QP
15.0780	23.70	11.06	34.76	50.00	-15.24	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fart 15.205, Restricted bands							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

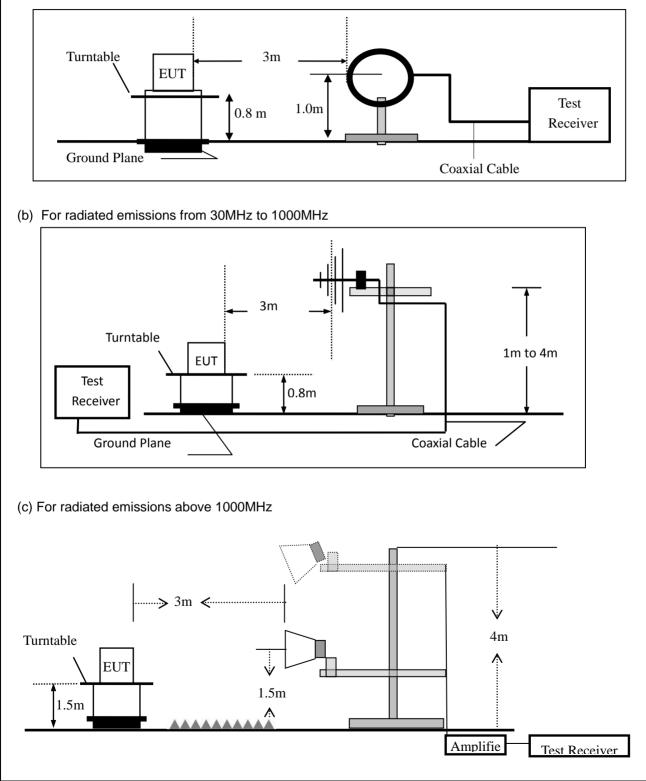
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During th	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:											
Frequ	ency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
	30 to 1000	QP	120 kHz	300 kHz								
		Peak	1 MHz	1 MHz								
	Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Em	Spurious Emission below 30MHz (9KHz to 30MHz)									
EUT: Professional Diagnostic Tool Model No.: Diesel Handheld 2										
Temperature:	20 ℃	Relative Humidity:	48%							
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu							

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	PK AV		PK AV		r(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Professional Diagnostic Tool	Model Name :	Diesel Handheld 2
Temperature:	24.7℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 3
Test Voltage :	DC 3.6V		

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV) (dB)		(dBuV/m)	(dBuV/m)	(dB)	
V	34.0360	17.22	17.00	34.22	40.00	-5.78	QP
V	39.0240	13.24	18.14	31.38	40.00	-8.62	QP
V	71.3300	1.3300 14.38		29.47	40.00 -10.53		QP
V	138.3870	22.04	14.19	36.23	43.50	-7.27	QP
V	175.6520	15.54	15.70	31.24	43.50	-12.26	QP
V	234.9910	14.54	18.01	32.55	46.00	-13.45	QP
Remark							
Emissio	n Level= Meter	Reading+ Fa	ctor, Margi	n= Emission L	evel - Limit		
80.0 dB	u¥/m						
70							

NTEK JLW®

Report No.: S24120600504001

Polar	Frequency	/ Meter / Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	118.1860	15.03	15.65	30.68	43.50	-12.82	QP	
Н	136.4600	14.54	14.29	28.83	43.50	-14.67	QP	
Н	180.6489	12.96	16.04	29.00	43.50	-14.50	QP	
Н	230.9070	16.18	18.00	34.18	46.00	-11.82	QP	
Н	350.4770	13.61	21.57	35.18	46.00	-10.82	QP	
Н	851.0350	7.75	29.75	37.50	46.00	-8.50	QP	
70								
80.0 df	3u¥/m							
70								
60								
50								
40							<u>6</u>	
30				3	5	hugher	moulinest	
20	Ichhainmanianter	www. Aunalle		White Me	When Mill and a second	Norman and Mary		
10								
0.0							1000.000	
30.000		60.00	I	(MHz)	300.00		1000.000	

Report No.: S24120600504001

Spurious	Emissio	n Above 1	GHz (1GH	z to 25GH	z)						
EUT:	Pro	ofessional	Diagnosti	c Tool Mo	odel No.:		Diesel Handheld 2				
Temperature	: 20	°C		Re	lative Humi	dity:	48%				
Test Mode:	Mc	de2/Mod	e3/Mode4	Те	st By:	-	Allen	Liu			
All the modula	ation mod	des have	been teste			t was			/:		
				-,							
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Lii	mits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	µV/m)	(dB)			
	Low Channel (2402 MHz)(GFSK)Above 1G										
4804.214	63.04	5.21	35.59	44.30	59.54	74	4.00	-14.46	Pk	Vertical	
4804.214	40.68	5.21	35.59	44.30	37.18	54	4.00	-16.82	AV	Vertical	
7206.265	60.32	6.48	36.27	44.60	58.47	74	4.00	-15.53	Pk	Vertical	
7206.265	44.77	6.48	36.27	44.60	42.92	54	4.00	-11.08	AV	Vertical	
4804.109	60.85	5.21	35.55	44.30	57.31	74	4.00	-16.69	Pk	Horizontal	
4804.109	43.24	5.21	35.55	44.30	39.70	54.00		-14.30	AV	Horizontal	
7206.224	63.29	6.48	36.27	44.52	61.52	74	4.00	-12.48	Pk	Horizontal	
7206.224	48.22	6.48	36.27	44.52	46.45	54	4.00	-7.55	AV	Horizontal	
			Mid Chan	nel (2441 N	1Hz)(GFSK)	Abo	ve 1G				
4882.396	64.04	5.21	35.66	44.20	60.71	74	4.00	-13.29	Pk	Vertical	
4882.396	42.42	5.21	35.66	44.20	39.09	54	4.00	-14.91	AV	Vertical	
7323.241	60.40	7.10	36.50	44.43	59.57	74	4.00	-14.43	Pk	Vertical	
7323.241	47.25	7.10	36.50	44.43	46.42	54	1.00	-7.58	AV	Vertical	
4882.108	61.41	5.21	35.66	44.20	58.08	74	4.00	-15.92	Pk	Horizontal	
4882.108	49.56	5.21	35.66	44.20	46.23	54	4.00	-7.77	AV	Horizontal	
7323.132	60.76	7.10	36.50	44.43	59.93	74	4.00	-14.07	Pk	Horizontal	
7323.132	41.90	7.10	36.50	44.43	41.07	54	4.00	-12.93	AV	Horizontal	
			High Chan	nel (2480 N	/Hz)(GFSK)	Abo	ove 1G				
4960.397	66.56	5.21	35.52	44.21	63.08	74	1.00	-10.92	Pk	Vertical	
4960.397	43.07	5.21	35.52	44.21	39.59	54	1.00	-14.41	AV	Vertical	
7440.201	61.50	7.10	36.53	44.60	60.53	74	1.00	-13.47	Pk	Vertical	
7440.201	45.63	7.10	36.53	44.60	44.66	54	4.00	-9.34	AV	Vertical	
4960.225	67.46	5.21	35.52	44.21	63.98	74	1.00	-10.02	Pk	Horizontal	
4960.225	48.17	5.21	35.52	44.21	44.69	54	4.00	-9.31	AV	Horizontal	
7440.298	61.06	7.10	36.53	44.60	60.09	74	4.00	-13.91	Pk	Horizontal	
7440.298	45.25	7.10	36.53	44.60	44.28	54	4.00	-9.72	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S24120600504001

	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz											
ΕU	T:	Professio	nal Diag	nostic To	oM lo	del No.:		Dies	el Handh	eld 2		
Те	mperature:	20 ℃			Rel	ative Humidi	ty:	48%				
Те	st Mode:	Mode2/ M	lode4		Tes	st By:		Aller	n Liu			
AI	I the modul	ation mod	es have	been test	ed, and	the worst res	sult wa	s rep	ort as be	low:		
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	its	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)	Туре		
				1Mbp	s(GFSK)	ow Channel (2	402 MH	z)				
	2310.00	57.41	2.97	27.80	43.80	44.38	74	1	-29.62	Pk	Horizontal	
	2310.00	44.69	2.97	27.80	43.80	31.66	54	1	-22.34	AV	Horizontal	
	2310.00	58.69	2.97	27.80	43.80	45.66	74	1	-28.34	Pk	Vertical	
	2310.00	43.14	2.97	27.80	43.80	30.11	54	4	-23.89	AV	Vertical	
	2390.00	59.55	3.14	27.21	43.80	46.10	74	1	-27.90	Pk	Vertical	
	2390.00	41.90	3.14	27.21	43.80	28.45	54	4	-25.55	AV	Vertical	
	2390.00	58.13	3.14	27.21	43.80	44.68	74	1	-29.32	Pk	Horizontal	
	2390.00	41.93	3.14	27.21	43.80	28.48	54	4	-25.52	AV	Horizontal	
	2483.50	58.54	3.58	27.70	44.00	45.82	74	4	-28.18	Pk	Vertical	
	2483.50	42.86	3.58	27.70	44.00	30.14	54	4	-23.86	AV	Vertical	
	2483.50	59.73	3.58	27.70	44.00	47.01	74	4	-26.99	Pk	Horizontal	
	2483.50	42.87	3.58	27.70	44.00	30.15	54	1	-23.85	AV	Horizontal	
			1Mbps(GFSK) High Channel (2480 MHz)									
	2310.00	54.98	2.97	27.80	43.80	41.95	74.	00	-32.05	Pk	Vertical	
	2310.00	43.45	2.97	27.80	43.80	30.42	54.	00	-23.58	AV	Vertical	
	2310.00	51.42	2.97	27.80	43.80	38.39	74.	00	-35.61	Pk	Horizontal	
	2310.00	42.13	2.97	27.80	43.80	29.10	54.	00	-24.90	AV	Horizontal	
	2390.00	53.72	3.14	27.21	43.80	40.27	74.	00	-33.73	Pk	Vertical	
	2390.00	44.99	3.14	27.21	43.80	31.54	54.	00	-22.46	AV	Vertical	
	2390.00	52.73	3.14	27.21	43.80	39.28	74.	00	-34.72	Pk	Horizontal	
	2390.00	44.79	3.14	27.21	43.80	31.34	54.	00	-22.66	AV	Horizontal	
	2483.50	52.69	3.58	27.70	44.00	39.97	74.	00	-34.03	Pk	Vertical	
	2483.50	43.44	3.58	27.70	44.00	30.72	54.	00	-23.28	AV	Vertical	
	2483.50	50.04	3.58	27.70	44.00	37.32	74.	00	-36.68	Pk	Horizontal	
	2483.50	40.07	3.58	27.70	44.00	27.35	54.	00	-26.65	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

Spurious Emi	Spurious Emission in Restricted Band 3260MHz-18000MHz											
EUT:	Prof	essional	Diagnostic	c Tool	ool Model No.: Die		Diese	Diesel Handheld 2				
Temperature:	20 °C	2			Re	lative Humi	dity:	48%				
Test Mode:	Test Mode: Mode2/ Mode4							Allen	Liu			
All the modulation	All the modulation modes have been tested, and					e worst resu	ılt wa	s repo	rt as belo	w:		
Fraguancy	ading evel	Cable Loss	Antenna Factor	Pream Facto		Emission Level	Lir	nits	Margin	Detector	Comment	
(MHz) (d	3μV)	(dB)	dB/m	(dB)		(dBµV/m)	(dB	uV/m)	(dB)	Туре		
	Low Channel (2402 MHz)(GFSK)											
3260 6).90	4.04	29.57	44.70)	49.81	7	74	-24.19	Pk	Vertical	
3260 5	7.58	4.04	29.57	44.70)	46.49	Ę	54	-7.51	AV	Vertical	
3260 6	1.48	4.04	29.57	44.70)	50.39	7	74	-23.61	Pk	Horizontal	
3260 5	7.03	4.04	29.57	44.70)	45.94	5	54	-8.06	AV	Horizontal	
17797 42	2.92	10.99	43.95	43.50)	54.36	7	74	-19.64	Pk	Vertical	
17797 3	3.29	10.99	43.95	43.50)	44.73	5	54	-9.27	AV	Vertical	
			High	Channe	el (2	2480 MHz)(G	FSK)					
3332 6	5.45	4.26	29.87	44.40)	55.18	7	74	-18.82	Pk	Vertical	
3332 5	1.65	4.26	29.87	44.40)	44.38	Ę	54	-9.62	AV	Vertical	
3332 6	2.26	4.26	29.87	44.40)	51.99	7	74	-22.01	Pk	Horizontal	
3332 5	3.05	4.26	29.87	44.40)	42.78	Ę	54	-11.22	AV	Horizontal	
17788 4	1.38	11.81	43.69	44.60)	55.28	7	74	-18.72	Pk	Horizontal	
17788 3	2.17	11.81	43.69	44.60)	43.07	Ę	54	-10.93	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode 5(3Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	48% Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2
Temperature:	20 ℃	Relative Humidity:	Diesel Handheld 2 48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Diesel Handheld 2 48% Allen Liu	

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Professional Diagnostic Tool	Model No.:	Diesel Handheld 2
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPC antenna (Gain: 0.92 dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

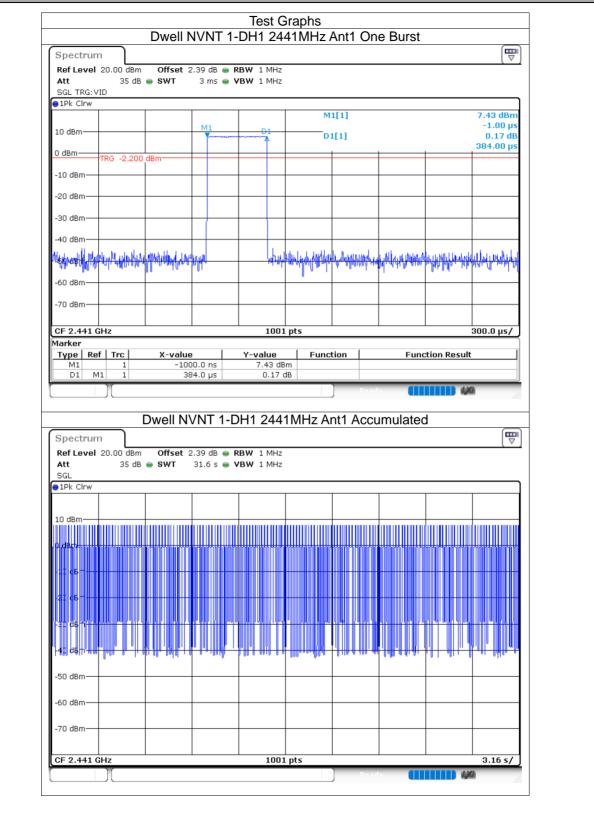
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

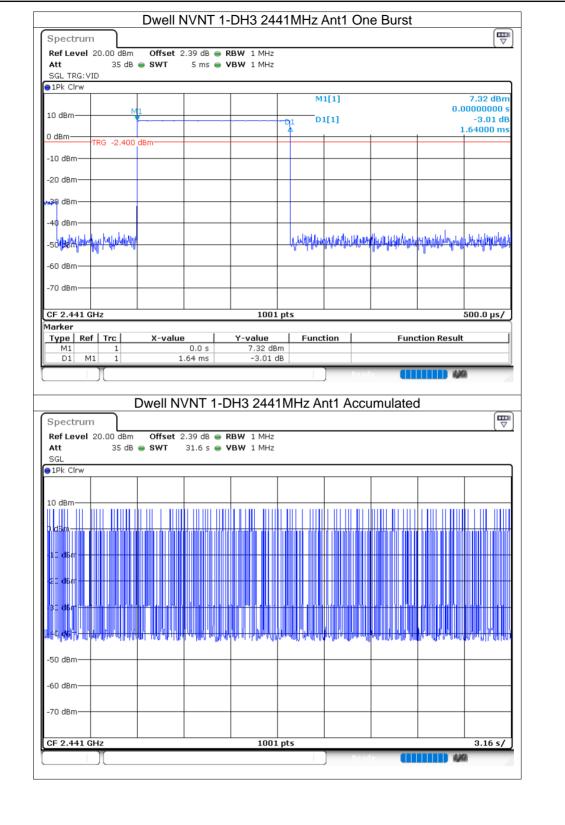
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



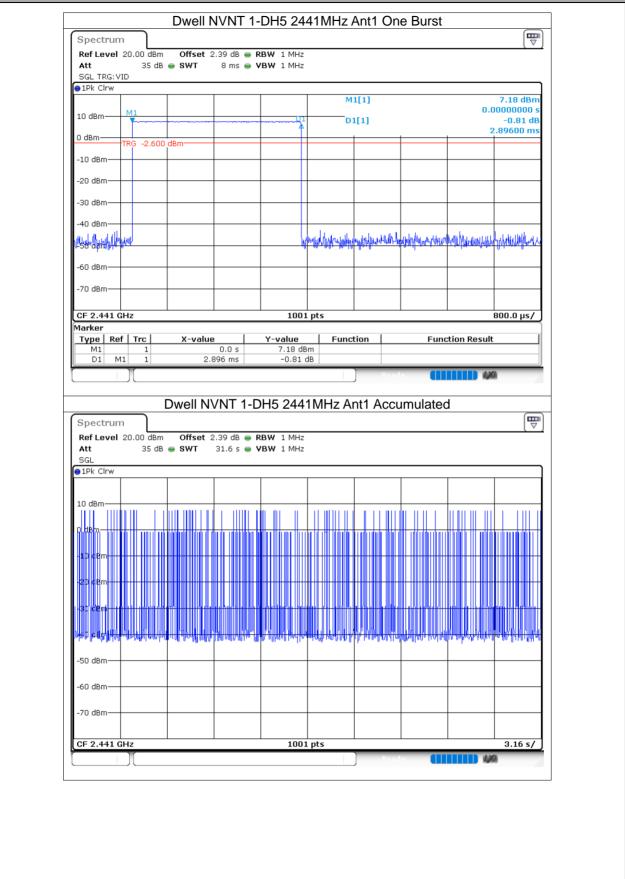

8 TEST RESULTS

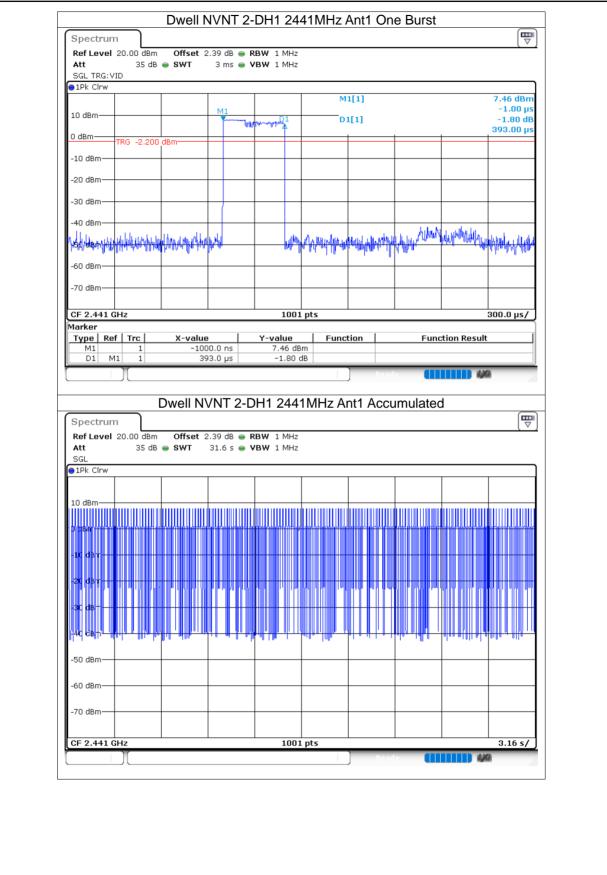
8.1 DWELL TIME

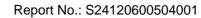
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.384	84.864	221	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.64	211.56	129	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.896	280.912	97	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.393	85.674	218	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.64	198.44	121	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	248.368	86	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.39	88.92	228	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.645	222.075	135	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.896	243.264	84	31600	400	Pass



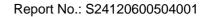
ACCREDITED

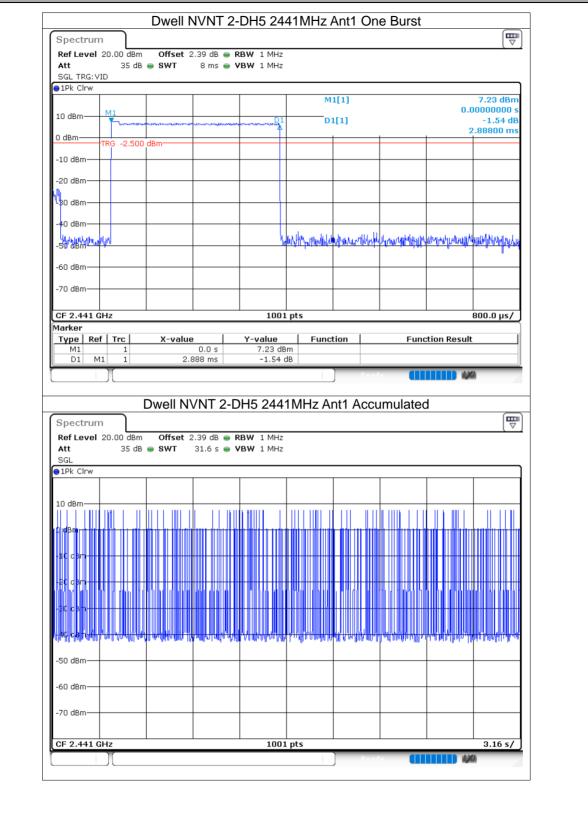

Certificate #4298.01



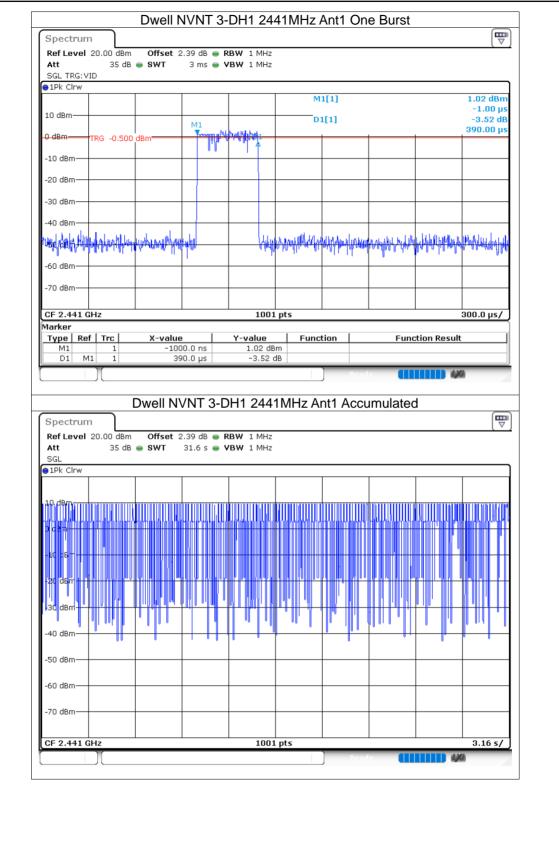


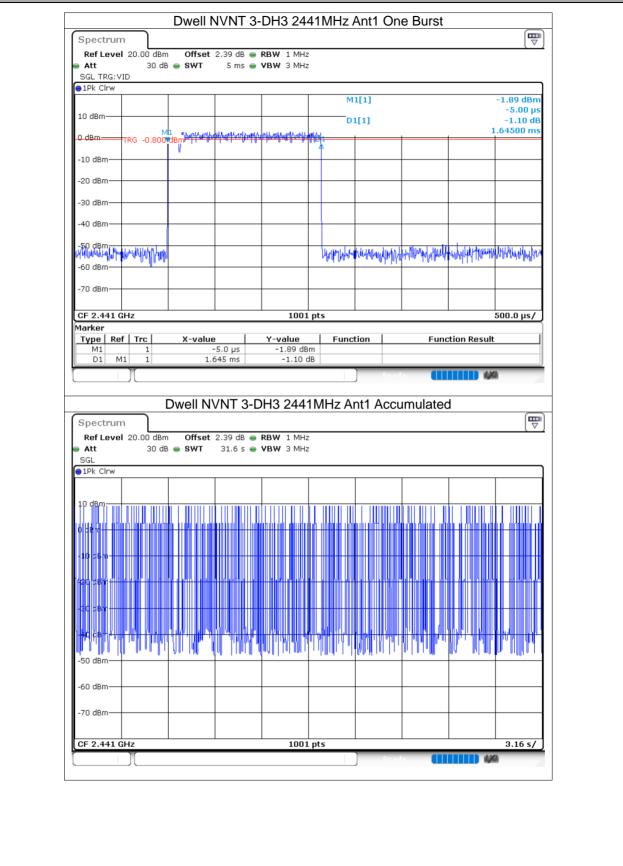
ACCREDITED

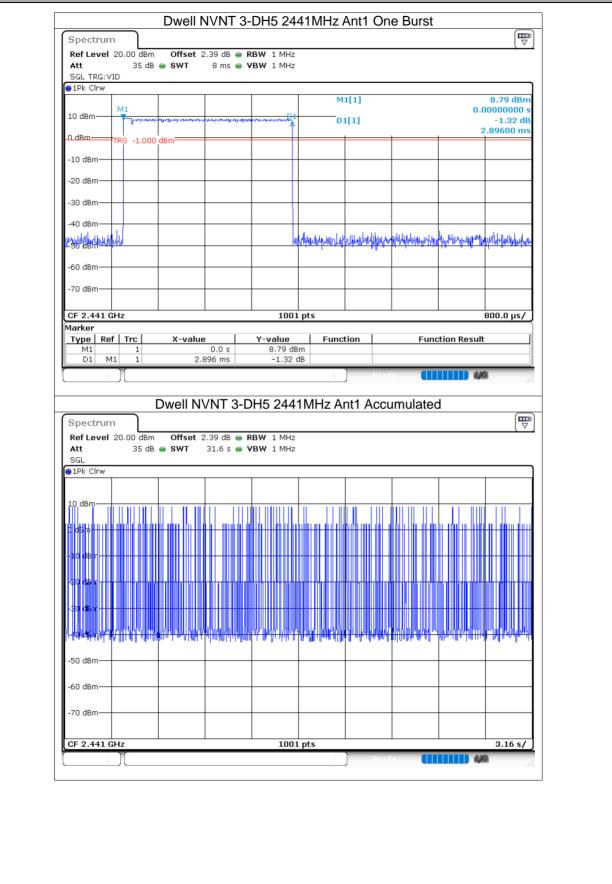




Att SGL TRG:\		● SWT	5 ms 🖷 🎙	BW 1 MHz					
●1Pk Clrw					M	1[1]			-3.88 dBm
10 dBm					D	1[1]			-15.00 μs 1.67 dB
0 dBm	TRG -2.300	dBm ^{AddMdAdd}	and the state of the	Mulatin Martin	A91			:	1.64000 ms
-10 dBm—			U · U						
-20 dBm—									
-30 dBm—									
-40 dBm—									
HE CALLER AND A	utun per plan				- Lypphylla	hand	www.unutra	(MARING AND A	unphanal p
-60 dBm	• 1					1 *			•
-70 dBm—									
CF 2.441 Marker	GHz			1001	pts				500.0 μs/
Type Re M1	ef Trc	X-value	e 15.0 μs	Y-value -3.88 dB	Funct	tion	Func	tion Result	<u>t</u>
	11 1		64 ms	1.67 d					
						Read	· •		0
Att	n 20.00 dBm		VNT 2-D 2.39 dB • R 31.6 s • V	BW 1 MHz	IMHz Ai	nt1 Accu	imulated	1	
Ref Level	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	IMHz An	nt1 Accu	imulated	1	
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	IMHz Ai	nt1 Accu		1	
Ref Level Att SGL	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz		nt1 Accu		3	
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz	IMHz Ai	nt1 Accu			
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw	n 20.00 dBm	Offset 2	2.39 dB 😑 R	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dEm -20 dEm -20 dEm	n 20.00 dBm	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dEm -20 dEm -20 dEm	n 20.00 dBm 35 dB	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dEm -30 dEm	n 20.00 dBm 35 dB	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dEm -20 dEm -30 dEm -30 dEm -50 dBm -60 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dEm -30 dEm -30 dEm -50 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz BW 1 MHz					
Ref Level Att SGL 1Pk Clrw 10 dBm 0 d6m -10 dEm -20 dEm -30 dEm -30 dEm -50 dBm -60 dBm	n 20.00 dBm 35 dB	Offset :	2.39 dB • R 31.6 s • V	BW 1 MHz BW 1 MHz					

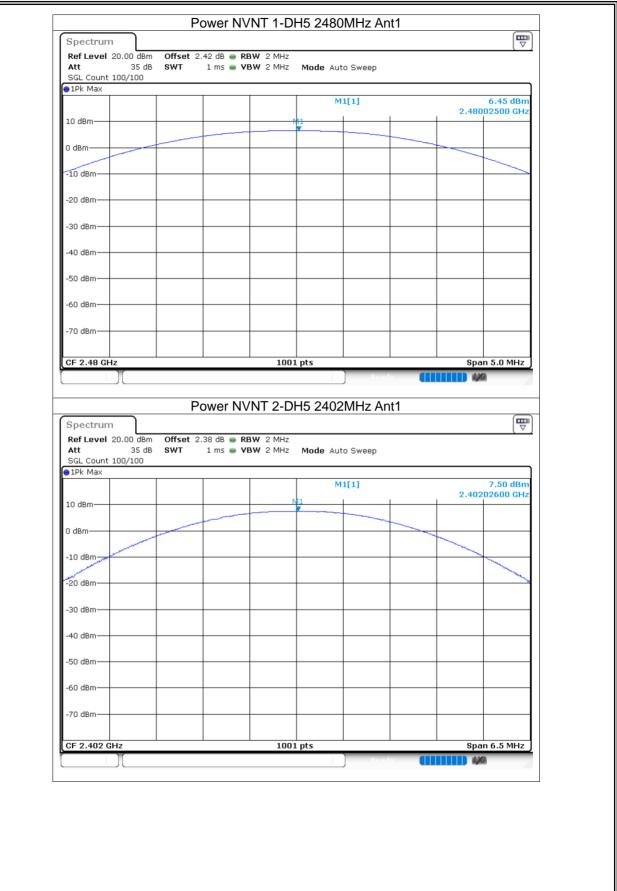


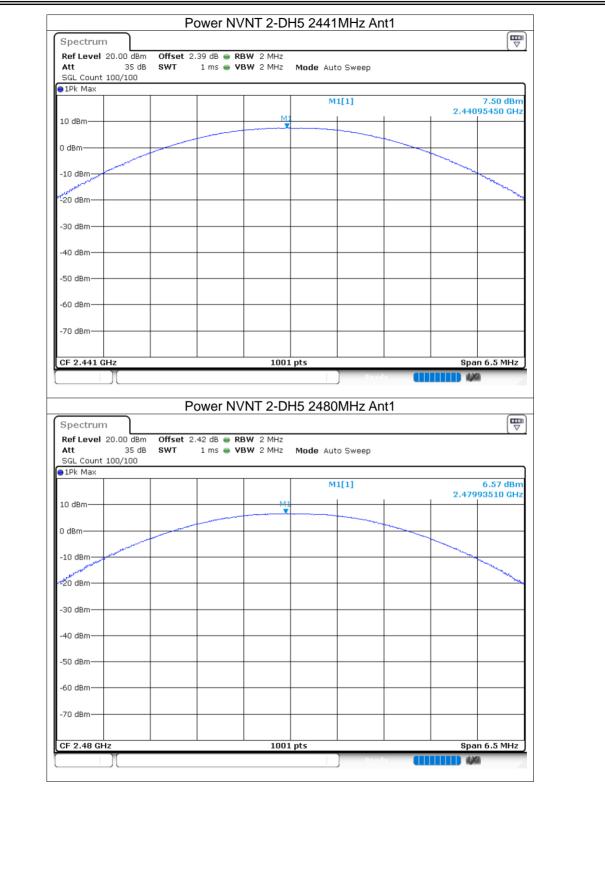




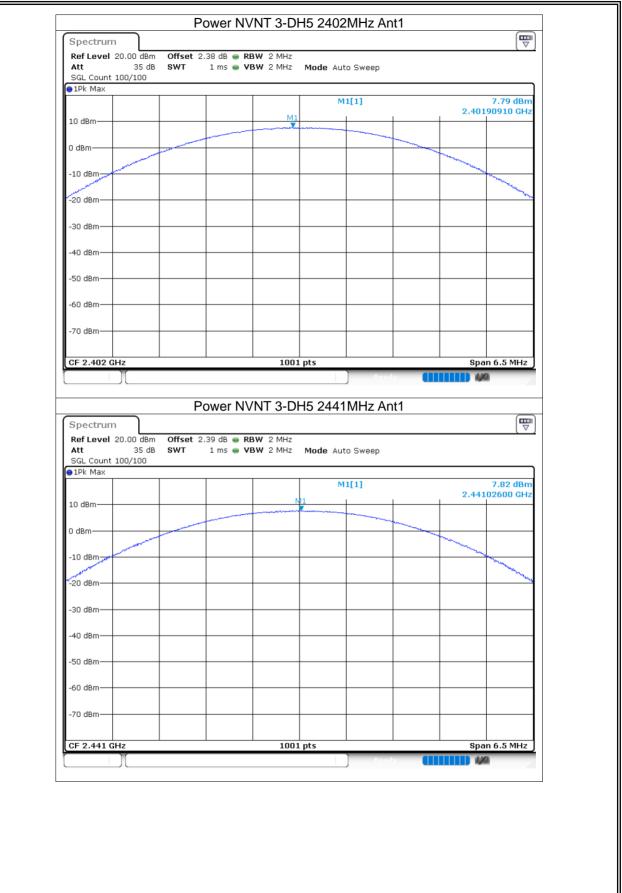
ACCREDITED

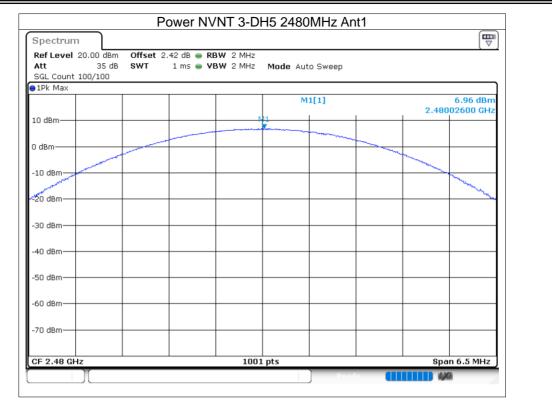
8.2 MAXIMUM CONDUCTED OUTPUT POWER

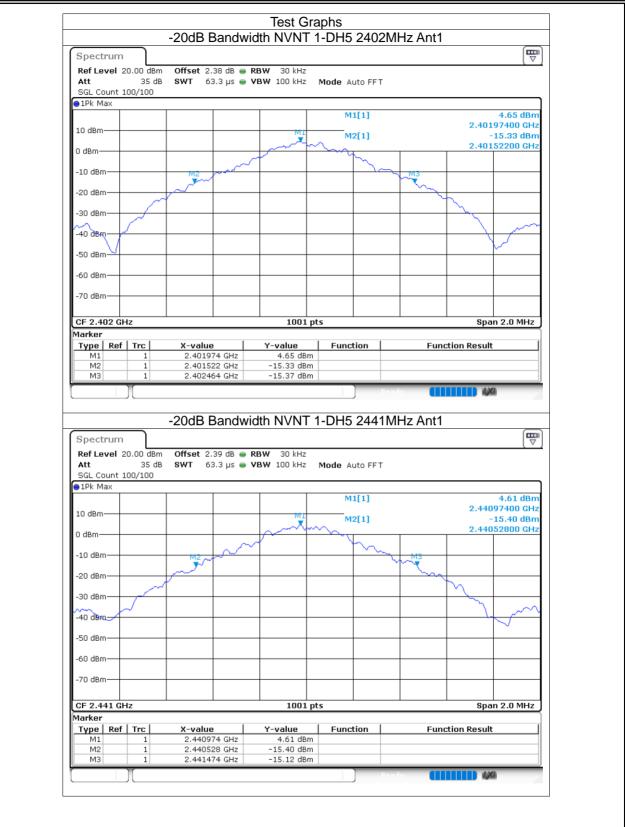

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	7.41	21	Pass
NVNT	1-DH5	2441	Ant1	7.37	21	Pass
NVNT	1-DH5	2480	Ant1	6.45	21	Pass
NVNT	2-DH5	2402	Ant1	7.5	21	Pass
NVNT	2-DH5	2441	Ant1	7.5	21	Pass
NVNT	2-DH5	2480	Ant1	6.57	21	Pass
NVNT	3-DH5	2402	Ant1	7.79	21	Pass
NVNT	3-DH5	2441	Ant1	7.82	21	Pass
NVNT	3-DH5	2480	Ant1	6.96	21	Pass



SGL Count 100/ 1Pk Max 10 dBm		2.38 dB 👄 RBW 2 M 1 ms 👄 VBW 2 M		uto Sweep		
10 dBm	/100			M1[1]		7.41 dBm
					2.40	196000 GHz
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 dBm						
- o dbiii						
CF 2.402 GHz			1001 pts			an 5.0 MHz
SGL Count 100/ ●1Pk Max	/100			M1[1]		7.37 dBm
10 dBm			M1	MI[I]	2.44	108990 GHz
				+		
0 dBm						
-10 dBm						
-20 dBm						+
-20 UBIII				+ +		<u> </u>
-30 dBm						1
-30 dBm						
-30 dBm						
-30 dBm						
-30 dBm						
-30 dBm			1001 pts		Sp	an 5.0 MHz





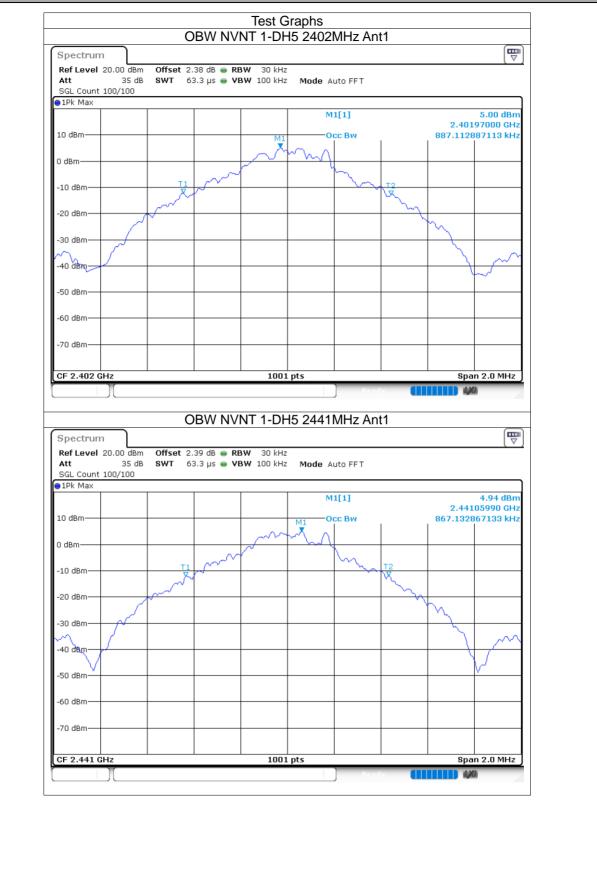


8.3 -20DBBANDWIDTH

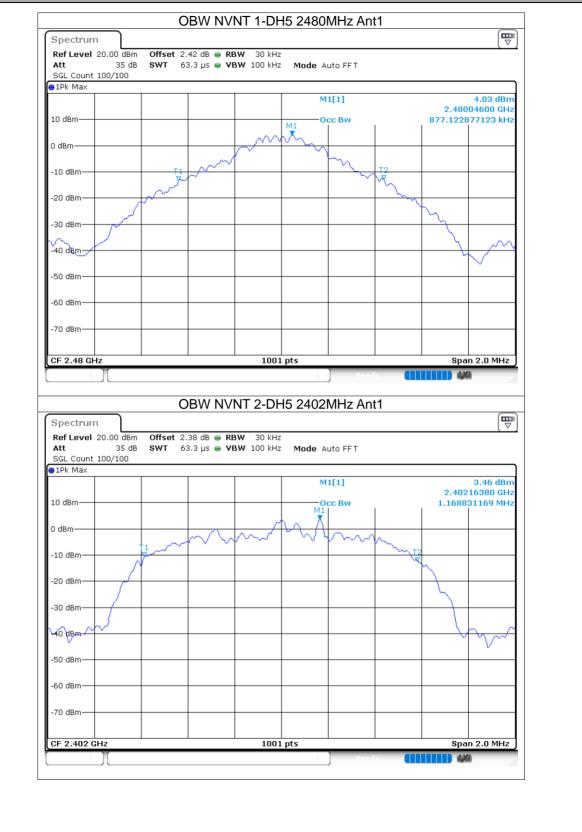

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.942	Pass
NVNT	1-DH5	2441	Ant1	0.946	Pass
NVNT	1-DH5	2480	Ant1	0.942	Pass
NVNT	2-DH5	2402	Ant1	1.292	Pass
NVNT	2-DH5	2441	Ant1	1.272	Pass
NVNT	2-DH5	2480	Ant1	1.28	Pass
NVNT	3-DH5	2402	Ant1	1.232	Pass
NVNT	3-DH5	2441	Ant1	1.228	Pass
NVNT	3-DH5	2480	Ant1	1.236	Pass

ACCREDITED

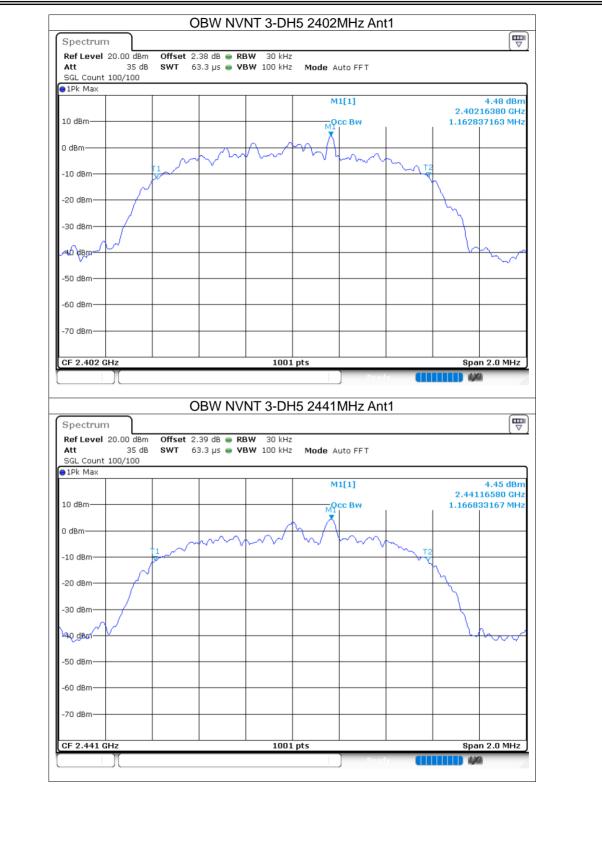
Spectrum					
RefLevel 20.00 dBm Att 35 dB					
SGL Count 100/100	o Swii os.sµs 🖷	VBW 100 kHz	Mode Auto FFT		
1Pk Max					
			M1[1]		3.85 dBm
			mitil		2.48016380 GHz
LO dBm			M#12[1]		-16.13 dBm
			X		2.47938200 GHz
) dBm		the art			
10 dBm	m			m	
	3			× 13	
20 dBm					
					2
-30 dBm		_		_	$\overline{\mathbf{x}}$
4Q_d8m~~~					- marca
-50 dBm					
-60 dBm					
70 40					
-70 dBm					
CF 2.48 GHz		1001 pt	5		Span 2.0 MHz
larker					
Type Ref Trc	X-value	Y-value	Function	Functio	n Result
M1 1	2.4801638 GHz	3.85 dBm			
M2 1	2.479382 GHz	-16.13 dBm			
M3 1	2.480618 GHz	-15.92 dBm			



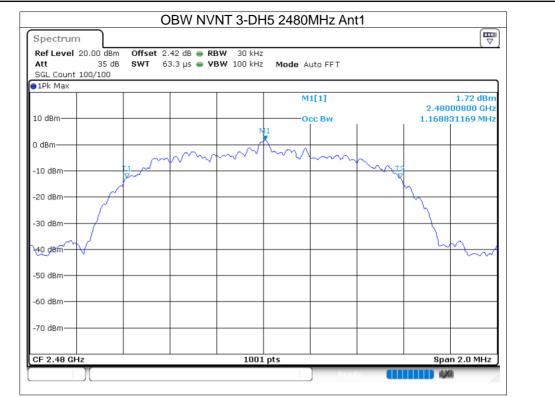
8.4 OCCUPIED CHANNEL BANDWIDTH


U .					
	Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
	NVNT	1-DH5	2402	Ant1	0.887
	NVNT	1-DH5	2441	Ant1	0.867
	NVNT	1-DH5	2480	Ant1	0.877
	NVNT	2-DH5	2402	Ant1	1.169
	NVNT	2-DH5	2441	Ant1	1.173
	NVNT	2-DH5	2480	Ant1	1.169
	NVNT	3-DH5	2402	Ant1	1.163
	NVNT	3-DH5	2441	Ant1	1.167
	NVNT	3-DH5	2480	Ant1	1.169

ACCREDITED

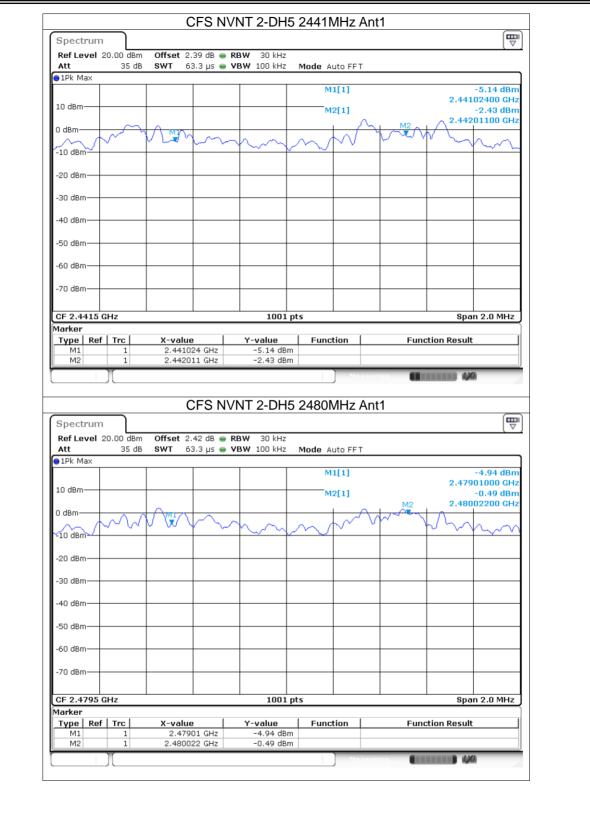


ACCREDITED

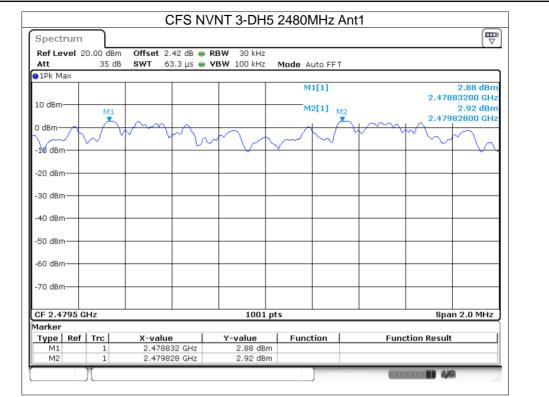


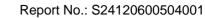
8.5 CARRIER FREQUENCIES SEPARATION

0.3 CARRIER	FREQUEN	ICIES SEPAR	ATION				
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.832	2403.006	1.174	0.628	Pass
NVNT	1-DH5	Ant1	2440.952	2441.832	0.88	0.631	Pass
NVNT	1-DH5	Ant1	2478.832	2479.832	1	0.628	Pass
NVNT	2-DH5	Ant1	2401.83	2402.954	1.124	0.861	Pass
NVNT	2-DH5	Ant1	2441.024	2442.011	0.987	0.848	Pass
NVNT	2-DH5	Ant1	2479.01	2480.022	1.012	0.853	Pass
NVNT	3-DH5	Ant1	2401.95	2402.952	1.002	0.821	Pass
NVNT	3-DH5	Ant1	2440.995	2442.071	1.076	0.819	Pass
NVNT	3-DH5	Ant1	2478.832	2479.828	0.996	0.824	Pass

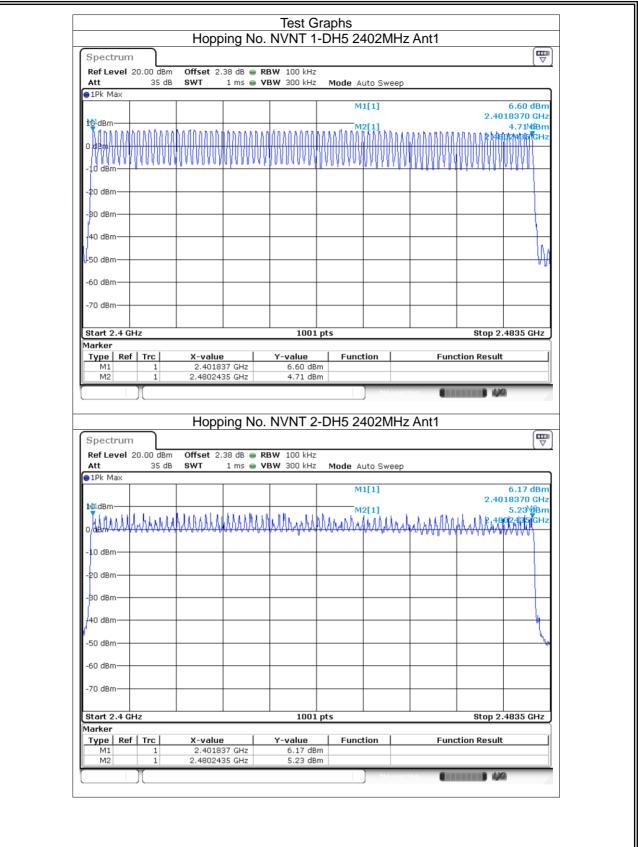


ACCREDITED


ACCREDITED



ACCREDITED


8.6 NUMBER OF HOPPING CHANNEL

 NUMBER OF					
Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

ACCREDITED

Spectrum									l □
Ref Level 2	0.00 dBm	Offset 2.	38 dB 🔵 RE	3W 100 kHz					
Att	35 dB	SWT	1 ms 😑 🛛	3W 300 kHz	Mode A	uto Sweep			
1Pk Max									
M1					м	1[1]		2.40	8.25 dBm 18370 GHz
le ¹ dBm		C. LETHE	1.01.1	k Alb	ALL LA	2[1]		1 I	3.23 Bm
MUMANNA	VA/VANAAA	alaadad da	WYYMAAAA	ለመቀሳለለለም	144634648	YMMAAY	AMAAAAA	MAAAAM	G4105 GHz
o/dBm					* # # * -	* * * *	18-8-81	<u> </u>	
10 dBm									
20 dBm									
J									
30 dBm									
40 dBm									
									հ
50 dBm									
60 dBm									
70 dBm									
vo ubili									
Start 2.4 GH	Z			1001	pts			Stop 2	.4835 GHz
larker Type Ref	Trol	X-value	. 1	Y-value	Func	tion 1	Fund	tion Result	
M1	1	2.40183		8.25 dB			Fund	John Kesult	
M2	1	2.480410		3.23 dB					

8.7 BAND EDGE

0.7 DAND LL	JGE						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-57.52	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-50.92	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-56.76	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-54.3	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-56.89	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-52.12	-20	Pass

		d Edge N	VINI I-	0110 240				y nei	
Spectrum									
Ref Level Att	20.00 dBm 35 dB			W 100 kHz	Man -1				
SGL Count		3WI 10.	.a ha 🖷 🗛	3W 300 kHz	Mode A				
1Pk Max		1							
					м	1[1]		0.40	7.16 dBm
10 dBm					м1			2.403	215980 GHz
				~	٩				
0 dBm					\rightarrow				
					h				
-10 dBm		+ +			-t				
-20 dBm				7					
-30 dBm									
So abii			\sim			m			
-40 dBm		ļ							ļ
		m	/				m		
450 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$+ \lambda$	<i></i>			<u>ــــــــــــــــــــــــــــــــــــ</u>	for be	m	- /
m	~						ľ	` \v	m
-60 dBm		+							
-70 dBm									
CF 2.402 G	Hz			1001	nts			Sna	an 8.0 MHz
		dge NVN	T 1-DH) Rear 1 No-Ho	opping E		
Spectrum	ι			5 2402N	1Hz Ant) Pow 1 No-Ho	opping E		a
	ι	Offset 2.	38 dB 🖷 R		1Hz Ant		opping E		
Spectrum Ref Level Att SGL Count	1 20.00 dBm 35 dB	Offset 2.	38 dB 🖷 R	5 2402N Bw 100 kHz	1Hz Ant		opping E		
Spectrum Ref Level Att SGL Count	1 20.00 dBm 35 dB	Offset 2.	38 dB 🖷 R	5 2402N Bw 100 kHz	1Hz Ant	Auto FFT	opping E		
Spectrum Ref Level Att SGL Count 1Pk Max	1 20.00 dBm 35 dB	Offset 2.	38 dB 🖷 R	5 2402N Bw 100 kHz	1Hz Ant		opping E	mission	
Spectrum Ref Level Att SGL Count 1Pk Max	1 20.00 dBm 35 dB	Offset 2.	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count 1Pk Max	1 20.00 dBm 35 dB	Offset 2.	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 19500βι <u>6</u> Hz
Spectrum Ref Level Att SGL Count) IPk Max 10 dBm 0 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	1 20.00 dBm 35 dB	Offset 2. SWT 227	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB 🖷 R	5 2402N Bw 100 kHz	IHz Ant Mode	Auto FFT 1[1]	opping E	mission 2.40	6.61 dBm 195000, GHz 43.33 BBm
Spectrum Ref Level Att SGL Count IVK Max IO dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N	IHz Ant Mode	Auto FFT 1[1] 2[1]	opping E	2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N	IHz Ant Mode	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count >IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402M BW 100 kHz BW 300 kHz	IHz Ant Mode	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N	IHz Ant Mode	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -50 dBm	20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N	IHz Ant Mode	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 35 dB 100/100 D1 -12.835	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N	1Hz Ant Mode / M	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000, GHz 000000 GHz
Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.306	20.00 dBm 35 dB 100/100 D1 -12.835	Offset 2. SWT 227	38 dB — R 7.5 µs — V	5 2402N BW 100 kHz BW 300 kHz	1Hz Ant Mode / M	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 1950001 GHz -43.33 dBm 000000 GHz
Spectrum Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.306 Marker Type	20.00 dBm 35 dB 100/100 D1 -12.835	Offset 2. SWT 227	38 dB ● R 7.5 µs ● V	5 2402N BW 100 kHz BW 300 kHz M4 Lup ^{r full} ulph 1001 Y-value	1Hz Ant Mode / M M	Auto FFT 1[1] 2[1]		2.40	6.61 dBm 195000 GHz -43.33 BBm 000000 GHz -43.406 GHz
Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.306	20.00 dBm 35 dB 100/100 D1 -12.835	Offset 2. SWT 227	38 dB ● R 7.5 µs ● V	5 2402N BW 100 kHz BW 300 kHz 300 kHz M4 (ug/local)(h) M4 (ug/local)(h) M4 1001	1Hz Ant Mode / M M M M M	Auto FFT 1[1] 2[1]		2.40 2.40	6.61 dBm 195000 GHz -43.33 BBm 000000 GHz -43.406 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm 50 dBm -50 dBm -70 dBm Start 2.306 Marker Type M1	D1 -12.835	Offset 2. SWT 227	38 dB ● R 7.5 µs ● V м.√~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 2402N BW 100 kHz BW 300 kHz	1Hz Ant Mode / M M M M M M M M M M M M M M M M M M M	Auto FFT 1[1] 2[1]		2.40 2.40	6.61 dBm 195000 GHz -43.33 BBm 000000 GHz -43.406 GHz

Ref Le	ount 1	35 dB .00/100	SWT 18	3.9 µs 👄	VBW 300 kHz	Mode Au	uto FFT			
oll DR M		.00/ 100								
						M	L[1]			5.68 dBr
10 dBm					1			-	2.480	01600 GH
						ξ				
0 dBm-										
						\				
-10 dBr	n									
-20 dBr	n									
20 00	.									
-30 dBr	n									
				ر ا	\vee		M			
-40 dBr	n-+			- /						
-50 dBr			\sim				h			
	Ŵ			\sim				yr Y	m	nn
-60 dBr	n	V V.								
-70 dBr	n									
CF 2.4	8 GHz	2	•	•	1001	pts		·	Spa	n 8.0 MHz
Speci Ref Le Att	rum		Offset 2	2.42 dB 👄	H5 2480N RBW 100 kH VBW 300 kH	z		opping E		
Ref Le Att	trum :vel 2 ount 1	:0.00 dBm	Offset 2	2.42 dB 👄	RBW 100 kH	z				
Ref Le Att SGL C	trum :vel 2 ount 1	0.00 dBm 35 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A			mission	5.59 dBn
Ref Le Att SGL C	trum evel 2 ount 1 lax	0.00 dBm 35 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		<u>mission</u>	(U
Ref Le Att SGL C	trum evel 2 ount 1 lax	0.00 dBm 35 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH
Ref Le Att SGL CI 1Pk M 10 dBm	evel 2 ount 1 lax	0.00 dBm 35 dB	Offset 2	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL C 1Pk M 10ldBm 0 dBm-	punt 1 lax	0.00 dBm 35 dB	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL CI 1Pk M 10 dBm	punt 1 lax	:0.00 dBm 35 dB .00/100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL C 1Pk M 10ldBm 0 dBm-	n	:0.00 dBm 35 dB .00/100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL C 1Pk M 10 dBm - 10 dBm - 20 dBr	n n	:0.00 dBm 35 dB .00/100	Offset 2 SWT 22	2.42 dB 👄	RBW 100 kH	z z Mode A	uto FFT		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL C 1Pk M 101dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	n n	:0.00 dBm 35 dB .00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH VBW 300 kH	z Mode A	uto FFT		2.480	5.59 dBr 55.19 dBr 55.19 dBr 550000 GH
Ref Le Att SGL C 1Pk M 10/dBm - 10/dBm - 20/dBm - 30/dBm - 40/dBm - 40/dBm	n	:0.00 dBm 35 dB .00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH	z Mode A	L[1] 2[1]		2.480	5.59 dBn 05000 GH 55.19 dBn
Ref Le Att SGL C 1Pk M 101dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	n	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH VBW 300 kH	z Mode A	L[1] 2[1]	opping E	2.480	5.59 dBr 55.19 dBr 55.19 dBr 550000 GH
Ref Le Att SGL C 1Pk M 10MBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH VBW 300 kH	z Mode A	L[1] 2[1]	opping E	2.480	5.59 dBr 55.19 dBr 55.19 dBr 550000 GH
Ref Le Att SGL C 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm	n	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH	Z Mode A	L[1] 2[1]	opping E	2.480 2.480	5.59 dBn 055000 GH 55.19 dBn 550000 GH
Ref Le Att SGL C. 9 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 2	rum 2 ount 1 lax	0.00 dBm 35 dB 00/100	Offset 2 SWT 22	2.42 dB •	RBW 100 kH VBW 300 kH	Z Mode A	L[1] 2[1]	opping E	2.480 2.480	5.59 dBr 55.19 dBr 55.19 dBr 550000 GH
Ref Le Att SGL C 1Pk M 10rdBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	n	0.00 dBm 35 dB .00/100 1 -14.324 	Offset 2 SWT 22	2.42 dB •	RBW 100 kH VBW 300 kH	Z Mode A	uto FF T נ[1] 2[1] 		2.480 2.480	5.59 dBr 005000 GH 55.19 dBr 550000 GH
Ref Le Att SGL C 1Pk M 10MBm -10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 2 Marker Type M1	n	0.00 dBm 35 dB 00/100 1 -14.324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset 2 SWT 22 dBm dBm Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	2.42 dB • 27.5 µs •	RBW 100 kH VBW 300 kH	Z Mode A	uto FF T נ[1] 2[1] 		2.480	5.59 dBr 005000 GH 55.19 dBr 550000 GH
Ref Le Att SGL C 11Pk M 101dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -	n	0.00 dBm 35 dB 00/100 1 -14.324 durutonutu GHz Trc 1 1 1	Offset 2 SWT 22 dBm dBm X-value 2.480 2.480 2.481	2.42 dB • 27.5 µs •	RBW 100 kH VBW 300 kH	2 2 Mode A Mode A	uto FF T נ[1] 2[1] 		2.480	5.59 dBr 005000 GH 55.19 dBr 550000 GH
Ref Le Att SGL C. 9 1Pk M 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 d	n	0.00 dBm 35 dB 00/100 11 -14.324 	Offset 2 SWT 22 dBm dBm X-value 2.480 2.480 2.481	2.42 dB ● 27.5 µs ●	RBW 100 kH VBW 300 kH	2 2 Mode A Mode A	uto FF T נ[1] 2[1] 		2.480	5.59 dBr 005000 GH 55.19 dBr 550000 GH

Ref Level Att	n 20.00 dBm 35 dB			RBW 100 kHz /BW 300 kHz						
SGL Count		awi 18	בין כי,	JUU KHZ	mode A					
∋1Pk Max	I			1	1					
					M1[1]			7.09 dBr 2.40183220 GH		
10 dBm				M1				2.40.	100220 Gi	
				N	h					
0 dBm				1	~~~					
				1						
-10 dBm—				17						
-20 dBm										
-30 dBm				Á	\					
						h				
-40 dBm—			r mt	+						
-		m	\sim				m	h		
-50 dBm	have							"how	0.0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-60 dBm-	× ·								~~~	
-50 ubiii										
-70 dBm										
CF 2.402 (1001	Into			- Pro-	n 8.0 MH:	
Spectrun		dge NVN	NT 2-DI	H5 2402N	MHz Ant	1 No-Ho	opping E	mission		
Spectrun		Offset 2	.38 dB 👄	RBW 100 kH	Iz		opping E	mission		
Spectrun Ref Level Att SGL Count	n 20.00 dBm 35 dB	Offset 2	.38 dB 👄		Iz		opping E	mission		
Spectrun Ref Level Att	n 20.00 dBm 35 dB	Offset 2	.38 dB 👄	RBW 100 kH	iz iz Mode /	Auto FFT	opping E	mission		
Spectrun Ref Level Att SGL Count	n 20.00 dBm 35 dB	Offset 2	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	opping E	2.402	6.61 dB 21500@/§F	
Spectrum Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 35 dB	Offset 2	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	opping E	2.402	6.61 dB 21500₽/€I -44.40 ₩B	
Spectrum Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 35 dB	Offset 2	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500@/§F	
Spectrum Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 35 dB	Offset 2 SWT 22	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500₽/€I -44.40 ₩B	
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500₽/€I -44.40 ₩B	
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500₽/€I -44.40 ₩B	
Spectrun Ref Level Att SGL Count 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 👄	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500@ ₁ g+ 44.40 B 000000 GH	
Spectrun Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB 🖷 .7.5 µs 🖷	RBW 100 kH	iz iz Mode / M	Auto FFT	ppping E	2.402	6.61 dB 21500₽/€I -44.40 ₩B	
Spectrun Ref Level Att SGL Count 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH	iz Iz Mode / M M	Auto FFT 1[1] 2[1]		2.402	6.61 dB 21500@/GH -44.40 B 5000000 GH	
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH	iz Iz Mode / M M	Auto FFT 1[1] 2[1]	opping E	2.402	6.61 dB 21500@/GH -44.40 B 5000000 GH	
Spectrun Ref Level Att SGL Count 10 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH	iz Iz Mode / M M	Auto FFT 1[1] 2[1]		2.402	6.61 dB 21500@/GH -44.40 B 5000000 GH	
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH	iz Iz Mode / M M	Auto FFT 1[1] 2[1]		2.402	6.61 dB 21500@/@H 44.40 B 000000 GH	
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	n 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH VBW 300 kH	IZ IZ Mode / M M	Auto FFT 1[1] 2[1]		2.402 2.400	6.61 dB 21500@6 -44.40 B 00000 GH	
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm Start 2.30	n 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.38 dB ● .7.5 μs ●	RBW 100 kH	IZ IZ Mode / M M	Auto FFT 1[1] 2[1]		2.402 2.400	6.61 dB 21500@/@H 44.40 B 000000 GH	
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.30 Marker	n 20.00 dBm 35 dB 100/100 D1 -12.908	Offset 2 SWT 22	.38 dB • .7.5 µs •	RBW 100 kH VBW 300 kH	IZ Mode /	Auto FFT 1[1] 2[1] MARKAN	- Julia yana	2.400 2.400	6.61 dB 21500@/gH -44.40 B 000000 GH	
Spectrun Ref Level Att SGL Count 91Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -20 dBm -50 dBm -50 dBm -70 dBm	n 20.00 dBm 35 dB 100/100 	Offset 2 รพт 22 dBm	38 dB • • 7.5 µs • •	RBW 100 kH VBW 300 kH	الا لله الله الله الله الله الله الله ا	Auto FFT 1[1] 2[1] MARKAN	- Julia yana	2.402 2.400	6.61 dB 21500@/gH -44.40 B 000000 GH	
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm Start 2.30 Marker Type M1 M2	n 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22 dBm- dBm- vhuh-4/vh/h/h vhuh-4/vh/h/h 2.4021 2.4021 2.	38 dB • .7.5 µs • 	RBW 100 kH VBW 300 kH	iz Mode م M M M M M M M M M M M M M	Auto FFT 1[1] 2[1] MARKAN	- Julia yana	2.400 2.400	6.61 dB 21500@/gH -44.40 B 000000 GH	
Spectrun Ref Level Att SGL Count 91Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -20 dBm -50 dBm -50 dBm -70 dBm	n 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22 dBm dBm vnlutenter z.4021 2.3021 2.3021	38 dB • • 7.5 µs • •	RBW 100 kH VBW 300 kH	IZ Mode / M M M M L pts Func 3m Sm	Auto FFT 1[1] 2[1] MARKAN	- Julia yana	2.400 2.400	6.61 dB 21500@/gH -44.40 B 000000 GH	
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Reg M1 M2 M3	n 20.00 dBm 35 dB 100/100 D1 -12.908 dpm/mm/m/m 6 GHz f Trc 1 1 1	Offset 2 SWT 22 dBm dBm vnlutenter z.4021 2.3021 2.3021		RBW 100 kH VBW 300 kH U	IZ Mode / M M M M L pts Func 3m Sm	Auto FFT 1[1] 2[1] MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	- Julia yana	2.400 2.400	6.61 dB 21500@/gH -44.40 B 000000 GH	