

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

TEST REPORT

For

Wifi Smart Plug

MODEL NUMBER: 7C-PL-W-A1

FCC ID: 2AB2Q7HPLWA1

IC: 10256A-7HPLWA1

REPORT NUMBER: 4788894536-3

ISSUE DATE: February 22, 2019

Prepared for

LEEDARSON LIGHTING CO., LTD. Xingtai Industrial Zone, Economic Development Zone, Changtai County, Zhangzhou City, Fujian Province, P.R.China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

U)		REPORT N	lo.: 4788894536-3 Page 2 of 119
		Revision Histo	ory	
Rev.	Issue Date	Revisions		Revised By
V0	2/22/2019	Initial Issue		

	Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results			
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass			
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (e)	Pass			
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass			
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass			
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass			
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	Pass			
7	Antenna Requirement FCC Part 15.203 RSS-GEN Clause 8.3		Pass			

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	. 6
2.	TES	ST METHODOLOGY	. 7
3.	FAC	CILITIES AND ACCREDITATION	. 7
4.	CAI	LIBRATION AND UNCERTAINTY	. 8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	. 8
4	4.2.	MEASUREMENT UNCERTAINTY	. 8
5.	EQ	UIPMENT UNDER TEST	. 9
÷	5.1.	DESCRIPTION OF EUT	. 9
÷	5.2.	MAXIMUM OUTPUT POWER	. 9
÷	5.3.	CHANNEL LIST	10
÷	5.4.	TEST CHANNEL CONFIGURATION	10
÷	5.5.	THE WORSE CASE CONFIGURATIONS	10
÷	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
÷	5.7.	DESCRIPTION OF TEST SETUP	12
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED1	13
7.	ME	ASUREMENT METHODS 1	14
7. 8.		ASUREMENT METHODS	
8.			15
8.	AN 3.1. 3.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1	15 15 18
8.	AN 3.1. 3.2. 8.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE	15 15 18 19
8.	AN 3.1. 3.2.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2. 802.11g MODE	15 15 18 19 23
8.	AN ⁷ 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 3. 3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 2 PEAK CONDUCTED OUTPUT POWER	15 18 19 23 27 31
8.	AN 3. 1. 3.2. 8.2. 8.2. 8.2. 8.3. 8.3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE	15 15 18 19 23 27 31 32
8.	AN ⁷ 3. 1. 3.2. 8.2. 8.2. 8.2. 8.2. 3. 3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE <i>PEAK CONDUCTED OUTPUT POWER</i> 1 1. 802.11b MODE 2. 802.11b MODE	15 15 18 19 23 27 31 32 32
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 1. 802.11b MODE 2. 802.11n HT20 MODE 2. 802.11b MODE 3. 802.11b MODE 4. 802.11b MODE 5. 802.11b MODE 6. 802.11b MODE 7. 802.11b MODE 802.11b MODE 802.11b MODE <	15 15 18 19 23 27 31 32 32 32 32 33
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 PEAK CONDUCTED OUTPUT POWER 2 1. 802.11b MODE 2 3. 802.11n HT20 MODE 3 3. 802.11b MODE 3 90WER SPECTRAL DENSITY 3 1. 802.11b MODE 3	15 15 18 19 23 27 31 32 32 32 33 33
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3. 8. 3.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1 1. 802.11b MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1 2. 802.11g MODE 1 3. 802.11h HT20 MODE 1 2. 802.11g MODE 1 3. 802.11h HT20 MODE 1 3. 802.11b MODE 1 3. 802.11g MODE 1 3. 802.11g MODE 1 3. 802.11n HT20 MODE 1 4. 802.11g MODE 1 5. 802.11g MODE 1 6. 802.11g MODE 1 7. 802.11g MODE 1	15 15 18 19 23 27 31 32 32 32 33 34 36
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 5.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 1 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1 9EAK CONDUCTED OUTPUT POWER 1 1. 802.11b MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1 3. 802.11n HT20 MODE 1 3. 802.11n HT20 MODE 1 2. 802.11g MODE 1 3. 802.11n HT20 MODE 1	15 18 19 23 27 31 32 32 33 34 36 38 40
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 5.	TENNA PORT TEST RESULTS 1 ON TIME AND DUTY CYCLE 6 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 <i>PEAK CONDUCTED OUTPUT POWER</i> 2 1. 802.11b MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11g MODE 2 3. 802.11n HT20 MODE 2 7 1. 802.11b MODE 2. 802.11g MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2 3. 802.11n HT20 MODE 2 3. 802.11b MODE 2 3. 802.11b MODE 2 3. 802.11n HT20 MODE 2 4. 802.11b MODE 2	15 15 18 19 23 31 32 33 33 33 33 33 33 40 41
8.	AN 3. 1. 3. 2. 8. 2. 8. 2. 8. 2. 8. 2. 8. 3. 8. 3. 8. 3. 8. 3. 8. 4. 8. 4. 8. 4. 8. 4. 8. 4. 8. 5.	TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE PEAK CONDUCTED OUTPUT POWER 1. 802.11b MODE 2. 802.11g MODE 3. 802.11n HT20 MODE 3. 802.11b MODE 4. 802.11b MODE 5. 802.11g MODE 6. 802.11g MODE 7. 802.11b MODE 7. 802.11b MODE 802.11n HT20 MODE 802.11n HT20 MODE 802.11g MODE 802.11g MODE 802.11g MODE 802.11b MODE 802.11b MODE 802.11g MODE	15 <i>15</i> <i>18</i> <i>19</i> <i>23</i> <i>31</i> <i>32</i> <i>33</i> <i>33</i> <i>33</i> <i>33</i> <i>33</i> <i>33</i> <i>40</i> <i>41</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i> <i>45</i>

	Page 5 01 119
9.1. RESTRICTED BANDEDGE 9.1.1. 802.11b MODE	
9.1.2. 802.11g MODE 9.1.3. 802.11n HT20 MODE	
9.2. SPURIOUS EMISSIONS (3~18GHz) 9.2.1. 802.11b MODE 9.2.2. 802.11g MODE	
9.2.3. 802.11n HT20 MODE	
9.3. SPURIOUS EMISSIONS (1~3GHz) 9.3.1. 802.11b MODE 9.3.2. 802.11g MODE 9.3.3. 802.11n HT20 MODE	
9.4. SPURIOUS EMISSIONS (18~26GHz) 9.4.1. 802.11b MODE	
9.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz) 9.5.1. 802.11b MODE	
9.6. SPURIOUS EMISSIONS BELOW 30M 9.6.1. 802.11b MODE	
10. AC POWER LINE CONDUCTED EMISSIONS	116
10.1. 802.11b MODE	
11. ANTENNA REQUIREMENTS	119

.

1. ATTESTATION OF TEST RESULTS

Applicant Information	LEEDARSON LIGHTING CO., LTD.
Company Name:	Xingtai Industrial Zone, Economic Development Zone, Changtai
Address:	County, Zhangzhou City, Fujian Province, P.R.China
Manufacturer Information	LEEDARSON LIGHTING CO., LTD.
Company Name:	Xingtai Industrial Zone, Economic Development Zone, Changtai
Address:	County, Zhangzhou City, Fujian Province, P.R.China
EUT Description	Wifi Smart Plug

EUT Name: Model: Series Model: Model Difference: Brand Name: Sample Status: Sample Received Date: Date of Tested:

Wifi Smart Plug 7C-PL-W-A1 7HPLWA1 All the same except for the model name. LEEDARSON Normal January 23, 2019 January 24 ~ February 22, 2019

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS			
ISED RSS-247 Issue 2	PASS			
ISED RSS-GEN Issue 5	PASS			

Prepared By:

Kebo. zhong.

Sherry lies

Kebo Zhang Engineer Project Associate Approved By:

Aephenbus

Shawn Wen

Checked By:

Laboratory Leader

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r01, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules IC(Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793. Facility Name:

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)		
	5.23dB (18GHz-26Gz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Wifi Smart Plug			
Model	7C-PL-W-A1			
Series Model	7HPLWA1			
Model Difference	All the same except for	or the model	name.	
Radio Technology	IEEE802.11b/g/n HT2	0		
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz			
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)			
Rated Input	AC 120V, 60Hz			
	Power Adapter	Input	1	
Power Supply		Output	1	
	Battery	1		

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	19.7
1	IEEE 802.11g	2412-2462	1-11[11]	20.34
1	IEEE 802.11nHT20	2412-2462	1-11[11]	19.08

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz

5.5. THE WORSE CASE CONFIGURATIONS

The W	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Softw	vare		UI_mptool					
	Transmit	Test Channel						
Modulation Mode	Antenna Number	NCB: 20MHz						
Mode		CH 1	CH 6	CH 11				
802.11b	1	41	42	42				
802.11g	1	47	47	47				
802.11n HT20	1	45	45	45				

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2412-2462	Integral Antenna	0.71

Test Mode	Transmit and Receive Mode	Description			
IEEE 802.11b	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
IEEE 802.11g	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
IEEE 802.11n HT20	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			

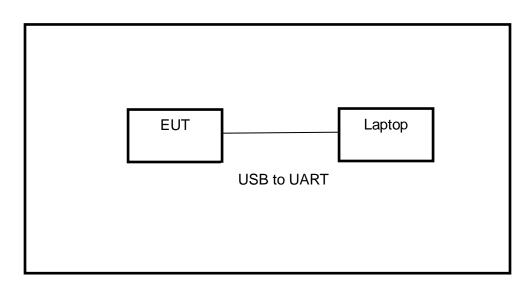
5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N	
1	Laptop	ThinkPad	T460S	SL10K24796 JS	
2	USB TO UART	/	/	/	

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	NA	NA	1	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions								
			Instrun	nent					
Used	Equipment	Manufacturer	Mode	l No.	Serial I	No.	Last Cal.	Next Cal.	
\checkmark	EMI Test Receiver	R&S	ES	R3	10196	61	Dec.10,2018	Dec.10,2019	
V	Two-Line V- Network	R&S	ENV	216	10198	33	Dec.10,2018	Dec.10,2019	
V	Artificial Mains Networks	Schwarzbeck	NSLK	8126	81264	65	Dec.10,2018	Dec.10,2019	
			Softw	are					
Used	Des	cription		Manu	Ifacture	r	Name	Version	
\checkmark	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1	
		Rad	iated E	missio	ns				
Instrument									
Used	Equipment	Manufacturer	Mode	l No.	Serial I	No.	Last Cal.	Next Cal.	
V	MXE EMI Receiver	KESIGHT	N90	38A	MY564 036		Dec.10,2018	Dec.10,2019	
V	Hybrid Log Periodic Antenna	TDK	HLP-3	003C	13096	60	Sep.17, 2018	Sep.17, 2021	
V	Preamplifier	HP	844	7D	2944A090 99		Dec.10,2018	Dec.10,2019	
\checkmark	EMI Measurement Receiver	R&S	ESF	R26	101377		Dec.10,2018	Dec.10,2019	
\checkmark	Horn Antenna	TDK	HRN-	0118	130939		Sep.17, 2018	Sep.17, 2021	
V	High Gain Horn Antenna	Schwarzbeck	BBHA	-9170	691		Aug.11, 2018	Aug.11, 2021	
V	Preamplifier	TDK	PA-02	-0118	TRS-3 0006	6	Dec.10,2018	Dec.10,2019	
V	Preamplifier	TDK	PA-0)2-2	TRS-3 0000		Dec.10,2018	Dec.10,2019	
V	Loop antenna	Schwarzbeck	151		0000	8	Mar.26,2016	Mar.25, 2019	
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4		Dec.10,2018	Dec.10,2019	
Ø	High Pass Filter	Wi	WHK 2700-3	WHKX10- 2700-3000- 18000-40SS			Dec.10,2018	Dec.10,2019	
			Softw	are					
Used	Descr	iption	Ma	anufact	urer	Name		Version	
\checkmark	Test Software for Ra	adiated disturba	ince	Farad			EZ-EMC	Ver. UL-3A1	
		Oth	ner insti	ument	ts				

REPORT No.: 4788894536-3

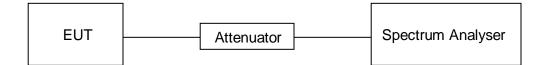
Page 14 of 119 Model No. Used Equipment Manufacturer Serial No. Last Cal. Next Cal. \checkmark Spectrum Analyzer Keysight N9030A MY55410512 Dec.10,2018 Dec.10,2019 \checkmark Power Meter Keysight N1911A MY55416024 Dec.10,2018 Dec.10,2019 \checkmark **Power Sensor** Keysight MY5100022 Dec.10,2018 Dec.10,2019 U2021XA

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r01	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r01	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r01	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r01	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r01	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r01	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2
8	99% Bandwidth	ANSI C63.10-2013	6.9.3

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	122.9	122.9	1	100	0	0.008	0.01
11g	122.4	122.4	1	100	0	0.008	0.01
11n20	121.9	121.9	1	100	0	0.008	0.01

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

Avg Type: Log-Pwr TRACE	Frequency
Fast ↔ Trig: Free Run TYPE We Low Atten: 40 dB	INNNN
∆Mkr3 122.§ -0.1	9 ms Auto Tur 5 dB
usspansagassagassagassagassagassagas	
	2.437000000 GH
	Start Fre
	2.437000000 GH
	2.437000000 GH
	2.437000000 GP
Span #VBW 50 MHz Sweep 160.0 ms (100	0 Hz 1 pts) CF Ste 8.000000 MH
Y FUNCTION FUNCTION WIDTH FUNCTION VAL	
ns (Δ) -0.15 dB ns 22.30 dBm	
ns (Δ) -0.15 dB ns 22.30 dBm	Freq Offs
	01

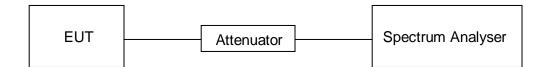
	um Analyzer - Sw		ITIM			ITY C				
× Center Fi	req 2.4370	PNC	Z): Fast ↔→→ in:Low			Avg Type	ALIGNAUTO e: Log-Pwr	09:05:37 AM TRACE TYPE DET	Feb 14, 2019 1 2 3 4 5 6 W N N N N N P N N N N N	Frequency
10 dB/div	Ref Offset 1 Ref 30.00						Δ		2.4 ms .77 dB	Auto Tune
20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	X en la se l	հայհպետերինորեստին	ىيىلى مۇلىرىنا <mark>رىسىلى سەلى</mark>	ghadhadhadhadhadh	ujarijanjanjanja	ahachardpalandang	hantan lan kadan lan	3∆4	an landap dan lan	Center Fred 2.437000000 GH;
-10.0										
-20.0										Start Fred 2.437000000 GH:
-40.0										Stop Free
-60.0	137000000 (on 0 Ha	2.437000000 GH:
Res BW 8	MHz	∍ ⊓2	#VBW	50 MHz			· · ·	60.0 ms (İ		CF Step 8.000000 MH
MKR MODE Π 1 Δ2 1 2 F 1	t (Δ) t		4 ms (∆) 6 ms	-1.77 c 22.80 dB	iB	TION FU	NCTION WIDTH	FUNCTION	VALUE	<u>Auto</u> Mar
3 ∆4 1 4 F 1 5 6 7	t (∆) t	122. 11.3	4 ms (∆) 6 ms	-1.77 c 22.80 dB						Freq Offse 0 H:
8 9 10 11 12										
ISG							STATUS			

	RF		Ω AC 000000	GHz PNO: Fast		SEP Trig: Free Atten: 40		Avg	ALIGN Type: Log	IAUTO - Pwr	TR4	AM Feb 14, 2019 CE 1 2 3 4 5 6 ZPE WWWWWWWW	Frequency
B/div		f Offset 1 f 30.00		IFGain:Lov	v	Auen. 40				Δ	/kr3 1	21.9 ms 0.05 dB	
)	- entre le se	X <u>.</u>	an - dirik-indiri	a nada a la paga a situ (saga	wyne y dae y	hangang galigan ang sa panaha	ahe)le plane in the	Anapely characteristic		وسيحجزون	an efertivately (3 <u>0</u> 4 	Center F 2.437000000
													Start F 2.437000000
													Stop F 2.437000000
ter 2. BW		00000 z	GHz	#V	вw	50 MHz			Swe	ep 16		Span 0 Hz (1001 pts)	
<u>Δ2</u> F Δ4 F		(Δ) (Δ)	×	121.9 ms 20.00 ms 121.9 ms 20.00 ms		0.05 20.81 dE 0.05 20.81 dE	dB 3m dB	JNCTION	FUNCTION	IWIDTH	FUNCT	ION VALUE	Freq Off

8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5			
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5			

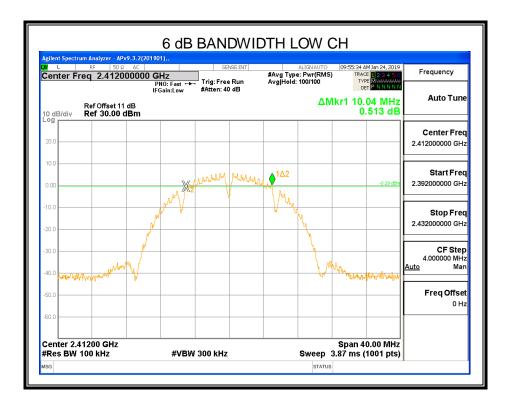

TEST PROCEDURE

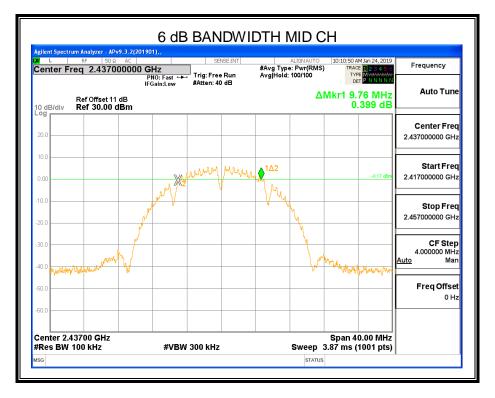
Connect the UUT to the s	pectrum analyser and	use the following settings:
	pool and and gool and	abe the feneting county of

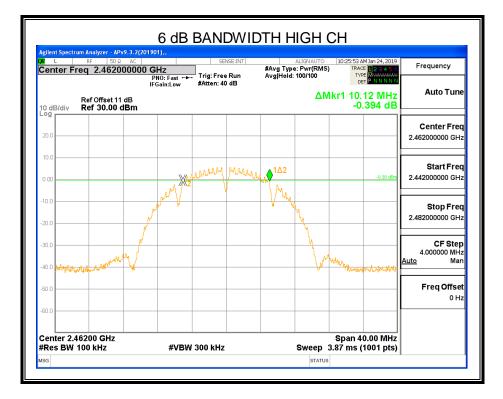
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth :100K
	For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 × RBW
V BVV	For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

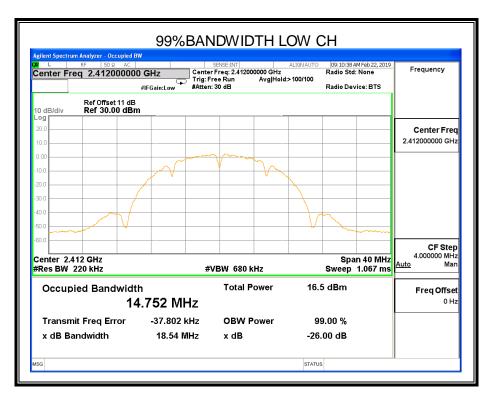
TEST SETUP

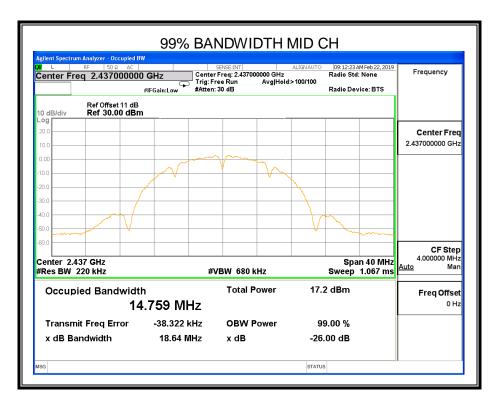

TEST ENVIRONMENT

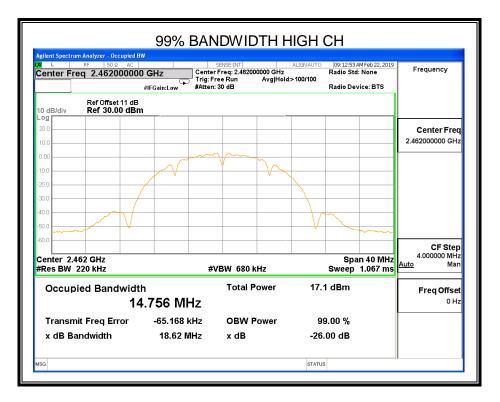

Temperature	22.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

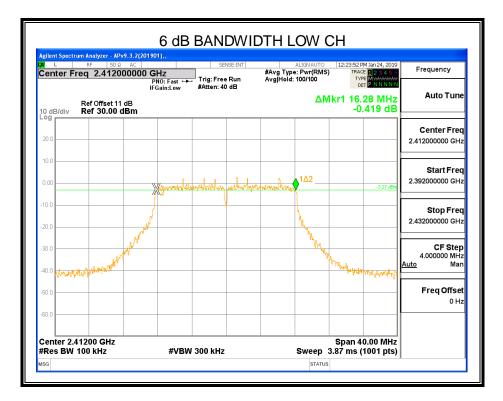

RESULTS

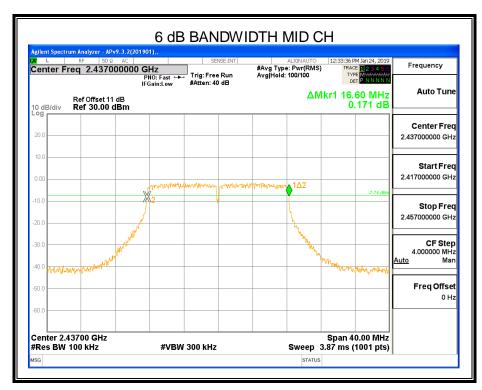
8.2.1. 802.11b MODE

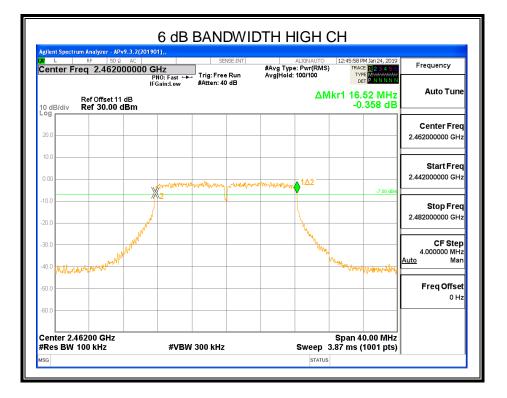

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	10.04	14.752	≥500	Pass
Middle	9.76	14.759	≥500	Pass
High	10.12	14.756	≥500	Pass





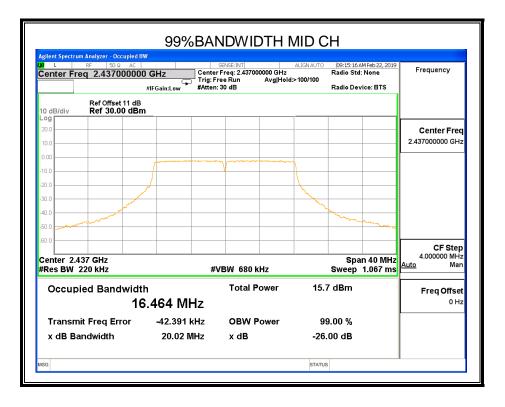


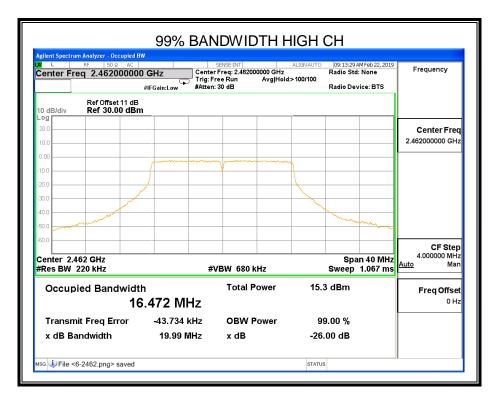


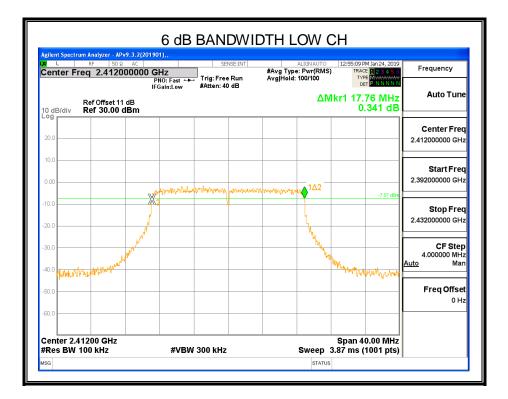


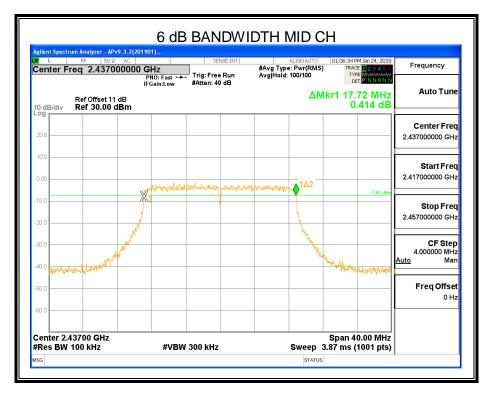
8.2.2. 802.11g MODE

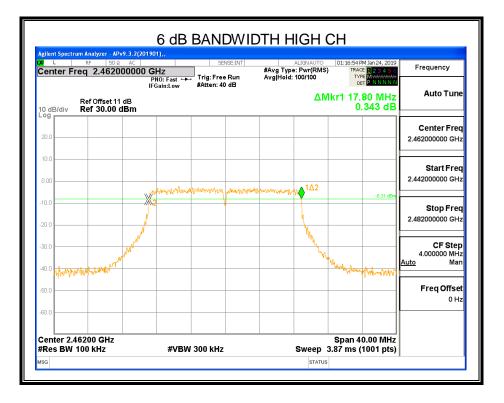

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	16.28	16.472	≥500	Pass
Middle	16.60	16.464	≥500	Pass
High	16.52	16.472	≥500	Pass



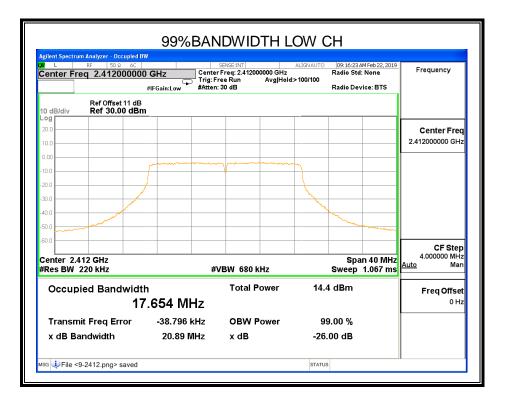


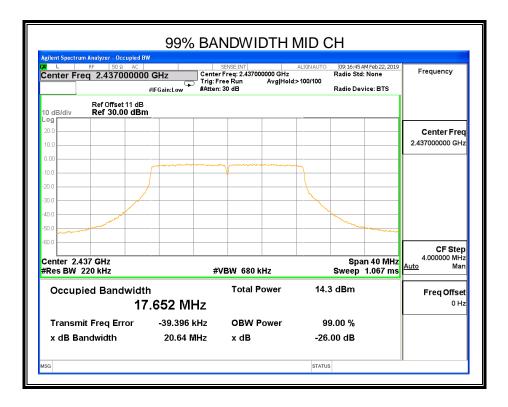


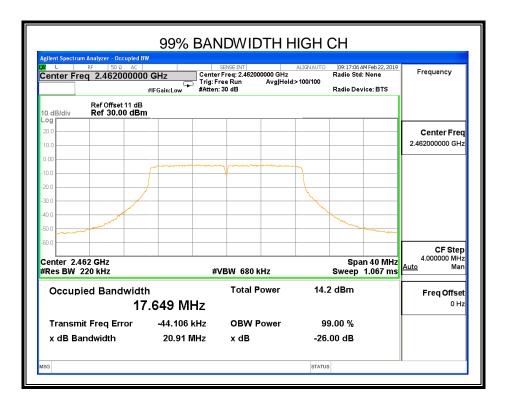




8.2.3. 802.11n HT20 MODE


Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	17.76	17.654	≥500	Pass
Middle	17.72	17.652	≥500	Pass
High	17.80	17.649	≥500	Pass

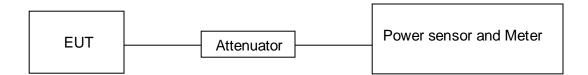




8.3. PEAK CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section	Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm	2400-2483.5			


TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel. Peak Detector use for Peak result. AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

<u>RESULTS</u>

8.3.1. 802.11b MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	19.46	15.58	30
Middle	19.7	15.50	30
High	19.19	15.17	30

8.3.2. 802.11g MODE

Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	20.16	13.64	30
Middle	20.34	13.44	30
High	19.84	13.33	30

8.3.3. 802.11n HT20 MODE

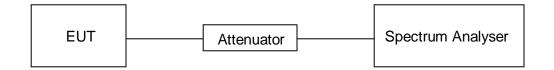
Test Channel	Maximum Conducted Output Power(PK)	Maximum Conducted Output Power(AV)	LIMIT
	(dBm)	(dBm)	dBm
Low	19.08	12.36	30
Middle	19.08	12.27	30
High	18.67	12.23	30

8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

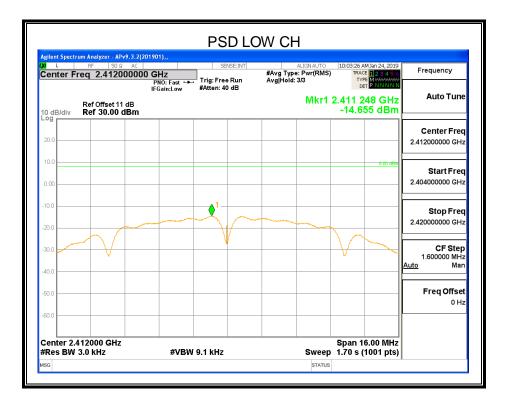
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

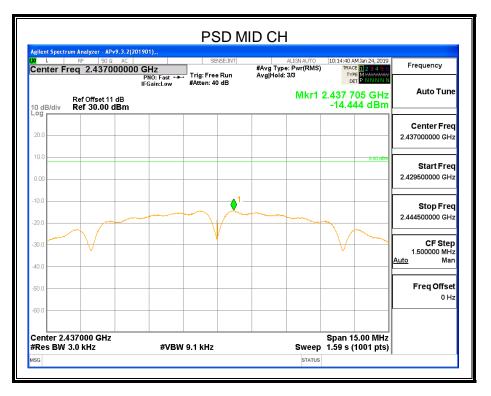
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

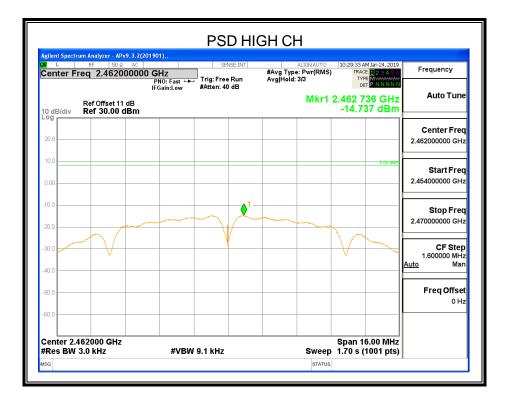
TEST SETUP

TEST ENVIRONMENT

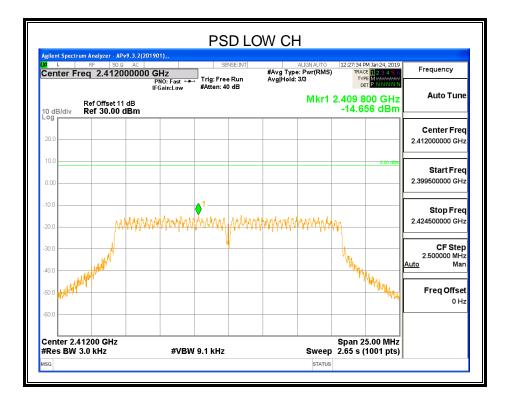

Temperature	22.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

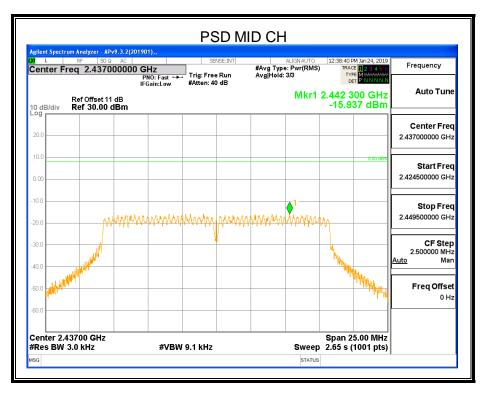
RESULTS

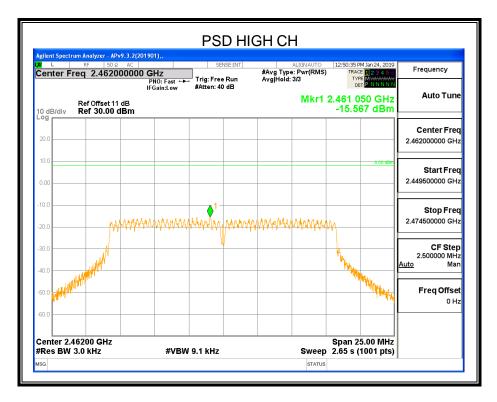

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


8.4.1. 802.11b MODE

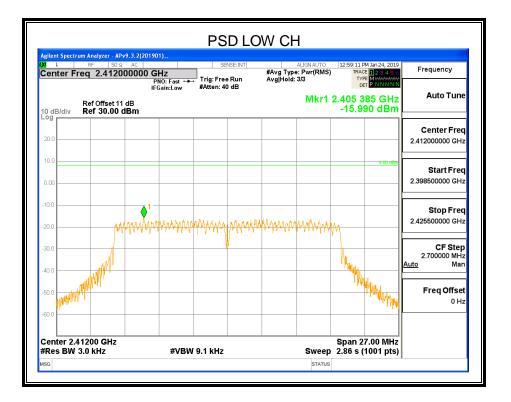
Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-14.655	8	PASS
Middle	-14.444	8	PASS
High	-14.737	8	PASS

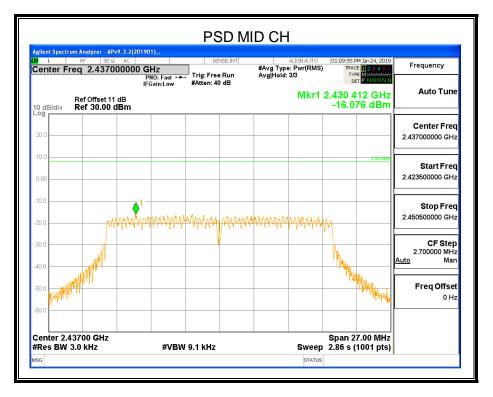


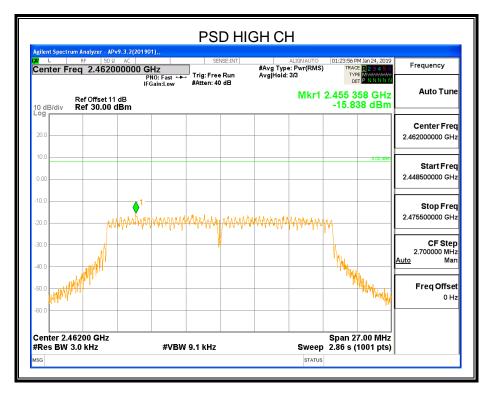



8.4.2. 802.11g MODE

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-14.656	8	PASS
Middle	-15.937	8	PASS
High	-15.567	8	PASS






8.4.3. 802.11n HT20 MODE

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Low	-15.990	8	PASS
Middle	-16.076	8	PASS
High	-15.838	8	PASS

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

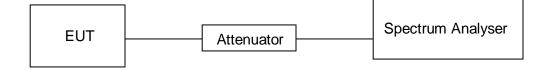
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit					
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power			

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

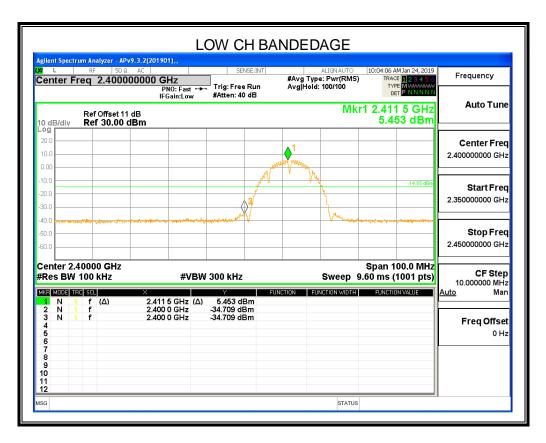
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Use the peak marker function to determine the maximum PSD level.

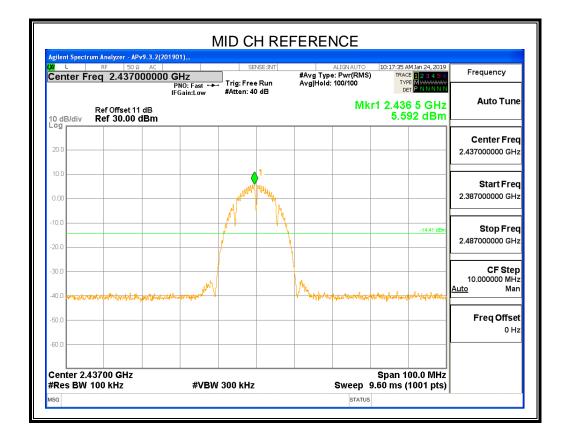
Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

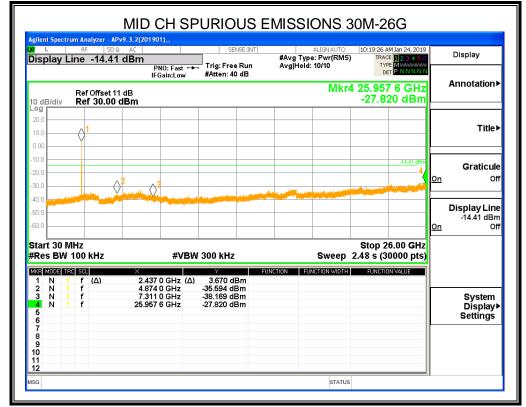
Use the peak marker function to determine the maximum amplitude level.

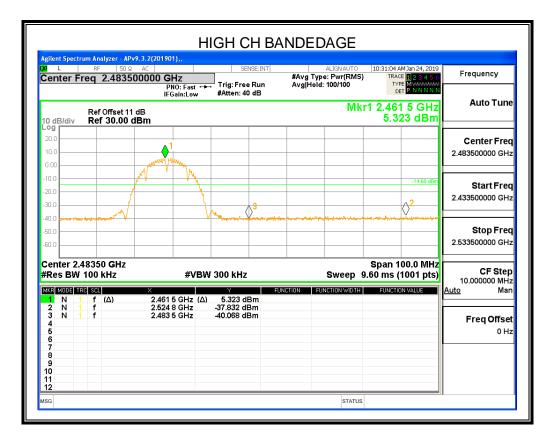
TEST SETUP



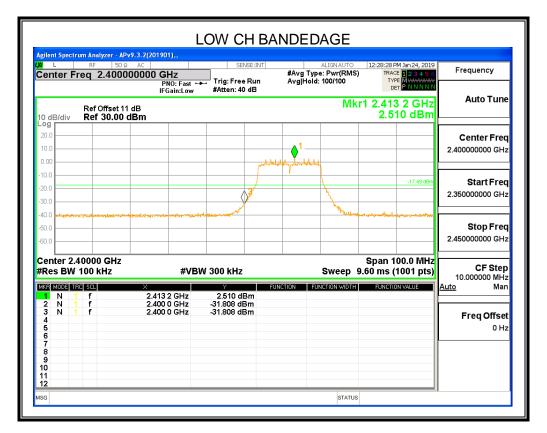
TEST ENVIRONMENT

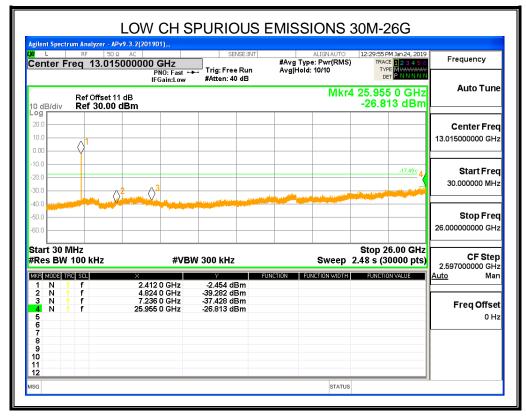

Temperature	22.3°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

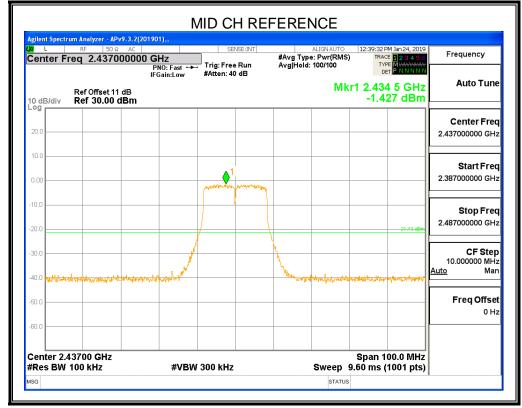

RESULTS

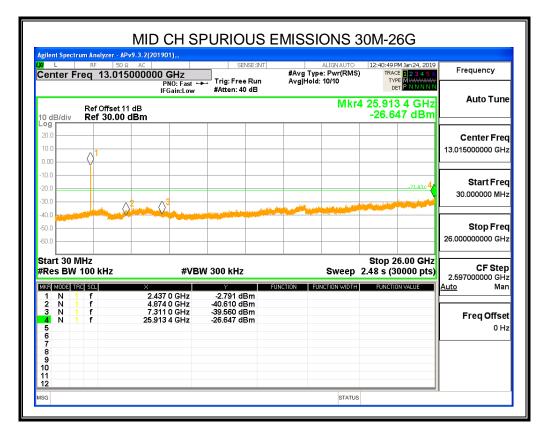

8.5.1. 802.11b MODE

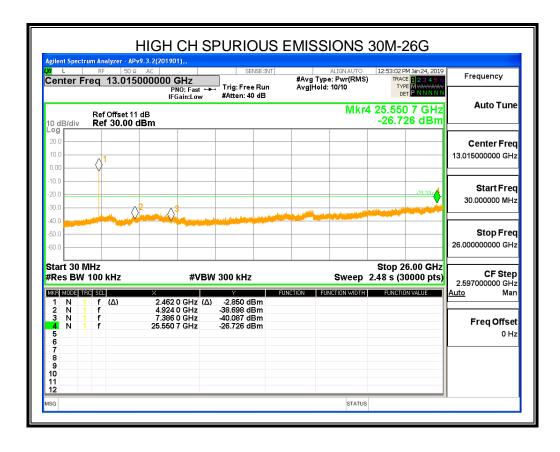
Agilent Spectrum	LO\ n Analyzer - APv9.3.2(2		PURIOUS	EMISSION	IS 30M-2	6G	
<mark>₩</mark> ∟ Center Fre	RF 50 Ω AC		SENSE:INT	ALIGN A #Avg Type: Pwr Avg Hold: 10/10	(RMS) TRACE	1 Jan 24, 2019	Frequency
10 dB/div	Ref Offset 11 dB Ref 30.00 dBm	PNO: Fast ↔ IFGain:Low	🖵 Trig: Free Run #Atten: 40 dB		/kr4 25.865	0 GHz 3 dBm	Auto Tun
20.0 10.0	0 ¹					1;	Center Fre 3.015000000 GH
-10.0 -20.0 -30.0	2					-14.55 dBm 44	Start Fre 30.000000 M⊦
-40.0 -50.0						20	Stop Fre 5.000000000 GH
Start 30 MH #Res BW 10	00 kHz	#VB\	N 300 kHz		eep 2.48 s(30		CF Ste 2.597000000 GH to Ma
1 N 1 2 N 1 3 N 1 4 N 1 5 6 7 7 8	f (Δ) 2 f 4 f 7	412 0 GHz (Δ 824 0 GHz 236 0 GHz 865 0 GHz					Freq Offs 0 F
9 10 11 12 MSG				s	STATUS		

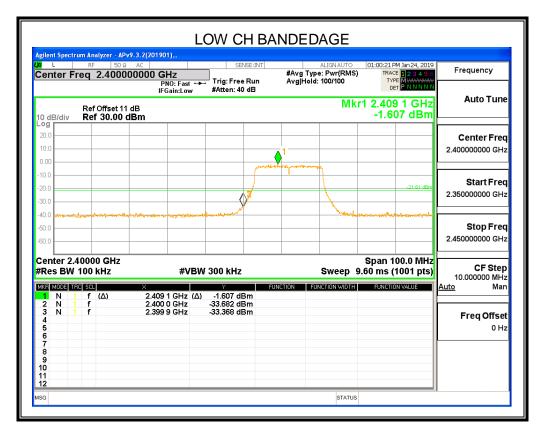


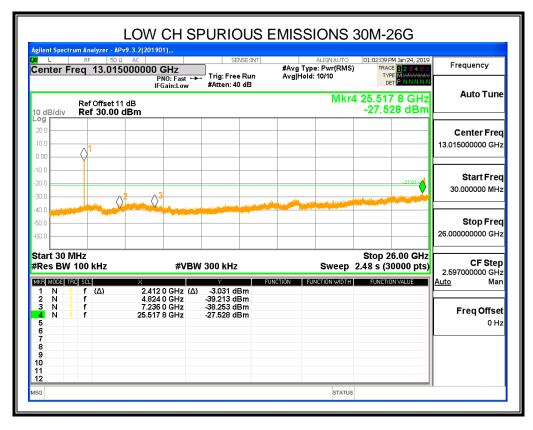


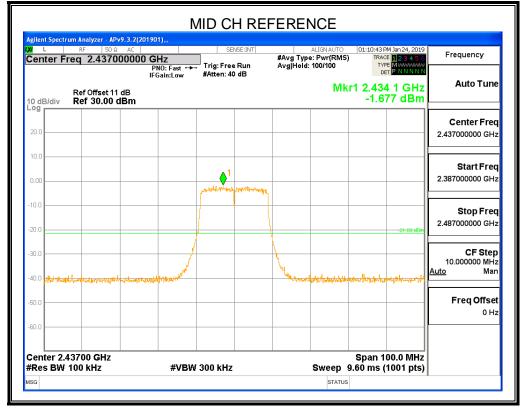

Center F			IO: Fast ←	SENSE	#Avg un Avg	ALIGNAUTO Type: Pwr(RMS) Hold: 10/10	10:32:12 AM Jan 24 TRACE 1 2 3 TYPE MWW DET P N N	456 Frequency
10 dB/div	Ref Offse Ref 30.		iain:Low	#Atten: 40 di	3	Mkr4	1 25.888 3 G -27.248 dl	Hz Auto Tun
20.0	1							Center Free 13.015000000 GH
-10.0 -20.0 -30.0		2 0					-14.6	30.000000 MH
-40.0 agenti -50.0								Stop Free 26.000000000 GH
Start 30 #Res BW	MHz 100 kHz		#VB	W 300 kHz		Sweep	Stop 26.00 (2.48 s (30000	
MKR MODE 1 1 N 2 N 3 N	RC SCL 1 f (Δ) 1 f 1 f	× 2.462 4.924 7.386		4.111 dBm -38.404 dBm -39.812 dBm		FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
4 N 5 6	f	25.888		-27.248 dBm				Freq Offse 0 H
7 8 9 10								

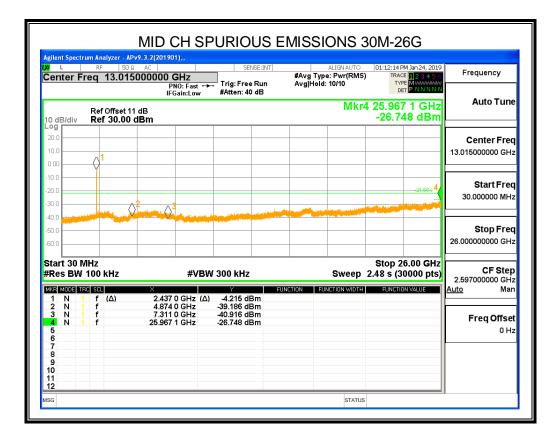

8.5.2. 802.11g MODE


REPORT No.: 4788894536-3 Page 46 of 119

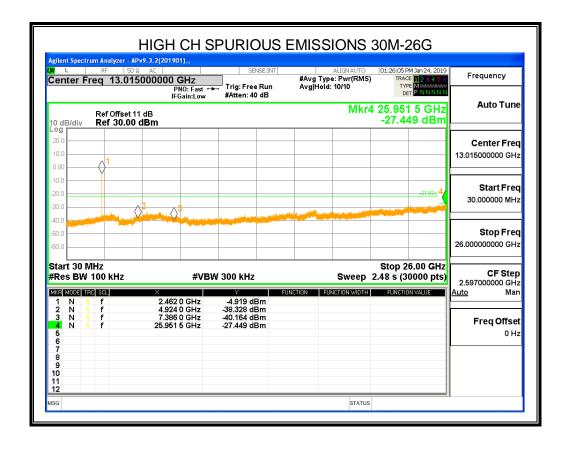





HIGH CH BANDEDAGE Agilent Spectrum Analyzer - APv9.3.2(201901), ALIGNAUTO #Avg Type: Pwr(RMS) Avg|Hold: 100/100 12:51:51 PM Jan 24, 2019 Center Freq 2.483500000 GHz Frequency RACE 1234 Trig: Free Run #Atten: 40 dB TYPE DET P NNNN PNO: Fast +++ IFGain:Low Auto Tune Mkr1 2.459 5 GHz Ref Offset 11 dB -1.328 dBm 10 dB/div Log Ref 30.00 dBm 20.1 Center Frea 2.483500000 GHz ۰ 0.00 Start Freq 2.433500000 GHz 30.0 $\langle \rangle^2$ -40 r Stop Freq -50.0 2.533500000 GHz -60.0 Span 100.0 MHz Center 2.48350 GHz CF Step 10.000000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.60 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE Man Auto -1.328 dBm -37.761 dBm -39.112 dBm f (Δ) f f 2.459 5 GHz (Δ) N N N 2 3 4 5 6 7 8 9 10 11 12 2.518 3 GHz 2.483 5 GHz Freq Offset 0 Hz ISG STATUS



8.5.3. 802.11n HT20 MODE



L Center F	RF 50 S	500000 GHz PNO: Fast		ALIGNAUTO #Avg Type: Pwr(RMS) Avg Hold: 100/100	01:24:46 PM Jan 24, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 1 Ref 30.00		#Atten: 40 dB	Mkr	1 2.459 1 GHz -1.816 dBm	Auto Tuno
						Center Free 2.483500000 GH:
10.0 20.0 30.0			3		-21.82 dBm	Start Free 2.433500000 GH:
40.0	and and a second se			Asa-a-gerestaatustaatustaatustaatusta	Alurenderstander galage hiller streeter	Stop Fre 2.533500000 GH
Res BW	1 f	× 2.459 1 GHz	-1.816 dBm	Sweep 9	Span 100.0 MHz 60 ms (1001 pts) FUNCTION VALUE	CF Step 10.000000 MH <u>Auto</u> Mar
2 N 3 N 4 5 6 7 8 9	1 f 1 f	2.515 9 GHz 2.483 5 GHz	-36.180 dBm -40.717 dBm			Freq Offse 0 H

9. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

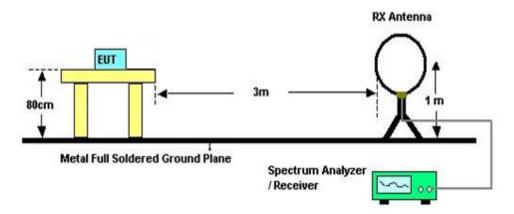
Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

	dB(uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10 FCC Restricted bands of operation:


MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

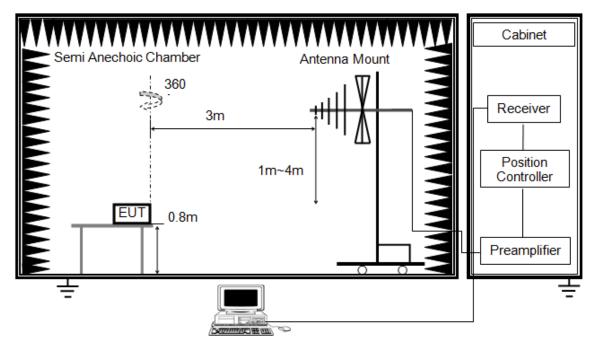
RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

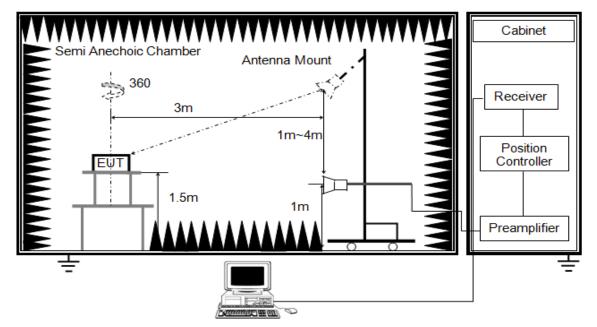
Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
VBW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

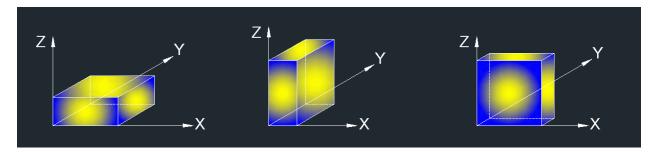
1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video

bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T

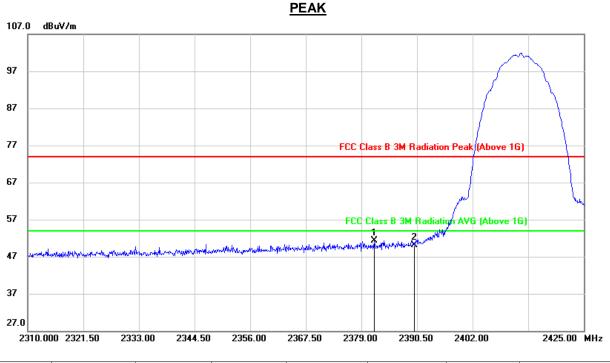
video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For below 1GHz radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: For above 1GHz radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (Y axis) data recorded in the report.

Note 3: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.


TEST ENVIRONMENT

Temperature	22.1°C	Relative Humidity	49%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

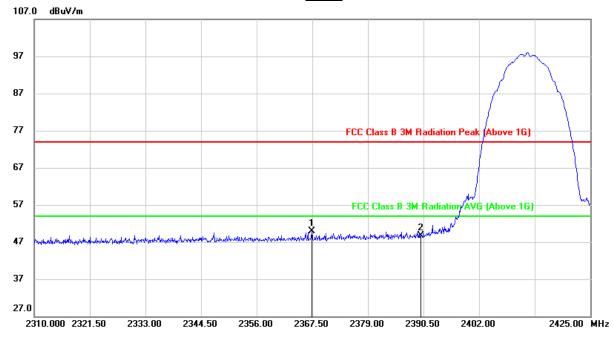
9.1. RESTRICTED BANDEDGE

9.1.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.645	18.41	32.92	51.33	74.00	-22.67	peak
2	2390.000	17.19	32.94	50.13	74.00	-23.87	peak

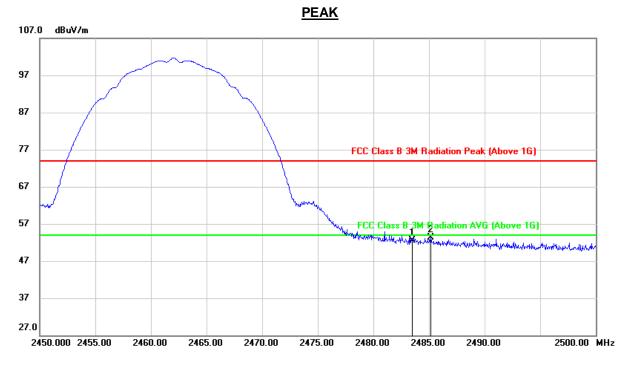
Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2367.385	16.98	32.87	49.85	74.00	-24.15	peak
2	2390.000	15.72	32.94	48.66	74.00	-25.34	peak

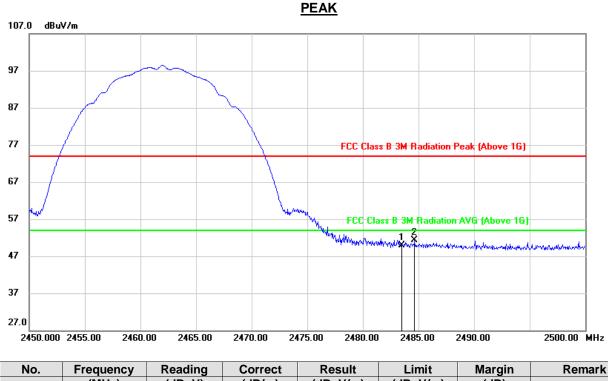

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.92	33.58	52.50	74.00	-21.50	peak
2	2485.150	19.64	33.59	53.23	74.00	-20.77	peak

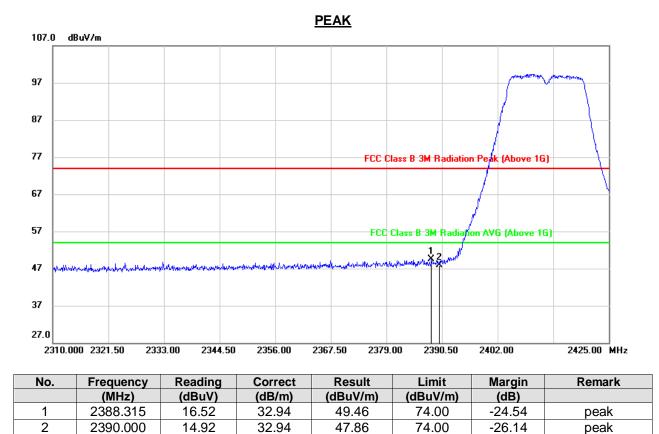

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

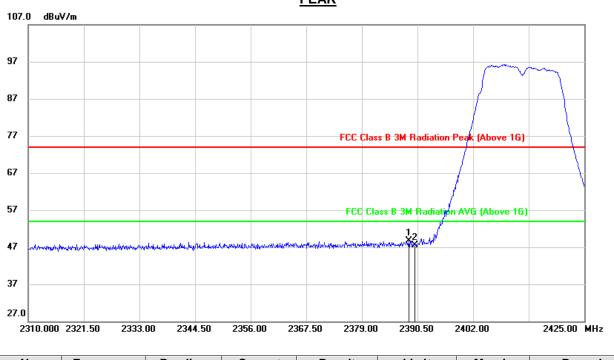
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.24	33.58	49.82	74.00	-24.18	peak
2	2484.650	17.80	33.59	51.39	74.00	-22.61	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

9.1.2. 802.11g MODE


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

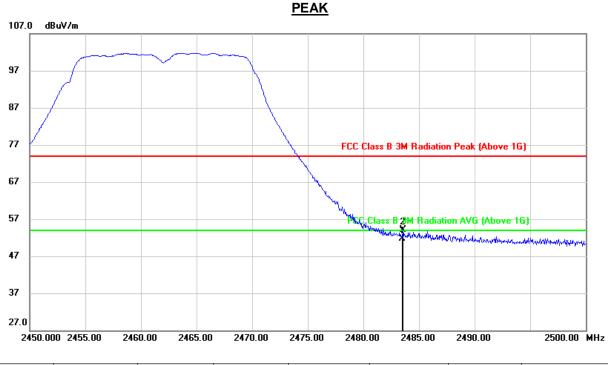
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2388.660	15.73	32.94	48.67	74.00	-25.33	peak
2	2390.000	14.50	32.94	47.44	74.00	-26.56	peak

Note: 1. Measurement = Reading Level + Correct Factor.

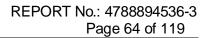
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

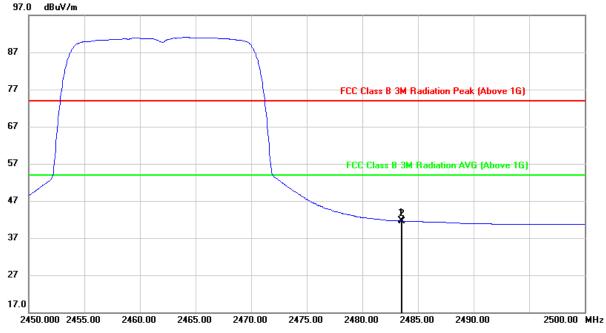
4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.14	33.58	51.72	74.00	-22.28	peak
2	2483.550	20.51	33.58	54.09	74.00	-19.91	peak

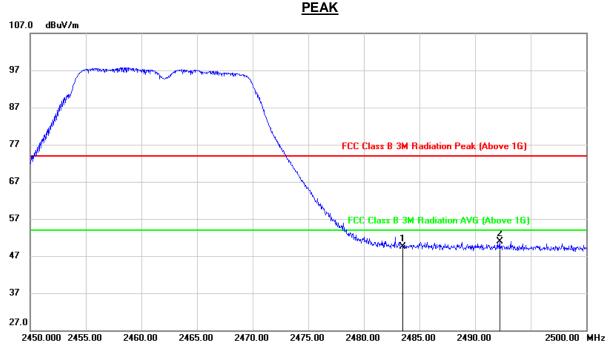

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	8.04	33.58	41.62	54.00	-12.38	AVG
2	2483.550	8.02	33.58	41.60	54.00	-12.40	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

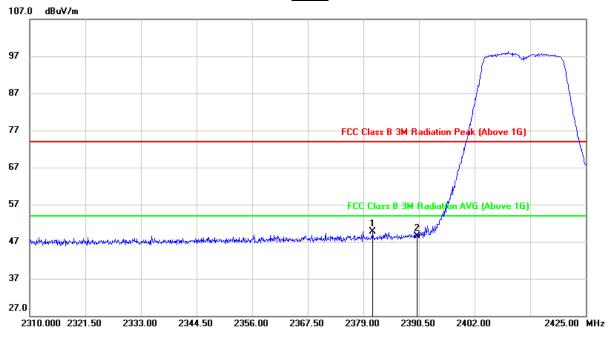

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. AVG: VBW=1/Ton where: ton is transmit duration.

4. For transmit duration, please refer to clause 8.1.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.94	33.58	49.52	74.00	-24.48	peak
2	2492.200	17.35	33.65	51.00	74.00	-23.00	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

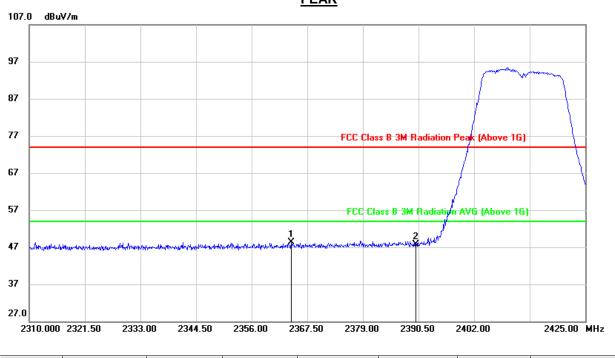
9.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.840	16.86	32.92	49.78	74.00	-24.22	peak
2	2390.000	15.56	32.94	48.50	74.00	-25.50	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

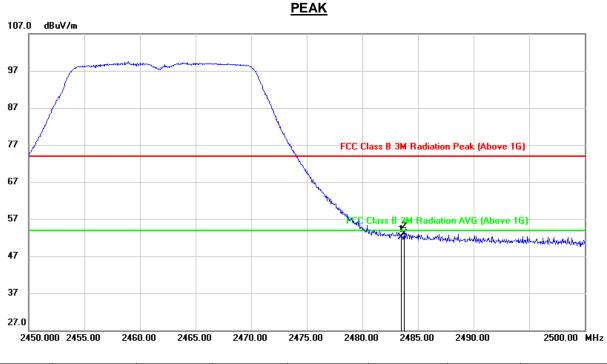
<u>PEAK</u>

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.165	15.40	32.86	48.26	74.00	-25.74	peak
2	2390.000	14.76	32.94	47.70	74.00	-26.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

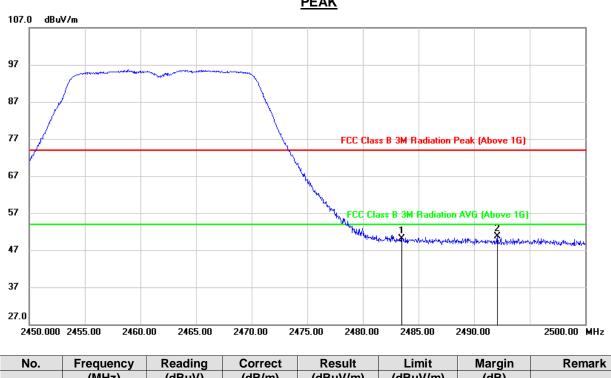

3. Peak: Peak detector.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

<u>PEAK</u>

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.52	33.58	52.10	74.00	-21.90	peak
2	2483.750	19.59	33.58	53.17	74.00	-20.83	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

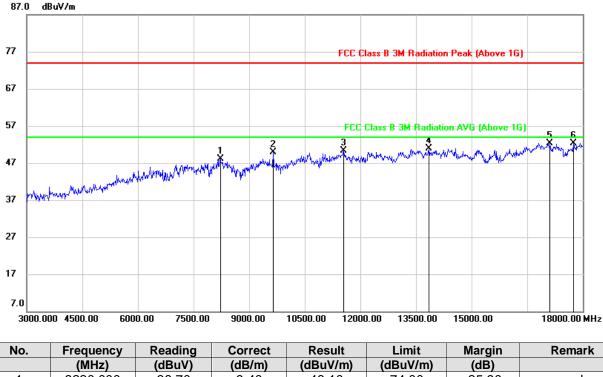
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	16.45	33.58	50.03	74.00	-23.97	peak
2	2492.100	16.99	33.65	50.64	74.00	-23.36	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

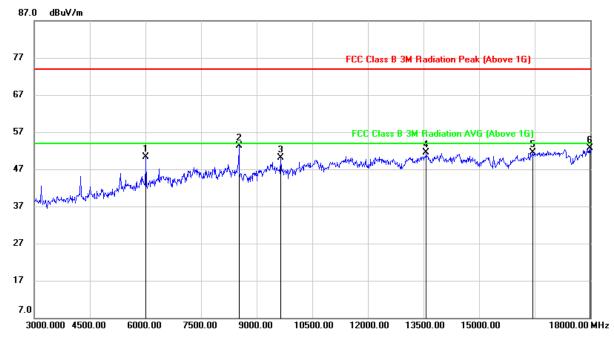

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

PEAK

9.2. SPURIOUS EMISSIONS (3~18GHz)

9.2.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8220.000	38.70	9.40	48.10	74.00	-25.90	peak
2	9645.000	39.91	10.03	49.94	74.00	-24.06	peak
3	11550.000	36.25	14.13	50.38	74.00	-23.62	peak
4	13845.000	34.43	16.52	50.95	74.00	-23.05	peak
5	17115.000	31.51	20.81	52.32	74.00	-21.68	peak
6	17745.000	29.65	22.68	52.33	74.00	-21.67	peak

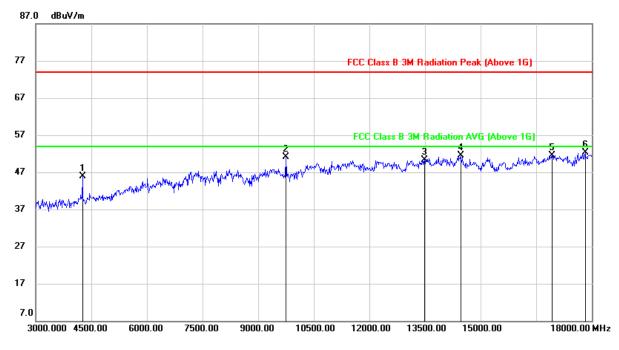
Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. The High Pass filter loss factor already add into the correct factor.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6015.000	46.60	3.78	50.38	74.00	-23.62	peak
2	8520.000	44.76	8.53	53.29	74.00	-20.71	peak
3	9645.000	40.11	10.03	50.14	74.00	-23.86	peak
4	13575.000	35.53	15.98	51.51	74.00	-22.49	peak
5	16440.000	32.88	18.69	51.57	74.00	-22.43	peak
6	17985.000	29.45	23.25	52.70	74.00	-21.30	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

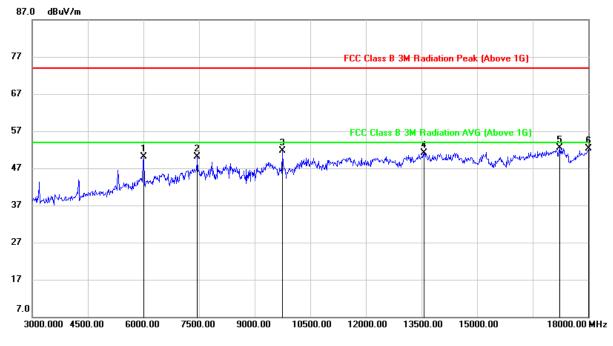
4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4260.000	47.90	-2.09	45.81	74.00	-28.19	peak
2	9750.000	40.88	10.14	51.02	74.00	-22.98	peak
3	13485.000	34.62	15.70	50.32	74.00	-23.68	peak
4	14460.000	35.09	16.35	51.44	74.00	-22.56	peak
5	16920.000	31.59	20.01	51.60	74.00	-22.40	peak
6	17820.000	29.13	23.21	52.34	74.00	-21.66	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

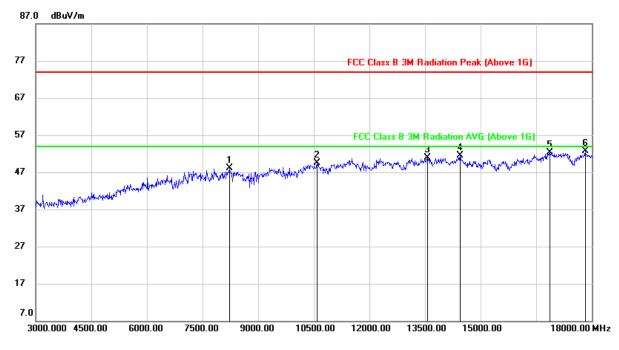

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6015.000	46.30	3.78	50.08	74.00	-23.92	peak
2	7455.000	42.67	7.35	50.02	74.00	-23.98	peak
3	9750.000	41.61	10.14	51.75	74.00	-22.25	peak
4	13575.000	35.06	15.98	51.04	74.00	-22.96	peak
5	17235.000	31.09	21.32	52.41	74.00	-21.59	peak
6	18000.000	29.04	23.27	52.31	74.00	-21.69	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

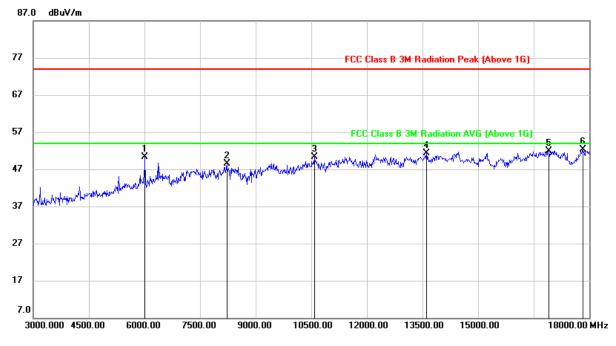
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8220.000	38.66	9.40	48.06	74.00	-25.94	peak
2	10590.000	36.74	12.68	49.42	74.00	-24.58	peak
3	13560.000	35.03	15.91	50.94	74.00	-23.06	peak
4	14445.000	35.14	16.37	51.51	74.00	-22.49	peak
5	16875.000	32.37	19.93	52.30	74.00	-21.70	peak
6	17820.000	29.44	23.21	52.65	74.00	-21.35	peak

Note: 1. Measurement = Reading Level + Correct Factor.

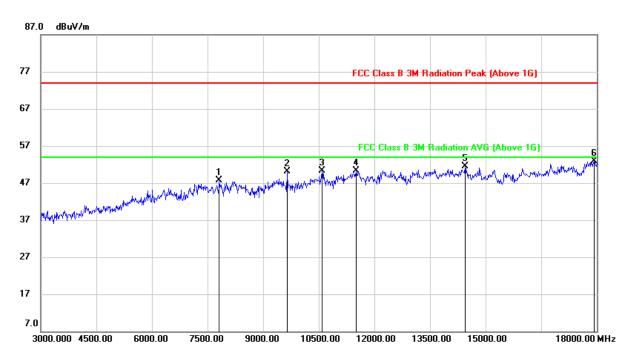

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6015.000	46.54	3.78	50.32	74.00	-23.68	peak
2	8220.000	39.01	9.40	48.41	74.00	-25.59	peak
3	10590.000	37.62	12.68	50.30	74.00	-23.70	peak
4	13605.000	35.28	16.07	51.35	74.00	-22.65	peak
5	16905.000	31.97	19.95	51.92	74.00	-22.08	peak
6	17820.000	29.00	23.21	52.21	74.00	-21.79	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

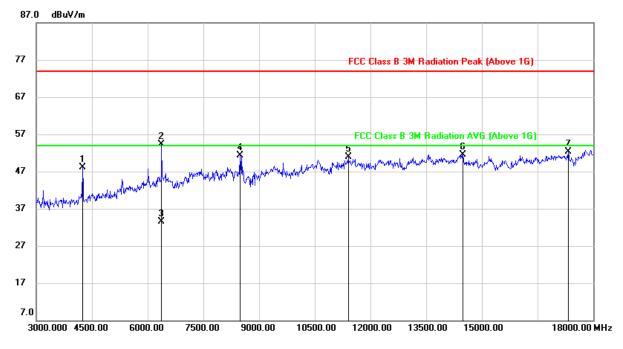
4. The High Pass filter loss factor already add into the correct factor.

9.2.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7815.000	38.83	8.81	47.64	74.00	-26.36	peak
2	9645.000	40.02	10.03	50.05	74.00	-23.95	peak
3	10590.000	37.61	12.68	50.29	74.00	-23.71	peak
4	11505.000	36.21	14.09	50.30	74.00	-23.70	peak
5	14445.000	35.15	16.37	51.52	74.00	-22.48	peak
6	17925.000	29.73	23.18	52.91	74.00	-21.09	peak

Note: 1. Measurement = Reading Level + Correct Factor.

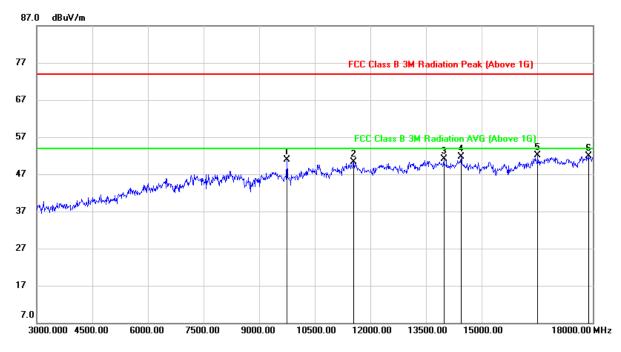

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	50.20	-2.02	48.18	74.00	-25.82	peak
2	6375.000	49.46	4.90	54.36	74.00	-19.64	peak
3	6375.000	28.67	4.90	33.57	54.00	-20.43	AVG
4	8490.000	42.71	8.59	51.30	74.00	-22.70	peak
5	11400.000	37.49	13.36	50.85	74.00	-23.15	peak
6	14490.000	35.28	16.32	51.60	74.00	-22.40	peak
7	17325.000	30.42	21.80	52.22	74.00	-21.78	peak


Note: 1. Measurement = Reading Level + Correct Factor.

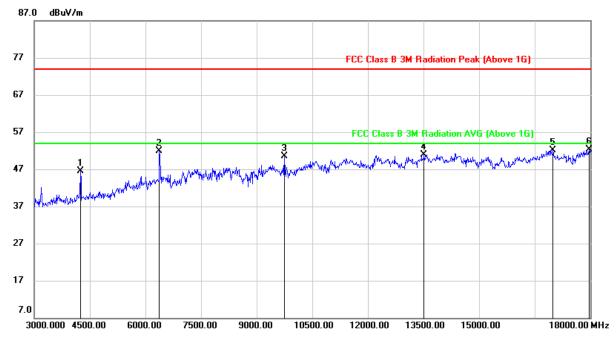
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9750.000	40.75	10.14	50.89	74.00	-23.11	peak
2	11550.000	36.08	14.13	50.21	74.00	-23.79	peak
3	13980.000	34.73	16.32	51.05	74.00	-22.95	peak
4	14445.000	35.25	16.37	51.62	74.00	-22.38	peak
5	16515.000	33.10	18.97	52.07	74.00	-21.93	peak
6	17880.000	28.64	23.18	51.82	74.00	-22.18	peak

Note: 1. Measurement = Reading Level + Correct Factor.

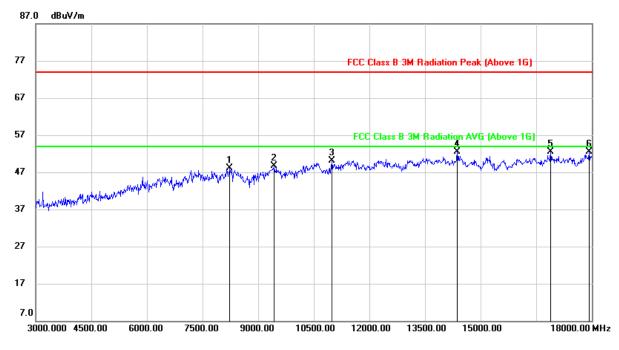

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	48.57	-2.02	46.55	74.00	-27.45	peak
2	6375.000	46.98	4.90	51.88	74.00	-22.12	peak
3	9750.000	40.28	10.14	50.42	74.00	-23.58	peak
4	13515.000	35.14	15.72	50.86	74.00	-23.14	peak
5	16995.000	31.77	20.32	52.09	74.00	-21.91	peak
6	17970.000	29.00	23.24	52.24	74.00	-21.76	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

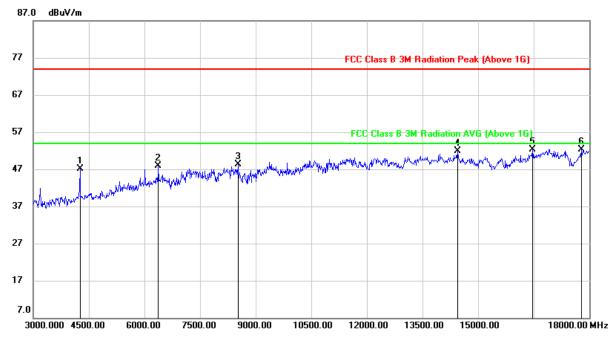
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8235.000	38.80	9.23	48.03	74.00	-25.97	peak
2	9435.000	38.33	10.37	48.70	74.00	-25.30	peak
3	10995.000	36.93	13.23	50.16	74.00	-23.84	peak
4	14370.000	36.12	16.39	52.51	74.00	-21.49	peak
5	16890.000	32.52	19.93	52.45	74.00	-21.55	peak
6	17925.000	29.27	23.18	52.45	74.00	-21.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.

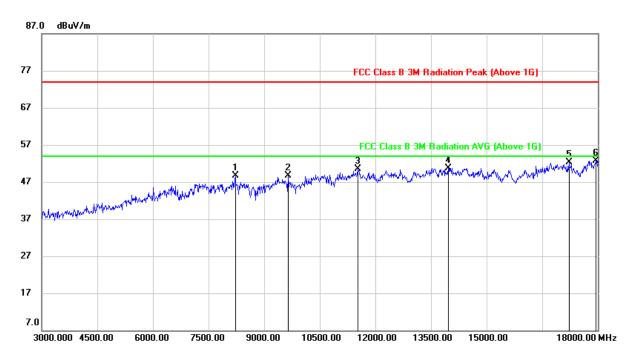

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4260.000	49.28	-2.09	47.19	74.00	-26.81	peak
2	6375.000	43.07	4.90	47.97	74.00	-26.03	peak
3	8520.000	39.74	8.53	48.27	74.00	-25.73	peak
4	14445.000	35.47	16.37	51.84	74.00	-22.16	peak
5	16470.000	33.56	18.80	52.36	74.00	-21.64	peak
6	17790.000	29.28	23.12	52.40	74.00	-21.60	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

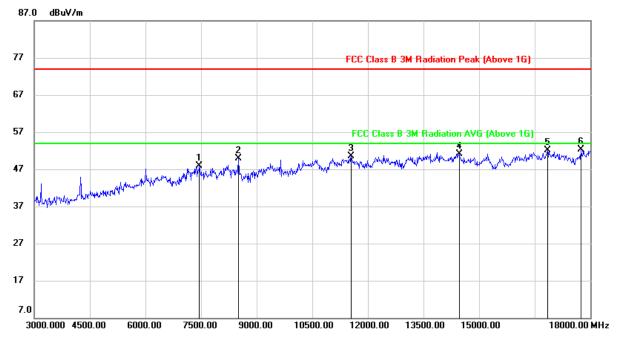
4. The High Pass filter loss factor already add into the correct factor.

9.2.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8220.000	39.40	9.40	48.80	74.00	-25.20	peak
2	9645.000	38.61	10.03	48.64	74.00	-25.36	peak
3	11520.000	36.31	14.10	50.41	74.00	-23.59	peak
4	13965.000	34.51	16.29	50.80	74.00	-23.20	peak
5	17220.000	31.09	21.19	52.28	74.00	-21.72	peak
6	17955.000	29.45	23.23	52.68	74.00	-21.32	peak

Note: 1. Measurement = Reading Level + Correct Factor.

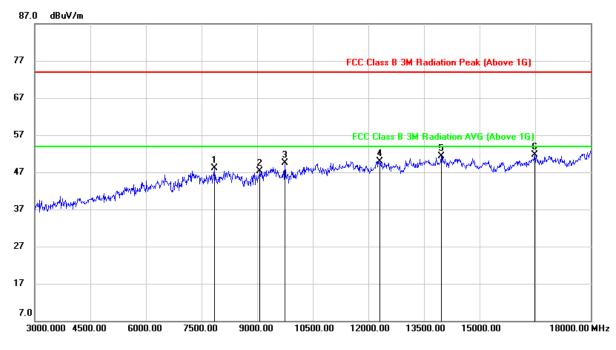

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7455.000	40.46	7.35	47.81	74.00	-26.19	peak
2	8505.000	41.27	8.55	49.82	74.00	-24.18	peak
3	11550.000	36.30	14.13	50.43	74.00	-23.57	peak
4	14460.000	34.71	16.35	51.06	74.00	-22.94	peak
5	16845.000	32.27	19.92	52.19	74.00	-21.81	peak
6	17745.000	29.58	22.68	52.26	74.00	-21.74	peak


Note: 1. Measurement = Reading Level + Correct Factor.

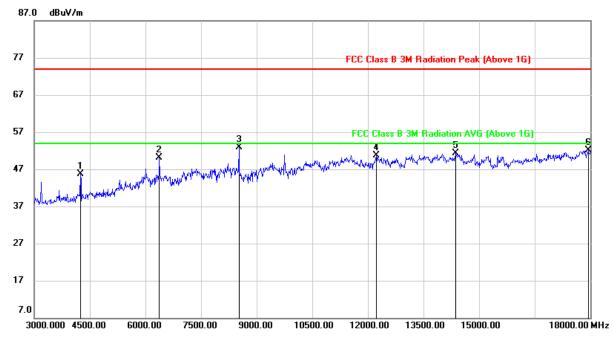
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7845.000	39.46	8.68	48.14	74.00	-25.86	peak
2	9075.000	37.29	10.04	47.33	74.00	-26.67	peak
3	9750.000	39.42	10.14	49.56	74.00	-24.44	peak
4	12315.000	35.57	14.37	49.94	74.00	-24.06	peak
5	13965.000	35.11	16.29	51.40	74.00	-22.60	peak
6	16485.000	32.85	18.84	51.69	74.00	-22.31	peak

Note: 1. Measurement = Reading Level + Correct Factor.

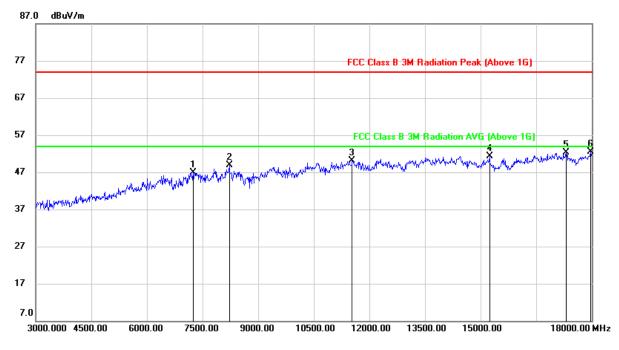

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4245.000	47.63	-2.02	45.61	74.00	-28.39	peak
2	6375.000	45.20	4.90	50.10	74.00	-23.90	peak
3	8520.000	44.34	8.53	52.87	74.00	-21.13	peak
4	12225.000	36.52	14.28	50.80	74.00	-23.20	peak
5	14370.000	34.90	16.39	51.29	74.00	-22.71	peak
6	17940.000	28.99	23.21	52.20	74.00	-21.80	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

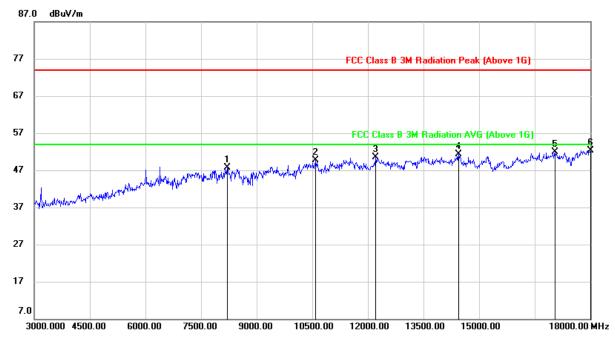
3. Peak: Peak detector.

4. The High Pass filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

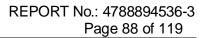
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7245.000	40.00	7.00	47.00	74.00	-27.00	peak
2	8220.000	39.49	9.40	48.89	74.00	-25.11	peak
3	11535.000	35.92	14.10	50.02	74.00	-23.98	peak
4	15240.000	35.73	15.56	51.29	74.00	-22.71	peak
5	17310.000	30.36	21.86	52.22	74.00	-21.78	peak
6	17970.000	29.23	23.24	52.47	74.00	-21.53	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

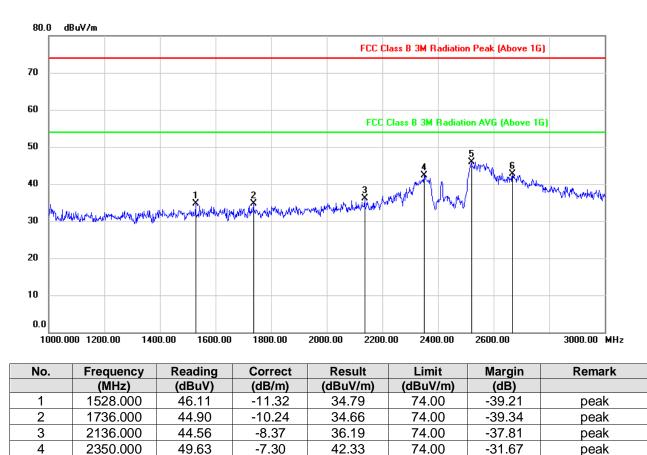
4. The High Pass filter loss factor already add into the correct factor.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8205.000	38.23	9.57	47.80	74.00	-26.20	peak
2	10590.000	37.11	12.68	49.79	74.00	-24.21	peak
3	12210.000	36.18	14.25	50.43	74.00	-23.57	peak
4	14445.000	35.02	16.37	51.39	74.00	-22.61	peak
5	17040.000	31.47	20.51	51.98	74.00	-22.02	peak
6	18000.000	29.08	23.27	52.35	74.00	-21.65	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. The High Pass filter loss factor already add into the correct factor.

9.3. SPURIOUS EMISSIONS (1~3GHz)

9.3.1. 802.11b MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

52.30

49.96

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

45.87

42.74

74.00

74.00

-28.13

-31.26

peak

peak

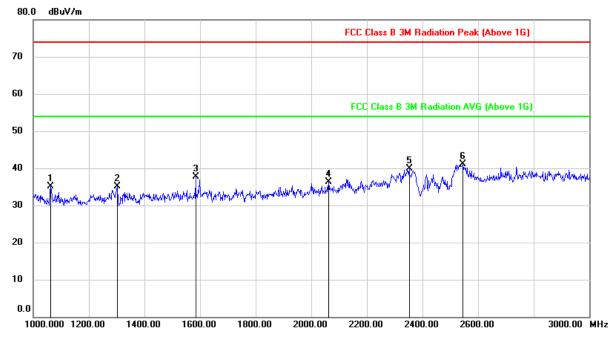
3. Peak: Peak detector.

2520.000

2668.000

5

6

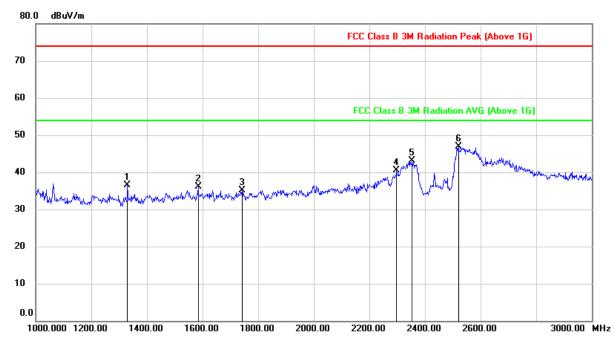

4. The Band Reject filter loss factor already add into the correct factor.

-6.43

-7.22

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	47.87	-12.80	35.07	74.00	-38.93	peak
2	1302.000	46.29	-11.23	35.06	74.00	-38.94	peak
3	1584.000	48.53	-10.77	37.76	74.00	-36.24	peak
4	2062.000	45.25	-8.87	36.38	74.00	-37.62	peak
5	2352.000	47.25	-7.29	39.96	74.00	-34.04	peak
6	2546.000	47.55	-6.54	41.01	74.00	-32.99	peak


Note: 1. Measurement = Reading Level + Correct Factor.

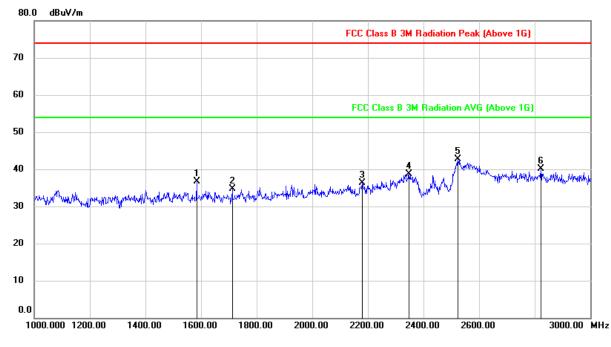
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1330.000	47.96	-11.42	36.54	74.00	-37.46	peak
2	1584.000	46.82	-10.77	36.05	74.00	-37.95	peak
3	1742.000	45.36	-10.16	35.20	74.00	-38.80	peak
4	2298.000	48.07	-7.50	40.57	74.00	-33.43	peak
5	2354.000	50.47	-7.28	43.19	74.00	-30.81	peak
6	2520.000	53.26	-6.43	46.83	74.00	-27.17	peak


Note: 1. Measurement = Reading Level + Correct Factor.

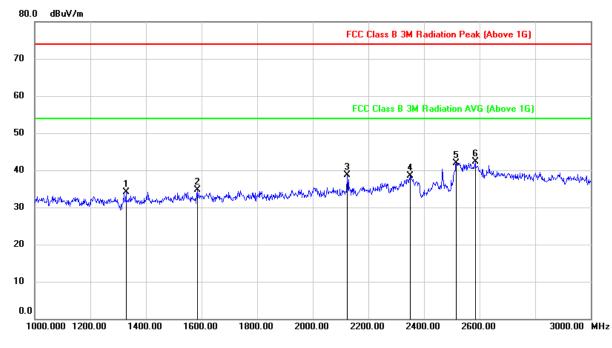
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1584.000	47.41	-10.77	36.64	74.00	-37.36	peak
2	1712.000	45.30	-10.55	34.75	74.00	-39.25	peak
3	2180.000	44.79	-8.42	36.37	74.00	-37.63	peak
4	2348.000	46.07	-7.31	38.76	74.00	-35.24	peak
5	2524.000	49.09	-6.45	42.64	74.00	-31.36	peak
6	2822.000	45.22	-5.18	40.04	74.00	-33.96	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

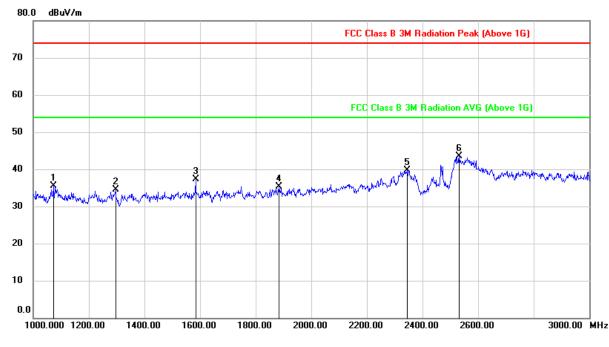
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	45.49	-11.41	34.08	74.00	-39.92	peak
2	1584.000	45.43	-10.77	34.66	74.00	-39.34	peak
3	2124.000	47.08	-8.35	38.73	74.00	-35.27	peak
4	2350.000	45.89	-7.30	38.59	74.00	-35.41	peak
5	2516.000	48.39	-6.40	41.99	74.00	-32.01	peak
6	2584.000	49.03	-6.73	42.30	74.00	-31.70	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

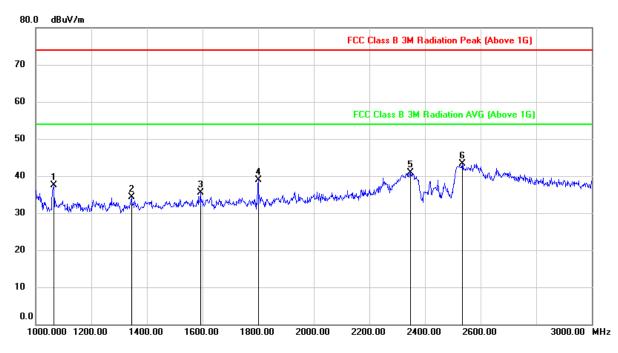
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1072.000	48.21	-12.75	35.46	74.00	-38.54	peak
2	1296.000	45.73	-11.26	34.47	74.00	-39.53	peak
3	1584.000	48.00	-10.77	37.23	74.00	-36.77	peak
4	1884.000	44.68	-9.32	35.36	74.00	-38.64	peak
5	2346.000	46.97	-7.32	39.65	74.00	-34.35	peak
6	2532.000	49.93	-6.48	43.45	74.00	-30.55	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

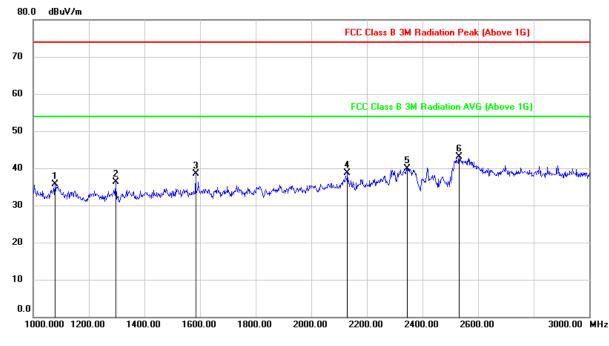
4. The Band Reject filter loss factor already add into the correct factor.

9.3.2. 802.11g MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	50.19	-12.78	37.41	74.00	-36.59	peak
2	1344.000	45.74	-11.52	34.22	74.00	-39.78	peak
3	1592.000	46.25	-10.69	35.56	74.00	-38.44	peak
4	1800.000	48.27	-9.42	38.85	74.00	-35.15	peak
5	2348.000	48.25	-7.31	40.94	74.00	-33.06	peak
6	2534.000	49.75	-6.50	43.25	74.00	-30.75	peak

Note: 1. Measurement = Reading Level + Correct Factor.

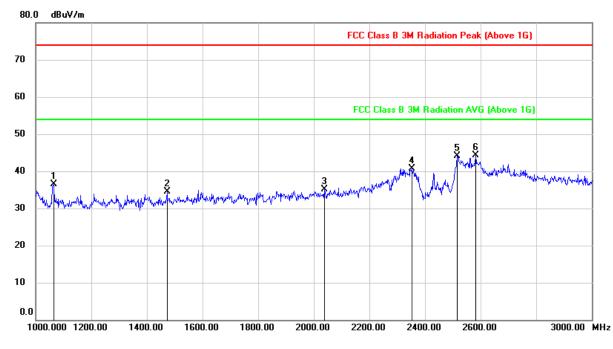

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1078.000	48.34	-12.71	35.63	74.00	-38.37	peak
2	1296.000	47.62	-11.26	36.36	74.00	-37.64	peak
3	1584.000	49.25	-10.77	38.48	74.00	-35.52	peak
4	2130.000	46.99	-8.36	38.63	74.00	-35.37	peak
5	2344.000	47.28	-7.32	39.96	74.00	-34.04	peak
6	2532.000	49.54	-6.48	43.06	74.00	-30.94	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

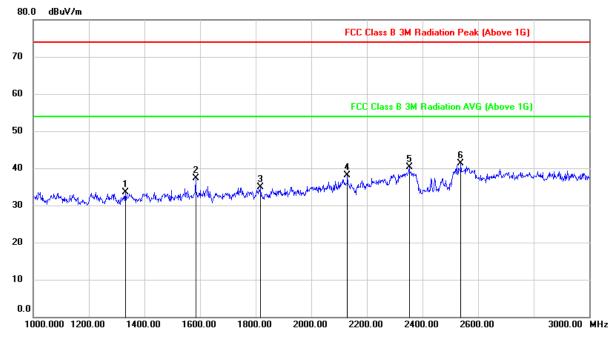
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	49.30	-12.78	36.52	74.00	-37.48	peak
2	1472.000	46.27	-11.69	34.58	74.00	-39.42	peak
3	2038.000	44.27	-9.22	35.05	74.00	-38.95	peak
4	2352.000	48.01	-7.29	40.72	74.00	-33.28	peak
5	2516.000	50.47	-6.40	44.07	74.00	-29.93	peak
6	2582.000	51.00	-6.72	44.28	74.00	-29.72	peak

Note: 1. Measurement = Reading Level + Correct Factor.

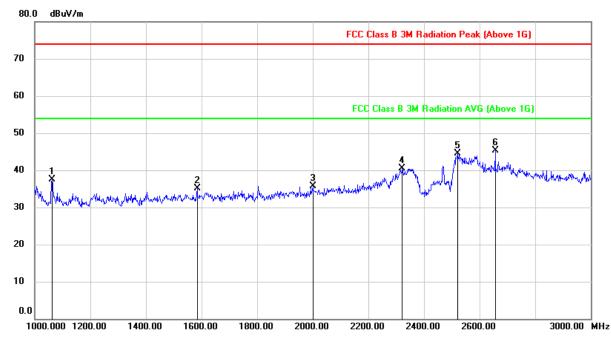

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1332.000	44.89	-11.43	33.46	74.00	-40.54	peak
2	1584.000	48.17	-10.77	37.40	74.00	-36.60	peak
3	1818.000	44.33	-9.39	34.94	74.00	-39.06	peak
4	2130.000	46.38	-8.36	38.02	74.00	-35.98	peak
5	2352.000	47.57	-7.29	40.28	74.00	-33.72	peak
6	2538.000	47.76	-6.51	41.25	74.00	-32.75	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

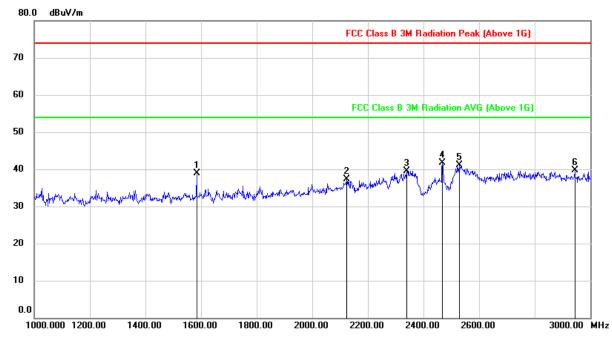
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	50.26	-12.80	37.46	74.00	-36.54	peak
2	1584.000	45.78	-10.77	35.01	74.00	-38.99	peak
3	2000.000	45.58	-9.78	35.80	74.00	-38.20	peak
4	2322.000	47.81	-7.40	40.41	74.00	-33.59	peak
5	2520.000	50.87	-6.43	44.44	74.00	-29.56	peak
6	2656.000	52.51	-7.15	45.36	74.00	-28.64	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

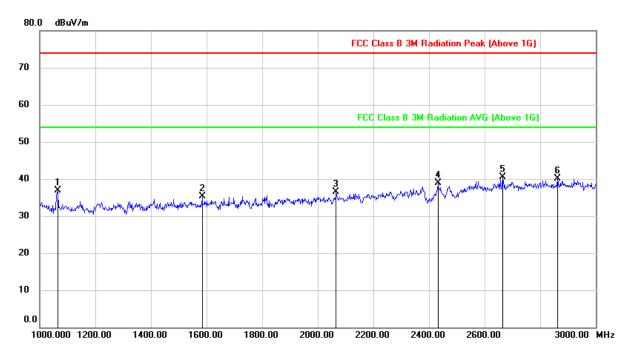
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1584.000	49.58	-10.77	38.81	74.00	-35.19	peak
2	2124.000	45.59	-8.35	37.24	74.00	-36.76	peak
3	2340.000	46.85	-7.34	39.51	74.00	-34.49	peak
4	2468.000	48.37	-6.59	41.78	74.00	-32.22	peak
5	2528.000	47.60	-6.46	41.14	74.00	-32.86	peak
6	2944.000	44.62	-4.90	39.72	74.00	-34.28	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

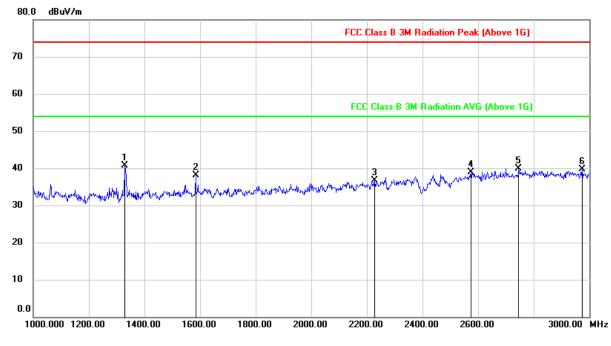
3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

9.3.3. 802.11n HT20 MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	49.68	-12.78	36.90	74.00	-37.10	peak
2	1584.000	46.08	-10.77	35.31	74.00	-38.69	peak
3	2066.000	45.23	-8.81	36.42	74.00	-37.58	peak
4	2432.000	45.71	-6.85	38.86	74.00	-35.14	peak
5	2664.000	47.70	-7.20	40.50	74.00	-33.50	peak
6	2862.000	45.28	-5.17	40.11	74.00	-33.89	peak


Note: 1. Measurement = Reading Level + Correct Factor.

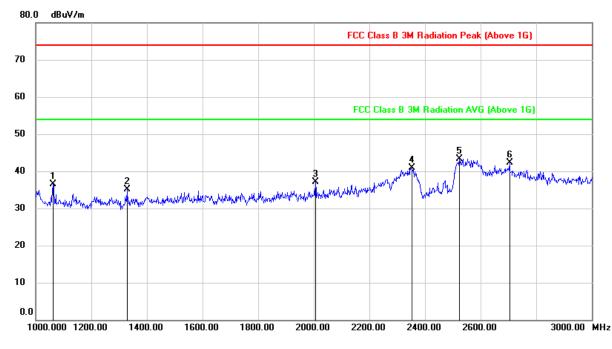
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	52.02	-11.41	40.61	74.00	-33.39	peak
2	1584.000	48.85	-10.77	38.08	74.00	-35.92	peak
3	2228.000	44.79	-8.17	36.62	74.00	-37.38	peak
4	2574.000	45.66	-6.68	38.98	74.00	-35.02	peak
5	2746.000	46.37	-6.40	39.97	74.00	-34.03	peak
6	2974.000	44.41	-4.73	39.68	74.00	-34.32	peak


Note: 1. Measurement = Reading Level + Correct Factor.

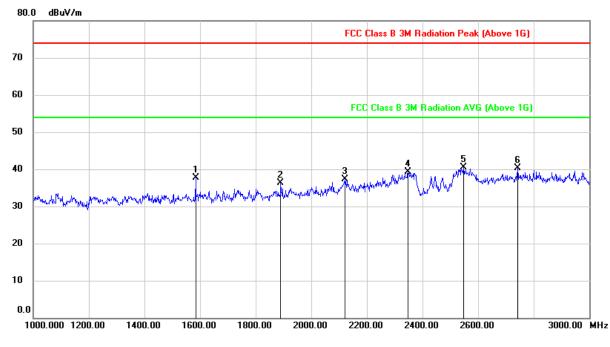
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1062.000	49.21	-12.80	36.41	74.00	-37.59	peak
2	1328.000	46.47	-11.41	35.06	74.00	-38.94	peak
3	2006.000	46.83	-9.70	37.13	74.00	-36.87	peak
4	2354.000	48.12	-7.28	40.84	74.00	-33.16	peak
5	2524.000	49.80	-6.45	43.35	74.00	-30.65	peak
6	2704.000	49.57	-7.34	42.23	74.00	-31.77	peak


Note: 1. Measurement = Reading Level + Correct Factor.

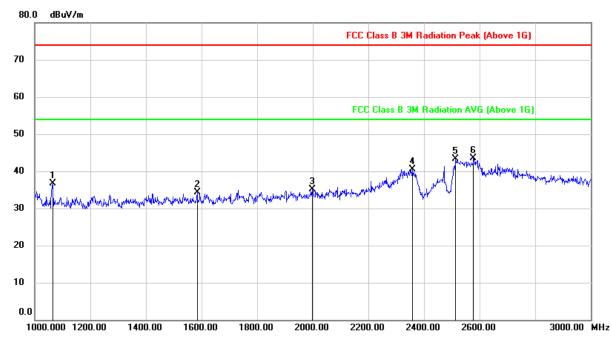
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1584.000	48.55	-10.77	37.78	74.00	-36.22	peak
2	1890.000	45.71	-9.31	36.40	74.00	-37.60	peak
3	2120.000	45.56	-8.34	37.22	74.00	-36.78	peak
4	2348.000	46.59	-7.31	39.28	74.00	-34.72	peak
5	2548.000	47.01	-6.56	40.45	74.00	-33.55	peak
6	2742.000	46.82	-6.49	40.33	74.00	-33.67	peak


Note: 1. Measurement = Reading Level + Correct Factor.

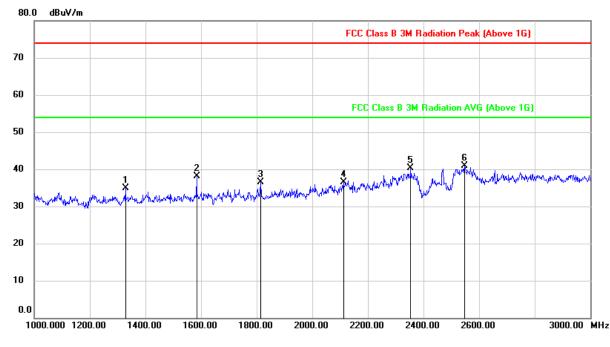
2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1064.000	49.56	-12.78	36.78	74.00	-37.22	peak
2	1584.000	45.03	-10.77	34.26	74.00	-39.74	peak
3	1998.000	44.97	-9.77	35.20	74.00	-38.80	peak
4	2358.000	47.83	-7.27	40.56	74.00	-33.44	peak
5	2514.000	49.68	-6.40	43.28	74.00	-30.72	peak
6	2578.000	50.14	-6.70	43.44	74.00	-30.56	peak


Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

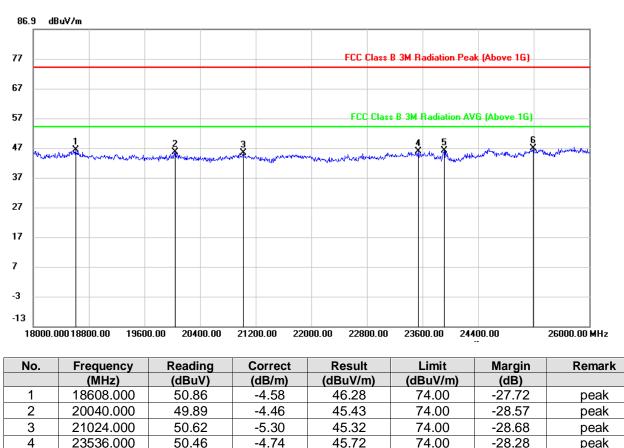
4. The Band Reject filter loss factor already add into the correct factor.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1328.000	46.26	-11.41	34.85	74.00	-39.15	peak
2	1584.000	48.87	-10.77	38.10	74.00	-35.90	peak
3	1814.000	45.82	-9.40	36.42	74.00	-37.58	peak
4	2112.000	44.91	-8.34	36.57	74.00	-37.43	peak
5	2354.000	47.55	-7.28	40.27	74.00	-33.73	peak
6	2548.000	47.46	-6.56	40.90	74.00	-33.10	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

4. The Band Reject filter loss factor already add into the correct factor.

9.4. SPURIOUS EMISSIONS (18~26GHz)

9.4.1. 802.11b MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Measurement = Reading Level + Correct Factor.

50.32

47.99

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

46.09

46.83

74.00

74.00

-27.91

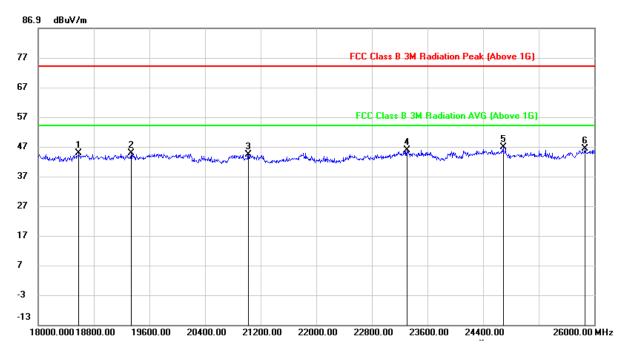
-27.17

peak

peak

-4.23

-1.16


3. Peak: Peak detector.

23912.000

25192.000

5

6

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18584.000	49.19	-4.53	44.66	74.00	-29.34	peak
2	19336.000	49.70	-4.97	44.73	74.00	-29.27	peak
3	21024.000	49.64	-5.30	44.34	74.00	-29.66	peak
4	23304.000	50.87	-5.16	45.71	74.00	-28.29	peak
5	24688.000	48.89	-2.11	46.78	74.00	-27.22	peak
6	25864.000	48.08	-1.84	46.24	74.00	-27.76	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

Note: All test mode has been tested, only the worst data record in the report

5

6

685.7199

861.2900

QP

QP

9.5. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)

9.5.1. 802.11b MODE

80.0 dBuV/m 70 60 FCC Class B 3M Radiation Margin -6 dB 50 40 30 multi who who was a star the start of the 20 10 0.0 1000.00 MHz 224.00 321.00 418.00 515.00 612.00 709.00 806.00 30.000 127.00 Frequency Margin No. Reading Correct Result Limit Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 77.5300 44.46 -20.45 24.01 40.00 -15.99 QP 46.67 -15.70 30.97 46.00 -15.03 QP 2 260.8599 3 414.1200 31.65 -12.07 19.58 46.00 -26.42 QP QP 4 579.9900 27.35 -8.71 18.64 46.00 -27.36

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

Note: 1. Result Level = Read Level + Correct Factor.

28.06

26.85

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

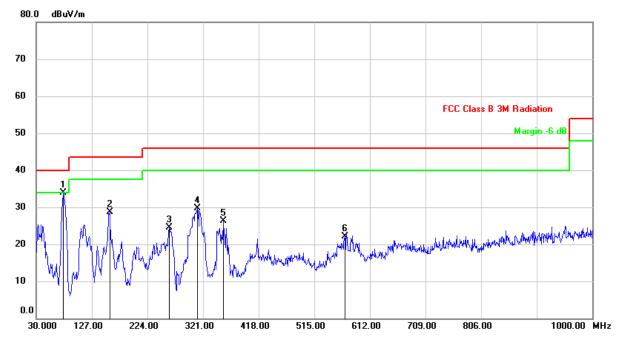
21.15

22.30

46.00

46.00

-24.85 -23.70


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

-6.91

-4.55

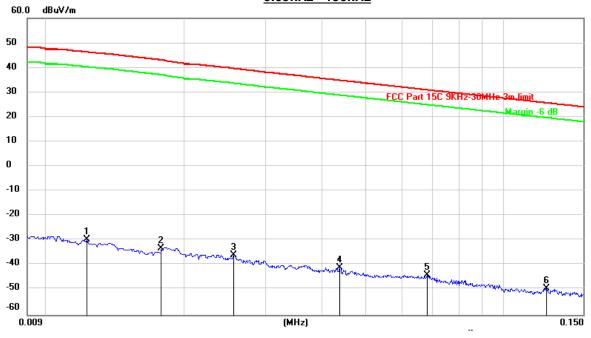
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	77.5300	54.27	-20.45	33.82	40.00	-6.18	QP
2	158.0399	46.59	-17.84	28.75	43.50	-14.75	QP
3	261.8299	40.25	-15.65	24.60	46.00	-21.40	QP
4	311.3000	43.44	-13.77	29.67	46.00	-16.33	QP
5	355.9200	39.36	-13.09	26.27	46.00	-19.73	QP
6	568.3500	31.19	-9.04	22.15	46.00	-23.85	QP

Note: 1. Result Level = Read Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

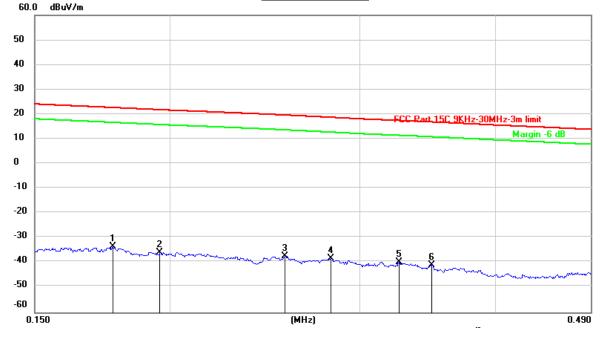
3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto


Note: All test mode has been tested, only the worst data record in the report

9.6. SPURIOUS EMISSIONS BELOW 30M

9.6.1. 802.11b MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

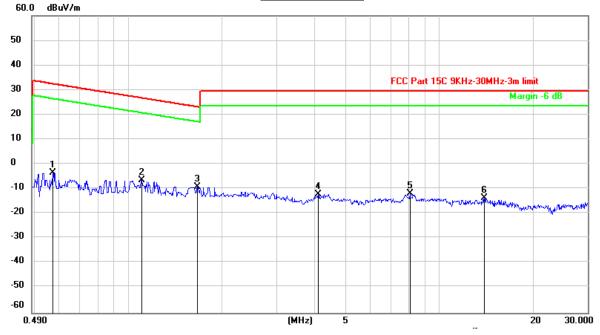


<u>0.09kHz~ 150kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0122	71.73	-101.39	-29.66	46.28	-75.94	peak
2	0.0177	68.35	-101.35	-33.00	42.96	-75.96	peak
3	0.0256	65.41	-101.37	-35.96	39.61	-75.57	peak
4	0.0437	60.50	-101.45	-40.95	34.84	-75.79	peak
5	0.0680	57.58	-101.56	-43.98	30.97	-74.95	peak
6	0.1246	52.46	-101.72	-49.26	25.70	-74.96	peak

Note: 1. Measurement = Reading Level + Correct Factor.

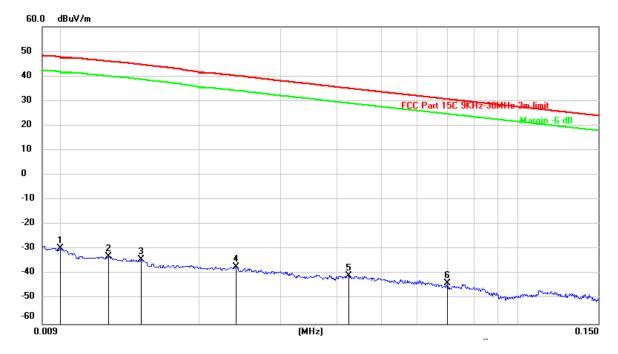
<u>150kHz ~ 490kHz</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1774	68.31	-101.68	-33.37	22.63	-56.00	peak
2	0.1958	65.98	-101.71	-35.73	21.77	-57.50	peak
3	0.2555	64.59	-101.80	-37.21	19.63	-56.84	peak
4	0.2816	63.67	-101.83	-38.16	18.71	-56.87	peak
5	0.3256	62.08	-101.88	-39.80	17.42	-57.22	peak
6	0.3496	61.02	-101.91	-40.89	16.82	-57.71	peak

Note: 1. Measurement = Reading Level + Correct Factor.

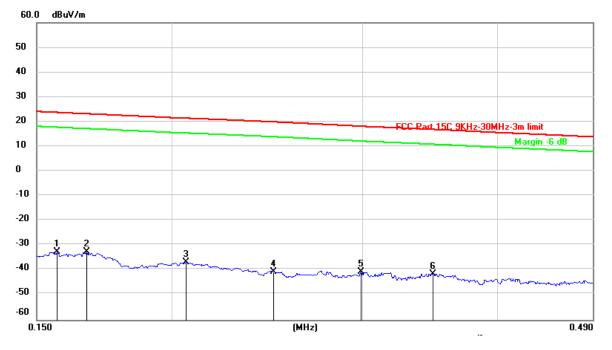
<u>490kHz ~ 30MHz</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5725	58.53	-62.07	-3.54	32.48	-36.02	peak
2	1.1090	55.76	-62.22	-6.46	26.71	-33.17	peak
3	1.6704	52.72	-61.97	-9.25	23.15	-32.40	peak
4	4.0901	49.32	-61.35	-12.03	29.54	-41.57	peak
5	8.0446	49.10	-61.07	-11.97	29.54	-41.51	peak
6	13.9761	47.30	-60.97	-13.67	29.54	-43.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

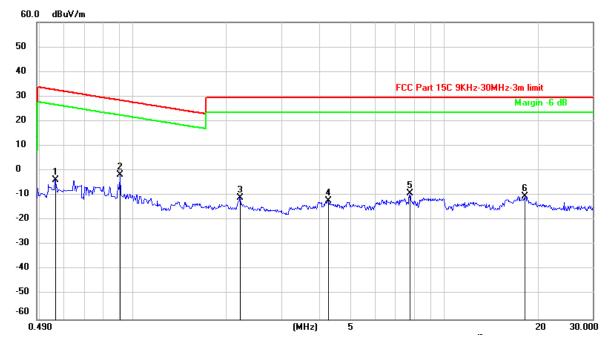


<u>0.09~ 150kHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0100	71.72	-101.40	-29.68	47.60	-77.28	peak
2	0.0126	68.43	-101.38	-32.95	46.03	-78.98	peak
3	0.0149	67.37	-101.37	-34.00	44.65	-78.65	peak
4	0.0240	64.32	-101.36	-37.04	40.17	-77.21	peak
5	0.0424	60.85	-101.44	-40.59	35.09	-75.68	peak
6	0.0700	57.91	-101.57	-43.66	30.70	-74.36	peak

Note: 1. Measurement = Reading Level + Correct Factor.

<u>150kHz ~ 490kHz</u>



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1565	69.03	-101.65	-32.62	23.72	-56.34	peak
2	0.1669	69.15	-101.66	-32.51	23.16	-55.67	peak
3	0.2064	65.08	-101.73	-36.65	21.35	-58.00	peak
4	0.2484	61.30	-101.80	-40.50	19.88	-60.38	peak
5	0.2993	61.33	-101.85	-40.52	18.08	-58.60	peak
6	0.3487	60.41	-101.91	-41.50	16.84	-58.34	peak

Note: 1. Measurement = Reading Level + Correct Factor.

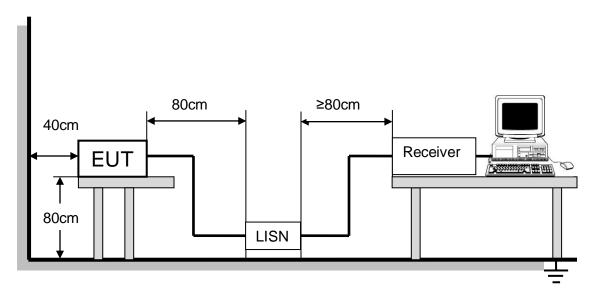
<u>490kHz ~ 30MHz</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5635	58.37	-62.08	-3.71	32.62	-36.33	peak
2	0.9082	60.65	-62.21	-1.56	28.44	-30.00	peak
3	2.2090	50.94	-61.78	-10.84	29.54	-40.38	peak
4	4.2492	49.35	-61.37	-12.02	29.54	-41.56	peak
5	7.7495	51.98	-61.11	-9.13	29.54	-38.67	peak
6	18.1960	50.51	-60.90	-10.39	29.54	-39.93	peak

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

Note: All test mode has been tested, only the worst data record in the report


10. AC POWER LINE CONDUCTED EMISSIONS

<u>LIMITS</u>

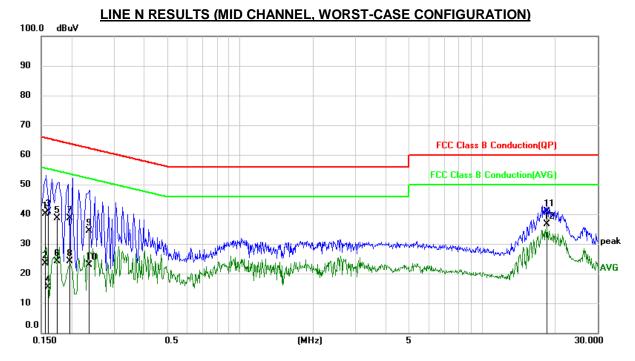
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

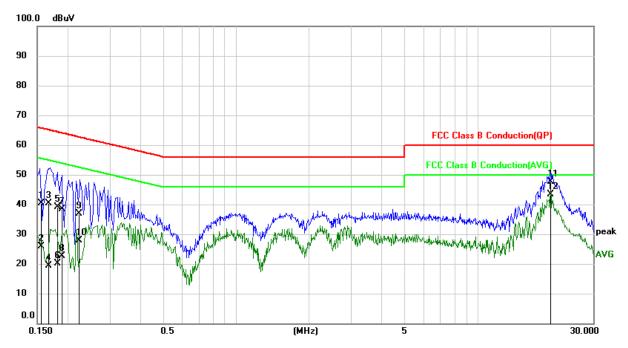
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	22.5°C	Relative Humidity	53%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V,60Hz

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

10.1. 802.11b MODE


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1550	30.47	9.60	40.07	65.73	-25.66	QP
2	0.1550	13.72	9.60	23.32	55.73	-32.41	AVG
3	0.1613	31.39	9.60	40.99	65.40	-24.41	QP
4	0.1613	5.82	9.60	15.42	55.40	-39.98	AVG
5	0.1746	29.12	9.60	38.72	64.74	-26.02	QP
6	0.1746	14.65	9.60	24.25	54.74	-30.49	AVG
7	0.1979	28.95	9.60	38.55	63.70	-25.15	QP
8	0.1979	14.49	9.60	24.09	53.70	-29.61	AVG
9	0.2361	24.72	9.60	34.32	62.23	-27.91	QP
10	0.2361	13.37	9.60	22.97	52.23	-29.26	AVG
11	18.5198	30.68	10.15	40.83	60.00	-19.17	QP
12	18.5198	26.50	10.15	36.65	50.00	-13.35	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1564	30.79	9.61	40.40	65.65	-25.25	QP
2	0.1564	16.33	9.61	25.94	55.65	-29.71	AVG
3	0.1662	30.75	9.61	40.36	65.15	-24.79	QP
4	0.1662	9.71	9.61	19.32	55.15	-35.83	AVG
5	0.1827	29.53	9.61	39.14	64.36	-25.22	QP
6	0.1827	10.49	9.61	20.10	54.36	-34.26	AVG
7	0.1892	28.88	9.60	38.48	64.07	-25.59	QP
8	0.1892	13.12	9.60	22.72	54.07	-31.35	AVG
9	0.2221	27.21	9.60	36.81	62.74	-25.93	QP
10	0.2221	18.17	9.60	27.77	52.74	-24.97	AVG
11	19.9999	37.63	10.12	47.75	60.00	-12.25	QP
12	19.9999	33.23	10.12	43.35	50.00	-6.65	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All test mode has been tested, only the worst data record in the report

11. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

END OF REPORT