SAR EVALUATION REPORT For # Shenzhen EDUP Electronics Technology Co., Ltd. 6 Floor, #6 Building, No.48, Kangzheng Road Liantang Industrial Area, Buji Town Shenzhen, China # FCC ID: 2AHRD-EPAC1619 | Report Type: | | Product Type: | | |-----------------|---------------------------|-------------------------------|-------------| | Original Report | | 802.11AC Dual-Band
Adapter | l Wi-Fi USB | | Report Number: | RDG190819007- | 20A | | | Report Date: | 2019-10-14 | | | | Reviewed By: | Rocky Xiao
RF Engineer | pocky | xiao | | Prepared By: | No.69 Pulongcun | 858891 | Oongguan) | Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. | | | Attestation of Test Results | | | | | | |-------------------------|---|--------------------------------------|--------------------------------------|--|--|--|--| | | EUT Description | 802.11AC Dual-Band Wi-Fi USB Adapter | 802.11AC Dual-Band Wi-Fi USB Adapter | | | | | | | Tested Model | EP-AC1619 | | | | | | | EUT | Multiple Model: | WT-AC9015 | | | | | | | Information | FCC ID | 2AHRD-EPAC1619 | | | | | | | | Serial Number | 19081900720 | | | | | | | | Test Date | 2019-08-22~2019-10-12 | | | | | | | | MODE | Max. SAR Level(s) Reported(W/kg) | Limit (W/kg) | | | | | | WLAN 2.4G | 1g Body SAR | 0.47 | 1.6 | | | | | | WLAN 5.8G | 1g Body SAR | 1.12 | | | | | | | | FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques | | | | | | | | Applicable
Standards | Applicable | | | | | | | | | KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01 | | | | | | | Report No.: RDG190819007-20A **Note:** This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in **FCC 47 CFR part 2.1093** and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. SAR Evaluation Report 2 of 37 # TABLE OF CONTENTS | DOCUMENT REVISION HISTORY | 4 | |---|----| | EUT DESCRIPTION | 5 | | TECHNICAL SPECIFICATION | 5 | | REFERENCE, STANDARDS, AND GUIDELINES | 6 | | SAR LIMITS | 7 | | FACILITIES | 8 | | DESCRIPTION OF TEST SYSTEM | 9 | | EQUIPMENT LIST AND CALIBRATION | 15 | | SAR MEASUREMENT SYSTEM VERIFICATION | 16 | | Liquid Verification | | | SYSTEM ACCURACY VERIFICATION | | | SAR SYSTEM VALIDATION DATA | | | EUT TEST STRATEGY AND METHODOLOGY | | | TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR | | | CHEEK/TOUCH POSITION
EAR/TILT POSITION | | | TEST POSITION TO BODY-WORN AND OTHER CONFIGURATIONS | | | TEST DISTANCE FOR SAR EVALUATION | 22 | | SAR EVALUATION PROCEDURE | | | CONDUCTED OUTPUT POWER MEASUREMENT | 24 | | PROVISION APPLICABLE | | | TEST PROCEDURE | 24 | | MAXIMUM TARGET OUTPUT POWER | | | STANDALONE SAR TEST EXCLUSION CONSIDERATIONS | | | | | | ANTENNA DISTANCE TO EDGESAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT | 26 | | SAR MEASUREMENT RESULTS | | | SAR TEST DATA | 27 | | SAR MEASUREMENT VARIABILITY | 32 | | SAR SCAN PLOTS | 33 | | APPENDIX A MEASUREMENT UNCERTAINTY | 34 | | APPENDIX B EUT TEST POSITION PHOTOS | 36 | | APPENDIX C CALIBRATION CERTIFICATES | 37 | # **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | |-----------------|------------------|-------------------------|------------------| | 1.0 | RDG190819007-20A | Original Report | 2019-10-14 | Report No.: RDG190819007-20A SAR Evaluation Report 4 of 37 ## **EUT DESCRIPTION** This report has been prepared on behalf of *Shenzhen EDUP Electronics Technology Co., Ltd.* and their product *802.11AC Dual-Band Wi-Fi USB Adapter*, Model: *EP-AC1619*, FCC ID: *2AHRD-EPAC1619* or the EUT (Equipment under Test) as referred to in the rest of this report. Report No.: RDG190819007-20A **Notes:** Model EP-AC1619 and WT-AC9015 are identical, EP-AC1619 was selected for fully testing, the detailed information about the difference among WT-AC9015 and model EP-AC1619 can be referred to the declaration letter which was stated and guaranteed by the manufacturer. .*All measurement and test data in this report was gathered from production sample serial number: 19081900720 (Assigned by BACL).The EUT supplied by the applicant was received on 2019-08-20. ## **Technical Specification** | Device Type: | Portable | |------------------------|--| | Exposure Category: | Population / Uncontrolled | | Antenna Type(s): | Internal Antenna | | Body-Worn Accessories: | None | | Operation Mode : | WLAN | | Frequency Band: | WLAN 2.4G:2412-2462 MHz/2422-2452 MHz
WLAN 5.8G:5725-5850 MHz | | Conducted RF Power: | WLAN 2.4G: 15.03 dBm
WLAN 5.8G: 12.43 dBm | | Power Source: | 5 VDC From USB Port | | Normal Operation: | Close to Body | SAR Evaluation Report 5 of 37 #### REFERENCE, STANDARDS, AND GUIDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No.: RDG190819007-20A This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. SAR Evaluation Report 6 of 37 ## **SAR Limits** #### **FCC Limit** Report No.: RDG190819007-20A | | SAR (W/kg) | | | |--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | #### **CE Limit** | | SAR (W/kg) | | | |--|-----------------------|---------------------|--| | | (General Population / | (Occupational / | | | EXPOSURE LIMITS | Uncontrolled Exposure | Controlled Exposure | | | | Environment) | Environment) | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | Spatial Peak
(averaged over any 10 g of
tissue) | 2.0 | 10 | | | Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 | 20.0 | | Population/Uncontrolled Environments
are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT. SAR Evaluation Report 7 of 37 ## **FACILITIES** The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China. Report No.: RDG190819007-20A The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022. The test sites and measurement facilities used to collect data are located at: | ⊠ SAR Lab 1 | SAR Lab 2 | |-------------|-----------| |-------------|-----------| SAR Evaluation Report 8 of 37 # **DESCRIPTION OF TEST SYSTEM** These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter: # **DASY5 System Description** The DASY5 system for performing compliance tests consists of the following items: SAR Evaluation Report 9 of 37 - A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running Win7 professional operating system and the DASY52 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### **DASY5 Measurement Server** The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical Report No.: RDG190819007-20A processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. SAR Evaluation Report 10 of 37 # **EX3DV4 E-Field Probes** | Frequency | 10 MHz to > 6 GHz
Linearity: ± 0.2 dB (30 MHz to 6 GHz) | |------------------|---| | Directivity | ± 0.3 dB in TSL (rotation around probe axis)
± 0.5 dB in TSL (rotation normal to probe axis) | | Dynamic
Range | 10 μW/g to > 100 mW/g Linearity: \pm 0.2 dB (noise: typically < 1 μW/g) | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | Report No.: RDG190819007-20A # Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7329 Calibrated: 2018/9/30 | Calibration Frequency | Frequency
Range(MHz) | | Conversion Factor | | | |-----------------------|-------------------------|------|-------------------|-------|-------| | Point(MHz) | From | To | X | Y | Z | | 750 Head | 650 | 850 | 10.01 | 10.01 | 10.01 | | 750 Body | 650 | 850 | 10.23 | 10.23 | 10.23 | | 900 Head | 850 | 1000 | 9.66 | 9.66 | 9.66 | | 900 Body | 850 | 1000 | 9.79 | 9.79 | 9.79 | | 1750 Head | 1650 | 1850 | 8.35 | 8.35 | 8.35 | | 1750 Body | 1650 | 1850 | 8.05 | 8.05 | 8.05 | | 1900 Head | 1850 | 2000 | 8.1 | 8.1 | 8.1 | | 1900 Body | 1850 | 2000 | 7.7 | 7.7 | 7.7 | | 2450 Head | 2350 | 2550 | 7.62 | 7.62 | 7.62 | | 2450 Body | 2350 | 2550 | 7.47 | 7.47 | 7.47 | | 2600 Head | 2550 | 2700 | 7.38 | 7.38 | 7.38 | | 2600 Body | 2550 | 2700 | 7.12 | 7.12 | 7.12 | | 5200 Head | 5090 | 5250 | 5.52 | 5.52 | 5.52 | | 5200 Body | 5090 | 5250 | 4.92 | 4.92 | 4.92 | | 5300 Head | 5250 | 5410 | 5.28 | 5.28 | 5.28 | | 5300 Body | 5250 | 5410 | 4.79 | 4.79 | 4.79 | | 5600 Head | 5490 | 5700 | 4.71 | 4.71 | 4.71 | | 5600 Body | 5490 | 5700 | 4.14 | 4.14 | 4.14 | | 5800 Head | 5700 | 5900 | 4.68 | 4.68 | 4.68 | | 5800 Body | 5700 | 5900 | 4.37 | 4.37 | 4.37 | SAR Evaluation Report 11 of 37 # Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7441 Calibrated: 2018/12/13 | Calibration Frequency | Frequency Range(MHz) | | Conversion Factor | | | |-----------------------|----------------------|------|-------------------|-------|-------| | Point(MHz) | From | To | X | Y | Z | | 750 Head | 650 | 850 | 10.05 | 10.05 | 10.05 | | 750 Body | 650 | 850 | 10.19 | 10.19 | 10.19 | | 900 Head | 850 | 1000 | 9.69 | 9.69 | 9.69 | | 900 Body | 850 | 1000 | 9.73 | 9.73 | 9.73 | | 1750 Head | 1650 | 1850 | 8.31 | 8.31 | 8.31 | | 1750 Body | 1650 | 1850 | 8.01 | 8.01 | 8.01 | | 1900 Head | 1850 | 2000 | 7.97 | 7.97 | 7.97 | | 1900 Body | 1850 | 2000 | 7.7 | 7.7 | 7.7 | | 2300 Head | 2200 | 2400 | 7.8 | 7.8 | 7.8 | | 2300 Body | 2200 | 2400 | 7.72 | 7.72 | 7.72 | | 2450 Head | 2400 | 2550 | 7.49 | 7.49 | 7.49 | | 2450 Body | 2400 | 2550 | 7.43 | 7.43 | 7.43 | | 2600 Head | 2550 | 2700 | 7.29 | 7.29 | 7.29 | | 2600 Body | 2550 | 2700 | 7.17 | 7.17 | 7.17 | | 3700 Head | 3600 | 3800 | 6.72 | 6.72 | 6.72 | | 3700 Body | 3600 | 3800 | 6.49 | 6.49 | 6.49 | | 5200 Head | 5090 | 5250 | 5.88 | 5.88 | 5.88 | | 5200 Body | 5090 | 5250 | 5.23 | 5.23 | 5.23 | | 5300 Head | 5250 | 5410 | 5.51 | 5.51 | 5.51 | | 5300 Body | 5250 | 5410 | 4.74 | 4.74 | 4.74 | | 5600 Head | 5490 | 5700 | 5 | 5 | 5 | | 5600 Body | 5490 | 5700 | 4.31 | 4.31 | 4.31 | | 5800 Head | 5700 | 5910 | 5.08 | 5.08 | 5.08 | | 5800 Body | 5700 | 5910 | 4.33 | 4.33 | 4.33 | SAR Evaluation Report 12 of 37 #### **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6 mm). The phantom has three measurement areas: - _ Left hand - Right hand - Flat phantom The phantom table for the DASY systems based on the TX90XL and RX160L robots have the size of 100 x 50 x 85 cm (L x W x H). The phantom table for the compact DASY systems based on the RX60L robot have the size of 100 x 75 x 91 cm (L x W x H); these tables are reinforced for mounting of the robot onto the table. For easy dislocation these tables have fork lift cut outs at the bottom. The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom
cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot. #### Robots The DASY5 system uses the high precision industrial robots TX90XL from Staubli SA (France). The TX robot family is the successor of the well known RX robot family and offers the same features important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchrony motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli. #### Area Scans Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments. Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. #### **Zoom Scan (Cube Scan Averaging)** The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid Report No.: RDG190819007-20A SAR Evaluation Report 13 of 37 density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm. Report No.: RDG190819007-20A When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis. #### Tissue Dielectric Parameters for Head and Body Phantoms The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. ## Recommended Tissue Dielectric Parameters for Head and Body | Frequency | Head ' | Tissue | Body Tissue | | | |-----------|--------|---------|--------------------|---------|--| | (MHz) | εr | O'(S/m) | εr | O (S/m) | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | SAR Evaluation Report 14 of 37 # **EQUIPMENT LIST AND CALIBRATION** **Equipments List & Calibration Information(SAR Lab 2)** | Equipment | Model | S/N | Calibration
Date | Calibration
Due Date | |--------------------------------|---------------|---------------|---------------------|-------------------------| | DASY5 Test Software | DASY52.10 | N/A | NCR | NCR | | DASY5 Measurement Server | DASY5 4.5.12 | 1567 | NCR | NCR | | Data Acquisition Electronics | DAE4 | 772 | 2018/9/28 | 2019/9/28 | | E-Field Probe | EX3DV4 | 7329 | 2018/9/30 | 2019/9/29 | | Mounting Device | MD4HHTV5 | BJPCTC0152 | NCR | NCR | | Twin SAM | Twin SAM V5.0 | 1412 | NCR | NCR | | Dipole, 2450 MHz | D2450V2 | 971 | 2018/6/26 | 2021/6/25 | | Simulated Tissue 2450 MHz Body | TS-2450-B | 1709245002 | Each Time | / | | Network Analyzer | 8753C | 3033A02857 | 2019/8/3 | 2020/8/3 | | Dielectric assessment kit | 1253 | SM DAK 040 CA | NCR | NCR | | Signal Generator | E8247C | MY43321350 | 2018/12/10 | 2019/12/10 | | EPM Series Power Meter | E4419B | MY45103907 | 2019/5/9 | 2020/5/9 | | Power Amplifier | ZVA-183-S+ | 5969001149 | NCR | NCR | | Directional Coupler | 441493 | 520Z | NCR | NCR | | Attenuator | 20dB, 100W | LN749 | NCR | NCR | | Attenuator | 6dB, 150W | 2754 | NCR | NCR | Report No.: RDG190819007-20A **Equipments List & Calibration Information(SAR Lab 1)** | pinents List & Cambration Information(SAR Lab 1) | | | | | | | | |--|---------------|---------------|---------------------|----------------------|--|--|--| | Equipment | Model | S/N | Calibration
Date | Calibration Due Date | | | | | DASY5 Test Software | DASY52.10 | N/A | NCR | NCR | | | | | DASY5 Measurement Server | DASY5 4.5.12 | 1470 | NCR | NCR | | | | | Data Acquisition Electronics | DAE3 | 471 | 2018/12/3 | 2019/12/3 | | | | | E-Field Probe | EX3DV4 | 7441 | 2018/12/13 | 2019/12/12 | | | | | Mounting Device | MD4HHTV5 | SD 000 H01 KA | NCR | NCR | | | | | Twin SAM | Twin SAM V5.0 | 1874 | NCR | NCR | | | | | Dipole, 5G Hz | D5GHzV2 | 1246 | 2016/11/07 | 2019/11/07 | | | | | Simulated Tissue 5800 MHz Body | TS-5800-B | 1701580002 | Each Time | / | | | | | Network Analyzer | 8753C | 3033A02857 | 2019/8/3 | 2020/8/3 | | | | | Dielectric assessment kit | 1253 | SM DAK 040 CA | NCR | NCR | | | | | Signal Generator | E8247C | MY43321350 | 2018/12/10 | 2019/12/10 | | | | | EPM Series Power Meter | E4419B | MY45103907 | 2019/5/9 | 2020/5/9 | | | | | Power Amplifier | ZVA-183-S+ | 5969001149 | NCR | NCR | | | | | Directional Coupler | 441493 | 520Z | NCR | NCR | | | | | Attenuator | 20dB, 100W | LN749 | NCR | NCR | | | | | Attenuator | 6dB, 150W | 2754 | NCR | NCR | | | | SAR Evaluation Report 15 of 37 # SAR MEASUREMENT SYSTEM VERIFICATION # **Liquid Verification** Report No.: RDG190819007-20A Liquid Verification Setup Block Diagram # **Liquid Verification Results** | Frequency | Liquid Type | Liquid , | | Target Value | | Delta
(%) | | Tolerance | |-----------|--------------------------------|----------------|-------|----------------|-------|--------------------------|-------|-----------| | (MHz) | Liquid Type | ε _r | O | ε _r | Q | $\Delta \epsilon_{ m r}$ | ΔO | (%) | | | | or | (S/m) | or | (S/m) | ΔOr | (S/m) | | | 2412 | Simulated Tissue 2450 MHz Body | 54.656 | 1.905 | 52.75 | 1.91 | 3.61 | -0.26 | ±5 | | 2437 | Simulated Tissue 2450 MHz Body | 54.355 | 1.959 | 52.72 | 1.94 | 3.1 | 0.98 | ±5 | | 2450 | Simulated Tissue 2450 MHz Body | 54.167 | 1.973 | 52.7 | 1.95 | 2.78 | 1.18 | ±5 | | 2462 | Simulated Tissue 2450 MHz Body | 53.392 | 1.992 | 52.68 | 1.97 | 1.35 | 1.12 | ±5 | ^{*}Liquid Verification above was performed on 2019/08/22. | Frequency | Frequency Liquid Type | | Liquid
Parameter | | Target Value | | elta
6) | Tolerance | |-----------|--------------------------------|----------------|---------------------|----------------|--------------|---------------------------|------------|-----------| | (MHz) | Liquid Type | £ _r | Q | ε _r | Q | $\Delta arepsilon_{ m r}$ | ΔΟ | (%) | | | | | (S/m) | (S/m) | | ΔCr | (S/m) | | | 5745 | Simulated Tissue 5800 MHz Body | 48.011 | 5.929 | 48.27 | 5.94 | -0.54 | -0.19 | ±5 | | 5785 | Simulated Tissue 5800 MHz Body | 47.882 | 5.936 | 48.22 | 5.98 | -0.7 | -0.74 | ±5 | | 5800 | Simulated Tissue 5800 MHz Body | 47.544 | 5.886 | 48.2 | 6 | -1.36 | -1.9 | ±5 | | 5825 | Simulated Tissue 5800 MHz Body | 47.245 | 5.949 | 48.17 | 6.03 | -1.92 | -1.34 | ±5 | ^{*}Liquid Verification above was performed on 2019/10/12. SAR Evaluation Report 16 of 37 ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. Report No.: RDG190819007-20A The spacing distances in the System Verification Setup Block Diagram is given by the following: - a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$ - b) $s = 10 \text{ mm} \pm 0.2 \text{ mm for } 1000 \text{ MHz} < f \le 3000 \text{ MHz};$ - c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz $< f \le 6$ 000 MHz. ## **System Verification Setup Block Diagram** #### **System Accuracy Check Results** | Date | Frequency
Band | Liquid Type | Input
Power
(mW) | S | nsured
AR
V/kg) | Normalized
to 1W
(W/kg) | Target
Value
(W/kg) | Delta
(%) | Tolerance (%) | |------------|-------------------|-------------|------------------------|----|-----------------------|-------------------------------|---------------------------|--------------|---------------| | 2019/08/22 | 2450 MHz | Body | 100 | 1g | 5.22 | 52.2 | 49.5 | 5.45 | ±10 | | 2019/10/12 | 5800 MHz | Body | 100 | 1g | 7.71 | 7.71 | 75.4 | 2.25 | ±10 | ^{*}The SAR
values above are normalized to 1 Watt forward power. SAR Evaluation Report 17 of 37 ## SAR SYSTEM VALIDATION DATA #### System Performance 2450MHz Body on 2019/08/22 DUT: D2450V2; Type: 2450 MHz; Serial: 971 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.973$ S/m; $\varepsilon_r = 54.167$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: EX3DV4 - SN7329; ConvF(7.47, 7.47, 7.47) @ 2450 MHz; Calibrated: 2018/9/30 Report No.: RDG190819007-20A • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn772; Calibrated: 2018/9/28 Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412 • Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) Area Scan (51x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 9.82 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.82 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 8.83 W/kg 0 dB = 8.83 W/kg = 9.46 dBW/kg SAR Evaluation Report 18 of 37 #### System Performance 5800 MHz Body on 2019/10/12 #### DUT: Dipole D5GHzV2; Type: 5800 MHz; Serial: 1246 Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; $\sigma = 5.886 \text{ S/m}$; $\varepsilon_r = 47.544$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 - SN7441; ConvF(4.33, 4.33, 4.33) @ 5800 MHz; Calibrated: 2018/12/13 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE3 Sn471; Calibrated: 2018/12/3 Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874 Report No.: RDG190819007-20A Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) Area Scan (31x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.5 W/kg Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 41.98 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.88 dBW/kg SAR Evaluation Report 19 of 37 #### **EUT TEST STRATEGY AND METHODOLOGY** ## Test Positions for Device Operating Next to a Person's Ear This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth. A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR: Report No.: RDG190819007-20A SAR Evaluation Report 20 of 37 #### **Cheek/Touch Position** The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established: When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom. Report No.: RDG190819007-20A (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom. For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer. #### **Cheek / Touch Position** #### **Ear/Tilt Position** With the handset aligned in the "Cheek/Touch Position": - 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. - 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability. If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional. SAR Evaluation Report 21 of 37 #### Ear /Tilt 15° Position Report No.: RDG190819007-20A #### Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices #### **Test Distance for SAR Evaluation** In this case the EUT(Equipment Under Test) is set 5mm away from the phantom, the test distance is 5mm. SAR Evaluation Report 22 of 37 #### **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No.: RDG190819007-20A - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from
the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. SAR Evaluation Report 23 of 37 # CONDUCTED OUTPUT POWER MEASUREMENT # **Provision Applicable** The measured peak output power should be greater and within 5% than EMI measurement. ## **Test Procedure** The RF output of the transmitter was connected to the input of the Power Meter through Connector. # **Maximum Target Output Power** | Max Target Power(dBm) | | | | | | |-------------------------|---------|--------|------|--|--| | M. J./D. J | Channel | | | | | | Mode/Band | Low | Middle | High | | | | WLAN 2.4G(802.11b) | 15.5 | 15.5 | 15.5 | | | | WLAN 2.4G(802.11g) | 15.5 | 15.5 | 15.5 | | | | WLAN 2.4G(802.11n ht20) | 14 | 14 | 14 | | | | WLAN 2.4G(802.11n ht40) | 13 | 13 | 13 | | | | WLAN 5.8G(802.11a) | 12.5 | 12.5 | 12.5 | | | | WLAN 5.8G(802.11n ht20) | 12.3 | 12.3 | 12.3 | | | | WLAN 5.8G(802.11n ht40) | 12 | / | 12 | | | | WLAN 5.8G(802.11 ac80) | / | 10 | / | | | ### **Test Results:** #### **WLAN 2.4G:** | Mode | Channel
frequency | Data Rate | Conducted Average Output Power(dBm) | |-----------------|----------------------|-----------|-------------------------------------| | | 2412 | | 14.66 | | 802.11b | 2437 | 1Mbps | 14.95 | | | 2462 | | 15.03 | | | 2412 | | 14.86 | | 802.11g | 2437 | 6Mbps | 14.96 | | | 2462 | | 14.92 | | 002.11 | 2412 | | 13.82 | | 802.11n
HT20 | 2437 | MCS0 | 13.93 | | 11120 | 2462 | | 13.73 | | 000.11 | 2422 | | 12.49 | | 802.11n
HT40 | 2442 | MCS0 | 12.77 | | 11140 | 2452 | | 12.63 | SAR Evaluation Report 24 of 37 # **WLAN 5.8G:** | Mode | Channel
frequency | Data Rate | Conducted Average Output Power(dBm) | |-----------------|----------------------|-----------|-------------------------------------| | | 5745 | | 12.25 | | 802.11a | 5785 | 6Mbps | 12.33 | | | 5825 | | 12.43 | | 002.11 | 5745 | | 12.03 | | 802.11n
HT20 | 5785 | MCS8 | 12.14 | | 11120 | 5825 | | 12.20 | | 802.11n | 5755 | MCS8 | 11.71 | | HT40 | 5795 | MCS8 | 11.91 | | 802.11ac80 | 5775 | MCS8 | 9.42 | SAR Evaluation Report 25 of 37 # Standalone SAR test exclusion considerations #### **Antennas Location:** Report No.: RDG190819007-20A # Antenna Distance To Edge | Antenna Distance To Edge(mm) | | | | | | | |------------------------------|------|------|-------|-------|-----|--| | Mode | Back | Left | Right | Front | Тор | | | WLAN Antenna | < 5 | < 5 | < 5 | < 5 | < 5 | | ## SAR test exclusion for the EUT edge considerations Result | Antenna Distance To Edge(mm) | | | | | | | |------------------------------|----------|----------|----------|----------|----------|--| | Mode | Back | Left | Right | Front | Тор | | | WLAN Antenna | Required | Required | Required | Required | Required | | Note: **Required:** The distance to Edge is less than 5mm, testing is required. SAR Evaluation Report 26 of 37 # SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. Report No.: RDG190819007-20A ## **SAR Test Data** ## **Environmental Conditions** ## SAR Lab 2 | Temperature: | 23.1-24 ℃ | |--------------------|------------| | Relative Humidity: | 44 % | | ATM Pressure: | 100.5 kPa | | Test Date: | 2019/08/22 | Testing was performed by Gaochao Gong, Sam Liang, William Ye. ## SAR Lab 1 | Temperature: | 22.1-22.9 ℃ | |--------------------|-------------| | Relative Humidity: | 43 % | | ATM Pressure: | 101.2 kPa | | Test Date: | 2019/10/12 | Testing was performed by Harvey Lei. SAR Evaluation Report 27 of 37 | DITE | E | Tost | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | | | | |------------------------|--------------------|--------------|---------------|---------------|------------------|--------------|---------------|------------------|------|--|--| | EUT
Position | Frequency
(MHz) | Test
Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | | 2412 | 802.11b | / | / | / | / | / | / | / | | | | Vertical-Front (5mm) | 2437 | 802.11b | 14.95 | 15.5 | 1.135 | 0.077 | 0.087 | 0.09 | 1# | | | | (0.11111) | 2462 | 802.11b | / | / | / | / | / | / | / | | | | Horizontal-Up
(5mm) | 2412 | 802.11b | 14.66 | 15.5 | 1.213 | 0.381 | 0.462 | 0.47 | 2# | | | | | 2437 | 802.11b | 14.95 | 15.5 | 1.135 | 0.274 | 0.311 | 0.31 | 3# | | | | (311111) | 2462 | 802.11b | 15.03 | 15.5 | 1.114 | 0.257 | 0.286 | 0.29 | 4# | | | | D 1 T | 2412 | 802.11b | / | / | / | / | / | / | / | | | | Body Top (5mm) | 2437 | 802.11b | 14.95 | 15.5 | 1.135 | 0.033 | 0.037 | 0.04 | 5# | | | | (311111) | 2462 | 802.11b | / | / | / | / | / | / | / | | | | Horizontal-Down | 2412 | 802.11b | / | / | / | / | / | / | / | | | | (5mm)
Adding USB | 2437 | 802.11b | 14.95 | 15.5 | 1.135 | 0.155 | 0.176 | 0.18 | 6# | | | | extension cable | 2462 | 802.11b | / | / | / | / | / | / | / | | | | Vertical-Back | 2412 | 802.11b | / | / | / | / | / | / | / | | | | (5mm)
Adding USB | 2437 | 802.11b | 14.95 | 15.5 | 1.135 | 0.117 | 0.133 | 0.13 | 7# | | | Test on 2019/08/22 Report No.: RDG190819007-20A #### Note: extension cable 1. When the 1-g SAR is $\!\!\leq\!0.8W/\!kg$, testing for other channels are optional. 802.11b - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. - 5. The length of the USB extension cable is 20 cm. 2462 SAR Evaluation Report 28 of 37 | EUT | Engago | Test | Max.
Meas. | Max.
Rated | 1g SAR (W/kg) | | | | | | | |----------------------------------|--------------------|---------|---------------|---------------|------------------|--------------|---------------|------------------|------|--|--| | Position | Frequency
(MHz) | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled
SAR | Corrected
SAR | Plot | | | | | 5745 | 802.11a | / | / | / | / | / | / | / | | | | Vertical-Front (5mm) | 5785 | 802.11a | 12.33 | 12.5 | 1.04 | 0.261 | 0.271 | 0.27 | 8# | | | | (611111) | 5825 | 802.11a | / | / | / | / | / | / | / | | | | II : | 5745 | 802.11a | 12.25 | 12.5 | 1.059 | 1.06 | 1.123 | 1.12 | 9# | | | | Horizontal-Up
(5mm) | 5785 | 802.11a | 12.33 | 12.5 | 1.04 | 0.881 | 0.916 | 0.92 | 10# | | | | (311111) | 5825 | 802.11a | 12.43 | 12.5 | 1.016 | 1.07 | 1.087 | 1.09 | 11# | | | | D 1 T | 5745 | 802.11a | / | / | / | / | / | / | / | | | | Body Top (5mm) | 5785 | 802.11a | 12.33 | 12.5 | 1.04 | 0.286 | 0.297 | 0.30 | 12# | | | | (611111) | 5825 | 802.11a | / | / | / | / | / | / | / | | | | Horizontal-Down | 5745 | 802.11a | / | / | / | / | / | / | / | | | | (5mm)
Adding USB | 5785 | 802.11a | 12.33 | 12.5 | 1.04 | 0.681 | 0.708 | 0.71 | 13# | | | | extension cable | 5825 | 802.11a | / | / | / | / | / | / | / | | | | Vertical-Back | 5745 | 802.11a | / | / | / | / | / | / | / | | | | (5mm) Adding USB extension cable | 5785 | 802.11a | 12.33 | 12.5 | 1.04 | 0.345 | 0.359 | 0.36 | 14# | | | | | 5825 | 802.11a | / | / | / | / | / | / | / | | | Test on 2019/10/12 Report No.: RDG190819007-20A ### Note: - 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional. - 2. The EUT transmit and receive through the same antenna while testing SAR. - 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. - 4. According to IEC 62209-2:2010 ,If the correction Δ SAR has a positive sign, the measured SAR results shall not be corrected. - 5. The length of the USB extension cable is 20 cm. SAR Evaluation Report 29 of 37 #### Corrected SAR Evaluation 62209-2 © IEC:2010 - 89 - # Annex F (normative) #### SAR correction for deviations of complex permittivity from targets #### F.2 SAR correction formula From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent
change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \epsilon_{r}$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by: $$\Delta SAR = c_{\epsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \qquad (F.1)$$ Report No.: RDG190819007-20A where $c_{\epsilon} = \partial(\Delta SAR)/\partial(\Delta \epsilon)$ is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power; $c_{\sigma} = \partial(\Delta SAR)/\partial(\Delta\sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power. The values of $c_{\rm s}$ and $c_{\rm g}$ have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR $c_{\rm s}$ and $c_{\rm g}$ are given by $$c_e = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$$ (F.2) $$c_{\sigma} = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.782 9$$ (F.3) where f is the frequency in GHz. For the 10 g averaged SAR, the variables c_{ϵ} and c_{σ} are given by: $$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,186 0$$ (F.4) $$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 \ 2f + 0,771 \ 7$$ (F.5) SAR Evaluation Report 30 of 37 #### **Corrected SAR Evaluation Table** | Frequency (MHz) | Liquid
Type | Cε | Δεr | Сδ | Δδ | △SAR
(%) | |-----------------|----------------|--------|-------|--------|-------|-------------| | 2412 | 1g Body | -0.225 | 3.61 | 0.489 | -0.26 | -0.94 | | 2437 | 1g Body | -0.225 | 3.1 | 0.483 | 0.98 | -0.22 | | 2450 | 1g Body | -0.225 | 2.78 | 0.480 | 1.18 | -0.06 | | 2462 | 1g Body | -0.225 | 1.35 | 0.478 | 1.12 | 0.23 | | 5745 | 1g Body | -0.199 | -0.54 | -0.045 | -0.19 | 0.12 | | 5785 | 1g Body | -0.199 | -0.7 | -0.045 | -0.74 | 0.17 | | 5800 | 1g Body | -0.199 | -1.36 | -0.045 | -1.9 | 0.36 | | 5825 | 1g Body | -0.199 | -1.92 | -0.044 | -1.34 | 0.44 | $$\Delta$$ SAR = $c_{\varepsilon} \Delta \varepsilon_{\mathsf{r}} + c_{\sigma} \Delta \sigma$ $$c_{\epsilon} = -7,854 \times 10^{-4} \, f^3 + 9,402 \times 10^{-3} \, f^2 - 2,742 \times 10^{-2} \, f - 0,202 \, 6 \tag{F.2}$$ $$c_{\sigma} = 9,804 \times 10^{-3} f^3 - 8,661 \times 10^{-2} f^2 + 2,981 \times 10^{-2} f + 0,7829$$ (F.3) ## where # f is the frequency in GHz. Corrected SAR = Measured SAR * $((100 + (\Delta SAR x - 1))/100)$ SAR Evaluation Report 31 of 37 # **SAR Measurement Variability** In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results Report No.: RDG190819007-20A - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. - When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. #### The Highest Measured SAR Configuration in Each Frequency Band #### **Body** | SAR probe calibration point | Frequency | Enac (MII-) | ELIT Dogition | Meas. SA | Largest to | | |-----------------------------|-----------|-------------|---------------|----------|------------|-----------------------| | | Band | Freq.(MHz) | EUT Position | Original | Repeated | Smallest
SAR Ratio | | 5800MHz
(5700~5910MHz) | WLAN 5.8G | 5825 | Horizontal-Up | 1.07 | 1.03 | 1.04 | #### Note: - 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. - 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required. - 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.. SAR Evaluation Report 32 of 37 | Bay Area Compliance Laboratories Corp. (Dongguan) | Report No.: RDG190819007-20A | |---|------------------------------| | SAR Scan Plots | | | Please Refer to the Attachment. | SAR Evaluation Report 33 of 37 # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the measurement system and is given in the following Table. Report No.: RDG190819007-20A ## Measurement uncertainty evaluation for IEEE1528-2013 SAR test | Source of uncertainty | Tolerance/
uncertainty
± % | Probability distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | | |--|----------------------------------|--------------------------|----------|-------------|--------------|---------------------------------------|--|--|--|--| | Measurement system | | | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Probe positioner mech.
Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | | Test sample | erelated | | | | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | | Device holder uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | | Phantom an | d set-up | | | | _ | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | | | Liquid conductivity target) | 5.0 | R | √3 | 0.64 | 0.43 | 1.8 | 1.2 | | | | | Liquid conductivity meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | | Liquid permittivity target) | 5.0 | R | √3 | 0.6 | 0.49 | 1.7 | 1.4 | | | | | Liquid permittivity meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.0 | | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.3 | 23.9 | | | | SAR Evaluation Report 34 of 37 | Source of uncertainty | Tolerance/
uncertainty
± % | Probability
distribution | Divisor | ci
(1 g) | ci
(10 g) | Standard
uncertainty
± %, (1 g) | Standard
uncertainty
± %, (10 g) | | | | |--|----------------------------------|-----------------------------|-----------|-------------|--------------|---------------------------------------|--|--|--|--| | Measurement system | | | | | | | | | | | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | | | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | | | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | | | | Modulation Response | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | | | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | RF ambient conditions–reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | | | | Probe positioner mech.
Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | | | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | | | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | | | | Test sample | e related | | | | | | | | | Device holder Uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | | | | Power scaling | 4.5 | R | √3 | 1 | 1 | 2.6 | 2.6 | | | | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | | | | Phantom an | d set-up | | | | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | | | | Algorithm for correcting SAR for
deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.1 | 0.9 | | | | | Liquid conductivity (meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | | | | Liquid permittivity (meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | | | | Temp. unc Conductivity | 1.7 | R | √3 | 0.78 | 0.71 | 0.8 | 0.7 | | | | | Temp. unc Permittivity | 0.3 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | | | | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.1 | | | | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.5 | 24.2 | | | | SAR Evaluation Report 35 of 37 ## Report No.: RDG190819007-20A SAR Evaluation Report 36 of 37 # **APPENDIX C CALIBRATION CERTIFICATES** Please Refer to the Attachment. ***** END OF REPORT ***** Report No.: RDG190819007-20A SAR Evaluation Report 37 of 37