

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC159118

1 of 77 Page:

FCC Radio Test Report FCC ID: 2APD7-SA-P202

Original Grant

Report No. TB-FCC159118

Shenzhen Golden Vision Technology Development Co,.Ltd **Applicant**

Equipment Under Test (EUT)

EUT Name Wi-Fi Smart Plug

Model No. SA-P202

SA-P302, SA-P402, SA-P502, SA-P602, SA-P702, SA-P802, Series Model No.

SA-P902

Brand Name N/A

2018-03-27 **Receipt Date**

2018-03-28 to 2018-04-11 **Test Date**

Issue Date 2018-04-12

Standards FCC Part 15, Subpart C (15.247: 2017)

Test Method ANSI C63.10: 2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved&

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 77

Contents

COL	N1EN15	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	12
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21

Page: 3 of 77

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	28
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	48
	ACHMENT D BANDWIDTH TEST DATA	
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	69
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 77

Revision History

Report No.	Version	Description	Issued Date
TB-FCC151918	Rev.01	Initial issue of report	2018-04-11
TUDE:			The Paris
			1000
a filling	63 V		33
			TO THE REAL PROPERTY.
CILL			3
	1000		
MODE			TO THE REAL PROPERTY.
000	TOP		MILES TO
a Company			TO THE
33	July 3		03.5

Page: 5 of 77

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen Golden Vision Technology Development Co,.Ltd

Address : Bao lai industrial Park, Xinhe Rd No.66, Shang mu gu Village, Pinghu,

Longgang District, Shenzhen, China

Manufacturer : Shenzhen Golden Vision Technology Development Co,.Ltd

Address : Bao lai industrial Park, Xinhe Rd No.66, Shang mu gu Village, Pinghu,

Longgang District, Shenzhen, China

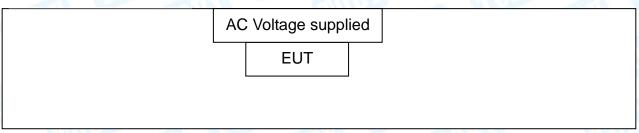
1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	Wi-Fi Smart Plug		
Models No.			A-P402, SA-P502, SA-P602, SA-P702,	
Model Difference	:	All these models are identical in the same PCB layout and electrical circuit, the only difference is model name for commercial.		
	d.	Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz	
	7	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)	
	RF Output Pov	RF Output Power:	802.11b: 17.65dBm 802.11g: 16.44dBm 802.11n (HT20): 14.84dBm	
Product		Antenna Gain:	1dBi PCB Antenna	
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)	
		Bit Rate of	802.11b:11/5.5/2/1 Mbps	
A LIVE		Transmitter:	802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps	
Power Supply		AC Voltage supplied		
Power Rating	:			
Connecting I/O Port(S)				

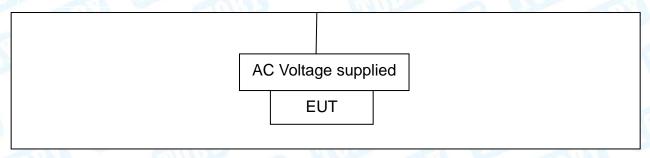
Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 77


(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		
Note: CH 01~CH 11	for 802.11b/g/n(HT2	20)			


(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Normal Working Mode

TX Mode

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Page: 7 of 77

For Conducted Test				
Final Test Mode	Final Test Mode Description			
Mode 1	Normal Working with TX B Mode			

For Radiated Test				
Final Test Mode Description				
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 77

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	SecureCRT.exe		
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Padiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy:	
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 77

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 77

2. Test Summary

	FCC Part	t 15 Subpart C(15.247)/ RSS 247	Issue 1		
Standard Section		Test Item	ludament P		
FCC	IC	rest item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 77

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	Laplace instrument	RF300	0701	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
DE Dower Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

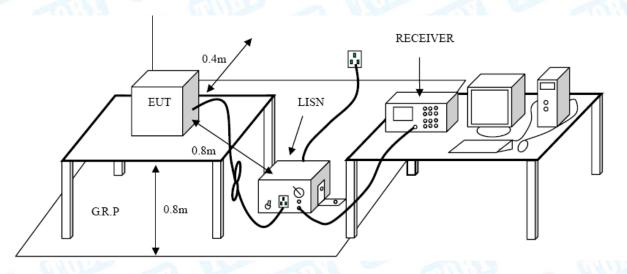
Page: 12 of 77

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Eroguanav	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 77

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 77

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

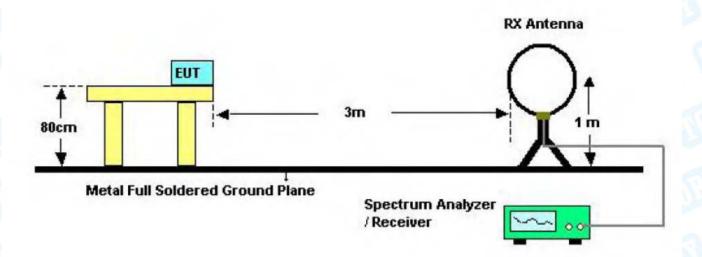
5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

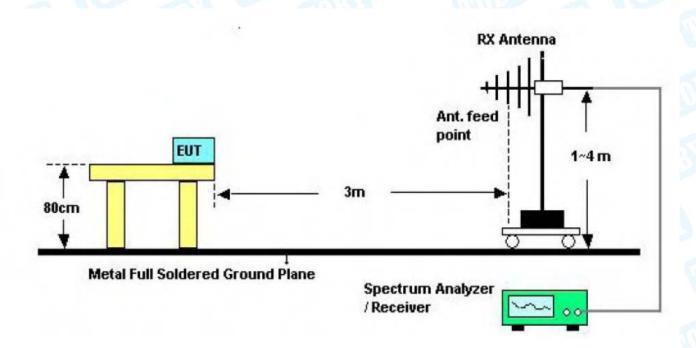
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

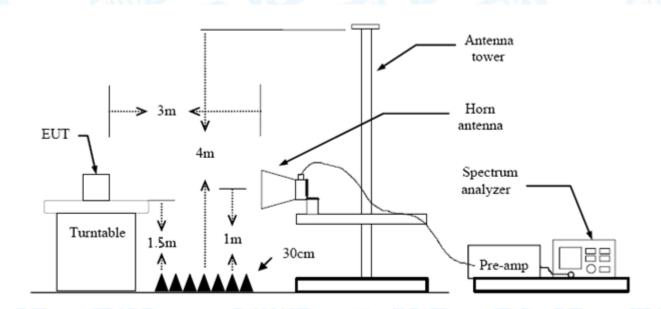

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 15 of 77

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 77

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 77

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

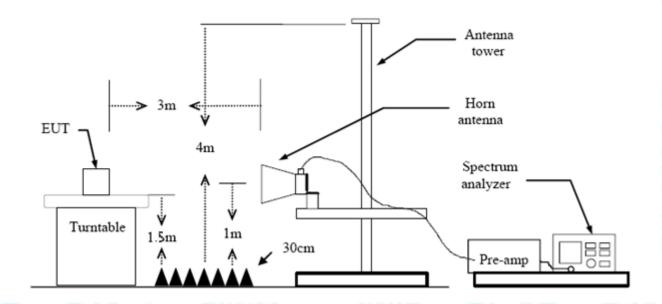
Page: 18 of 77

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)


FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 77

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

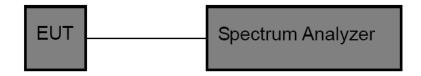
The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 77

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210								
Test Item	Test Item Limit Frequency Range(MHz)							
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5						

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

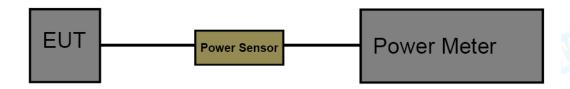
The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 77

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210							
Test Item	Limit	Frequency Range(MHz)					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5					

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 77

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)							
Test Item	Limit	Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5					

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 77

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

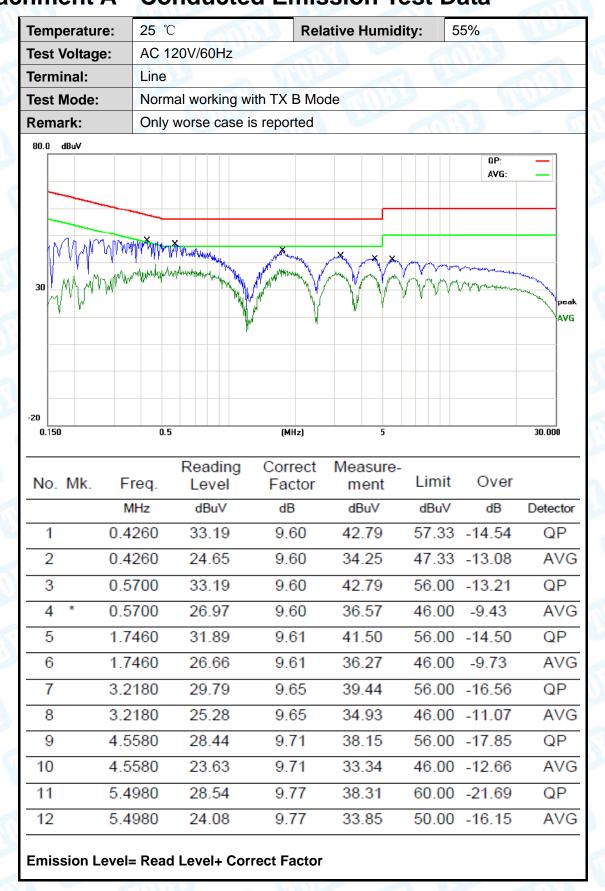
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

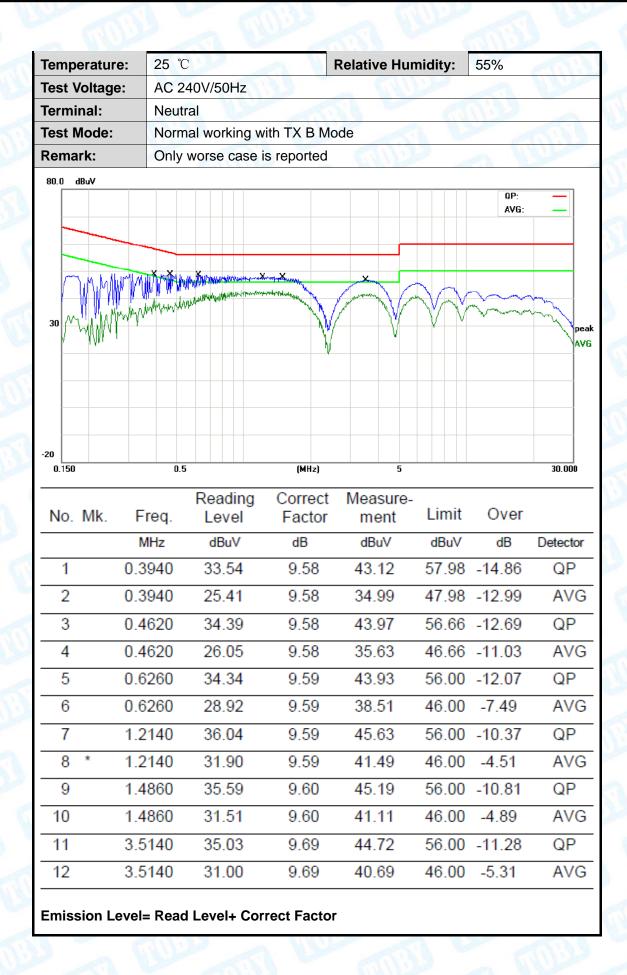

Antenna Type							
Tin a	⊠Permanent attached antenna	EM.					
J Chr.	☐Unique connector antenna						
	Professional installation antenna	MILE					

Page: 24 of 77

TOBY

25 of 77 Page:

Tempera	ture:	25 ℃	08/1	Re	lative Humi	dity:	55%			
Test Volt	age:	AC 12	20V/60Hz	30	a CHI			A Brief		
Terminal	:	Neutral								
Test Mod	de:	Normal working with TX B Mode								
Remark:		Only	worse case i	s reported	MILLO		3 W			
30 dBuV			h. M.			V-V-V	QP: AVG:	per AV		
0.150		0.5	Dandina	(MHz)	5			30.000		
No. M	k. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	N	lHz	dBuV	dB	dBuV	dBuV	dB	Detector		
1	0.2	900	43.99	0.00	43.99	60.52	-16.53	QP		
2	0.2	900	32.66	0.00	32.66	50.52	-17.86	AVG		
3	0.3	260	44.00	0.00	44.00	59.55	-15.55	QP		
4	0.3	260	33.18	0.00	33.18	49.55	-16.37	AVG		
5	0.4	180	43.61	0.00	43.61	57.49	-13.88	QP		
6	0.4	180	35.27	0.00	35.27	47.49	-12.22	AVG		
7	0.4	980	42.33	0.00	42.33	56.03	-13.70	QP		
8		980	35.08	0.00	35.08	46.03	-10.95	AVG		
9		460	41.15	0.00	41.15		-14.85	QP		
10		460	35.20	0.00	35.20		-10.80	AVG		
11		420	41.86	0.00	41.86		-14.14	QP		
12 *	1.7		36.47	0.00	36.47	46.00	-9.53	AVG		
11) *		4.11						A 1/ [·		



26 of 77 Page:

Temperature:	25 ℃		Relative Hur	nidity:	55%			
Test Voltage:	AC 240V/50Hz	N	e all			A British		
Terminal:	Line			Call	11:30			
Test Mode:	Normal working with TX B Mode							
Remark:	Only worse case is reported							
30 dBuV -20 0.150	O.5	(MHz)	X X	V.V.	QP: AVG:	peak AVG		
0.130								
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Over			
N	MHz dBuV	dB	dBuV	dBuV	dB	Detector		
1 0.4	540 34.68	9.60	44.28	56.80	-12.52	QP		
2 0.4	540 27.12	9.60	36.72	46.80	-10.08	AVG		
3 0.6	940 34.88	9.61	44.49	56.00	-11.51	QP		
4 0.6	940 29.85	9.61	39.46	46.00	-6.54	AVG		
5 1.4	380 35.71	9.60	45.31	56.00	-10.69	QP		
6 * 1.4	380 31.46	9.60	41.06	46.00	-4.94	AVG		
7 3.6	35.02	9.67	44.69	56.00	-11.31	QP		
8 3.6	220 31.04	9.67	40.71	46.00	-5.29	AVG		
9 5.9	740 33.61	9.80	43.41	60.00	-16.59	QP		
10 5.9	740 29.57	9.80	39.37	50.00	-10.63	AVG		
11 8.5	940 31.40	9.96	41.36	60.00	-18.64	QP		
12 8.5	940 27.31	9.96	37.27	50.00	-12.73	AVG		
Emission Level	= Read Level+ Cor	rect Factor						

Page: 27 of 77

Page: 28 of 77

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

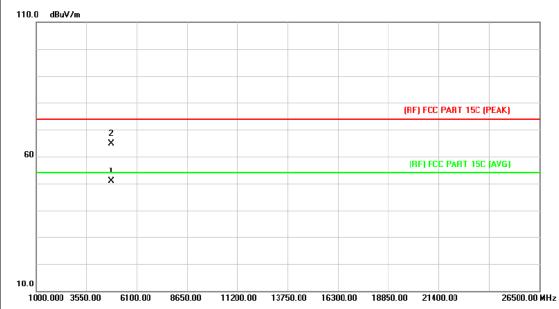
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Гет	peratu	ıre:		5 °C				E-11		Relat	ive Ηι	ımidit	y:	55%		a	
Гest	Volta	ge:	A	AC 120V/60HZ							1		A		7		
Ant.	Pol.		Н	Horizontal													
Гest	Mode):	TX B Mode 2412MHz														
Rem	ark:		Only worse case is reported														
80.0	dBuV/m	ı															_
												(RF)F	CC 150	3M Rad	diation gin 6	dR.	A
						_			2		<u>Б</u> Ж				J		-1
						_		1 %	X 3	4							-
30						-								المام	humalta	اسلسا	nothe
				1			n				DIANT OF TH	L a D		MAN Y THE			
h					-				1	 	Nut rell Al		ALL PARTS	MI			
M	who have been been been been been been been be	Muu			hate	Vanarita	J. Martine Martine State Control	Appendig with	MAN	h NW VI	KMA (**)[_MJ		area la deserv	M1.			
Me	w deflace adjust	and the state of t	برماطي	pensite	Ment d	Maryelan	. It is surred to	April 1944	May	h hiv Vil	KMP (v([]))`)	night of helphylan	47.76 A. A. ⁴⁸⁸				
Me	wholesaddyd why and	mall white year how to	Quertid de	period/**	J _{not} lat	Vergeta	, the subject weeks	Atheren My wife	Mahn	h _r hw^\h	MAR CHILL IN	skell _{sa} finelandale.	grad la distri	M1*			
	whiterships who are	and the distributions	مد الما المعارب	pengk/**	J _{not} la	Vangeton	H. topmoodle	At many high		Market Vilo	Nutrail Ni	akel _{use} bedardele	ggsof La de estro	M1**			
		0 5		prosk/**** 60 7			i i zinavalu	Atherenish refer	MHz)	N _p -No-VIA	300	400	500	600	700	10	00.000
20					0 80)	dina	`		Meas		400	500	600	700	10	00.000
20 30.0		0 5		60 7	0 80 R	ea	ding	Cor	MHz) rect	Meas me	sure-	400 Lim		600 Ov		100	00.000
20 30.0	000 4	0 5	0 6	60 70].	0 80 R	ea Le		Cor	rect		sure- ent		it		er		
20 30.0	000 4	0 5	o e	GO 71	0 80 R I	ea Lev	vel	Cor Fa	rect ctor /m	me	sure- ent V/m	Lim	it //m	Ov	er 3	De	
20 30.0	000 4	0 5	o 6 Fred MHz	60 7 7	0 80 R I	dea Lev	vel uV	Cor Fa	rect ctor /m	me dBu	sure- ent V/m	Lim dBu\	it //m 50	Ov	er 3 .08	De	tecto
20 30.0 No	000 4 O. Mk	0 5 (. 143	o 6 MHz 3.32	61	0 80 R	dB 54	vel uV .49 .87	Cor Fa dB -21	rect ctor /m .07	33.	sure- ent V/m .42	Lim dBu\ 43.	it //m 50	Ov dE -10	er 3 .08	De	etecto QP QP
No. 1 2 3	000 4 O. Mk	0 5 (. 143 159 192	Fred MHz 33.32 9.78	61 44 86	R I	dB 54.59.56	vel uV .49 .87	Cor Fa dB -21 -19	rect ctor /m .07 .81	33. 40. 36.	v/m 42 06	Lim dBu\ 43. 43.	it //m 50 50	Ov dE -10 -3.	er .08 44 22	De	qP QP QP
No. 1 2 3 4	000 4 0. Mk	143 159 192	FrecommHz 3.32 9.78 2.41 9.98	61 44 86	R I	dB 54.59.56.53.	.49 .87 .17	Cor Fa dB -21 -19 -19	rect ctor /m .07 .81 .89	33. 40. 36.	sure- ent V/m 42 06 28	Lim dBu\ 43. 43. 43.	it //m 50 50 50	Ov dE -10 -3. -7.	er .08 44 22	De	QP QP QP QP
No. 1 2 3	000 4 O. Mk	143 159 192 199 239	Fred MHz 33.32 9.78	61 44 86 74	R I	dea Lev 54 56 53	vel uV .49 .87	Cor Fa dB -21 -19	rect ctor /m .07 .81 .89 .45	33. 40. 36.	sure- ent V/m 42 06 28 41	Lim dBu\ 43. 43.	it //m 50 50 50 50 00	Ov dE -10 -3.	er .08 44 22 09 52	De	QP QP

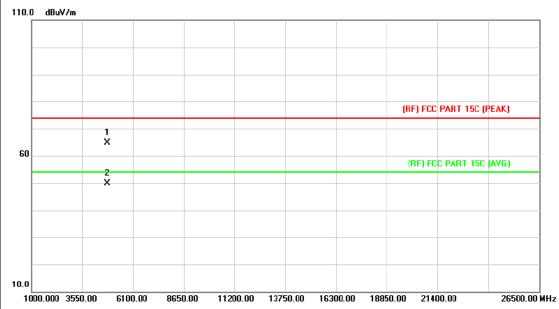
Page: 29 of 77


perat	ure:	25	$^{\circ}$ C		\ F	Relative Hur	nidity:	55%				
Volta	ge:	AC	AC 120V/60HZ									
Pol.		Vertical										
Mode) :	TX	TX B Mode 2412MHz									
nark:		Or	nly wor	se cas	e is reporte	d (
dBuV/n	n											
							(RF)FC					
								Margin -	6 dB			
							E					
				<u>-</u>	* *		X X	б Х	. 1 111111			
			1 *	2 X	3 *		L John M	Jaypalayaya addina	AN BOTH MAN			
March March					r. Kalat	In March Production	() Dharlage Charles and the second					
. June 17	water for public	mandelytan	arahada da	ange I benefisik	and the region of the part of the re-	Mary .						
000 4	io 50	60	70 80		(MHz)	30	0 400	500 600 700	1000.00			
				_	Correct	Measure-						
). Mk	. Fi	req.	Le	evel	Factor	ment	Limit	Over				
	M	lHz	d	BuV	dB/m	dBuV/m	dBuV/n	n dB	Detecto			
	80.0	0806	43	3.66	-22.74	20.92	40.00	-19.08	QP			
	96.0	986	43	3.75	-21.59	22.16	43.50	-21.34	QP			
									QP			
*	159.	7844	50).22	-19.81	30.41	43.50	-13.09	QP			
	319	9370	47	7.08	-15.21	31.87	46.00	-14.13	QP			
								-14.78				
	Pol. Modenark: dBuV/n	Voltage: Pol. Mode: hark: dBuV/m 000 40 50 0. Mk. FI 80.0 96.0 143.	Voltage: AC Pol. Ve Mode: TX nark: Or dBuV/m 000 40 50 60 0. Mk. Freq. MHz 80.0806 96.0986 143.8295	Notage: AC 120V Pol. Vertical Mode: TX B Mo Only wor dBuV/m Rea D. Mk. Freq. Le MHz dl 80.0806 43 96.0986 43	Pol. Vertical Mode: TX B Mode 241 Only worse cas dBuV/m Reading NHz dBuV 80.0806 43.66 96.0986 43.75 143.8295 43.19	**Voltage: AC 120V/60HZ **Pol. Vertical **TX B Mode 2412MHz **Only worse case is reported abov/m **TX B Mode 2412MHz **Only worse case is reported abov/m **TX B Mode 2412MHz **Only worse case is reported abov/m **TX B Mode 2412MHz **TX B Mode 2412MHz	Voltage: AC 120V/60HZ Vertical Vertical Vertical	Voltage: AC 120V/60HZ Vertical	Pol. Vertical Mode: TX B Mode 2412MHz Only worse case is reported REFFCC 15C 3M Badiatic Margin Reading Correct Measure- Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB 80.0806 43.66 -22.74 20.92 40.00 -19.08 96.0986 43.75 -21.59 22.16 43.50 -21.34 143.8295 43.19 -21.03 22.16 43.50 -21.34			

Page: 30 of 77

Above 1GHz

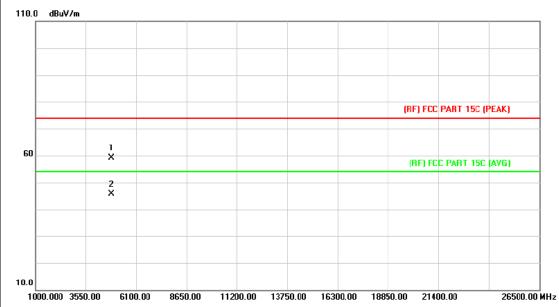
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ	Million	
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission	which more than 10 dE	B below the prescribed
	limit.	7	



N	o. Mk	k. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4824.294	39.70	11.09	50.79	54.00	-3.21	AVG
2		4824.458	53.73	11.09	64.82	74.00	-9.18	peak

Page: 31 of 77

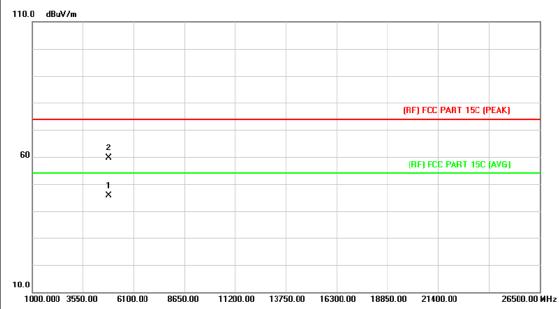
1	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	AC 120V/60HZ					
	Ant. Pol.	Vertical					
	Test Mode:	TX B Mode 2412MHz	NO W				
	Remark:	below the					



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.170	53.79	11.09	64.88	74.00	-9.12	peak
2	*	4824.394	38.74	11.09	49.83	54.00	-4.17	AVG

Page: 32 of 77

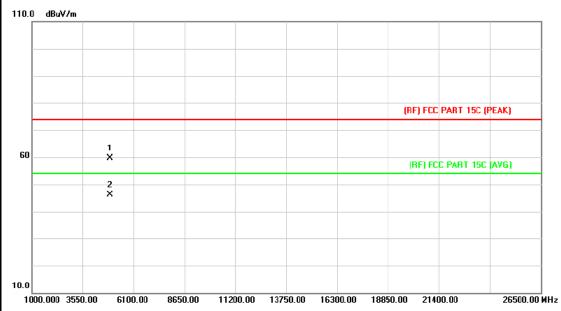
-				
Ten	nperature:	25 ℃	Relative Humidity:	55%
Tes	t Voltage:	AC 120V/60HZ	Million	
Ant	t. Pol.	Horizontal	31 - 6	
Tes	t Mode:	TX B Mode 2437MHz		
Rei	mark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the



No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.546	47.86	11.23	59.09	74.00	-14.91	peak
2	*	4874.900	34.44	11.23	45.67	54.00	-8.33	AVG

Page: 33 of 77

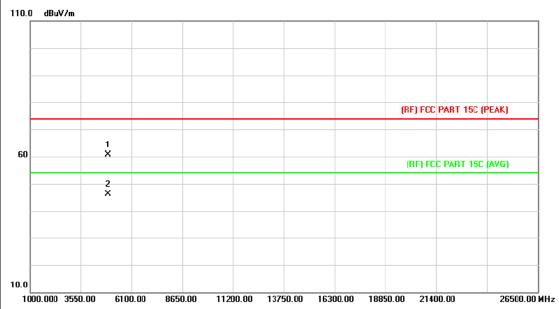
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX B Mode 2437MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.							



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.898	34.52	11.23	45.75	54.00	-8.25	AVG
2		4874.916	48.45	11.23	59.68	74.00	-14.32	peak

Page: 34 of 77

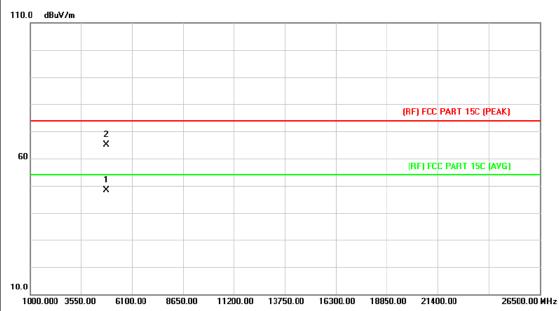
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ		- W				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2462MF	łz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.034	48.33	11.37	59.70	74.00	-14.30	peak
2	*	4924.354	34.77	11.37	46.14	54.00	-7.86	AVG

Page: 35 of 77

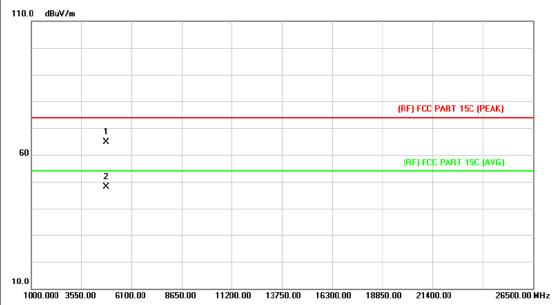
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX B Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
			!			



No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.478	49.24	11.37	60.61	74.00	-13.39	peak
2	*	4924.816	34.76	11.38	46.14	54.00	-7.86	AVG

Page: 36 of 77

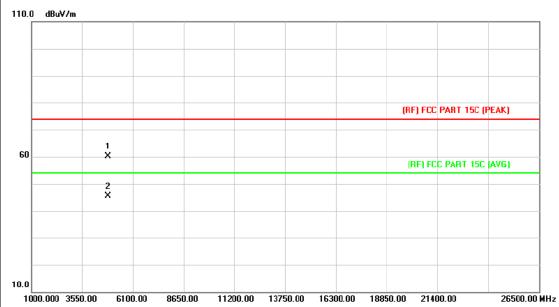
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX G Mode 2412MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.							



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.012	37.20	11.09	48.29	54.00	-5.71	AVG
2		4824.378	54.03	11.09	65.12	74.00	-8.88	peak

Page: 37 of 77

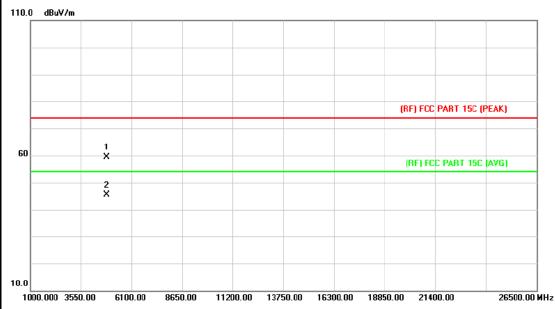
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2412MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.106	53.83	11.09	64.92	74.00	-9.08	peak
2	*	4824.350	37.14	11.09	48.23	54.00	-5.77	AVG

Page: 38 of 77

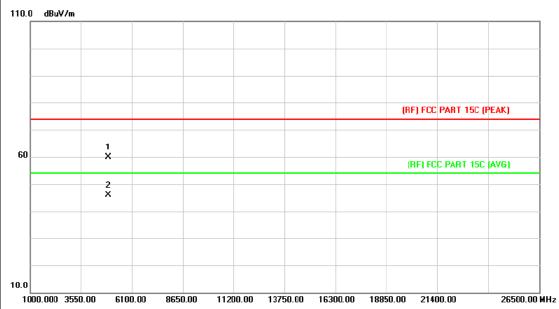
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2437MHz						
Remark:	mark: No report for the emission which more than 10 dB below the prescribed limit.						



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.062	48.88	11.22	60.10	74.00	-13.90	peak
2	*	4874.938	34.18	11.23	45.41	54.00	-8.59	AVG

Page: 39 of 77

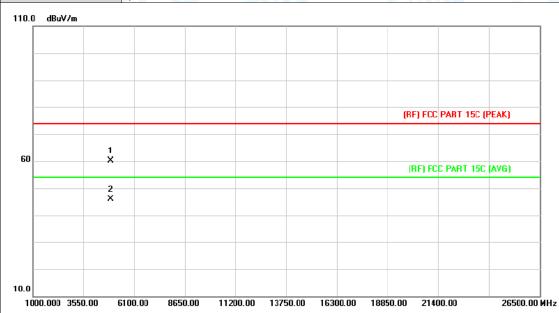
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	IC 120V/60HZ					
Ant. Pol.	Vertical	Vertical Vertical					
Test Mode:	TX G Mode 2437MHz						
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the				



No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.096	48.14	11.22	59.36	74.00	-14.64	peak
2	*	4874.758	34.19	11.23	45.42	54.00	-8.58	AVG

Page: 40 of 77

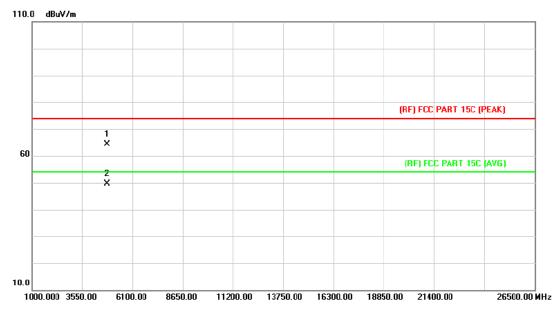
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2462MHz						
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.382	48.63	11.37	60.00	74.00	-14.00	peak
2	*	4924.474	34.44	11.37	45.81	54.00	-8.19	AVG

Page: 41 of 77

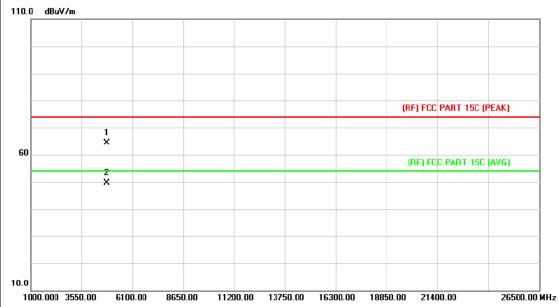
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX G Mode 2462M	Hz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.300	48.68	11.37	60.05	74.00	-13.95	peak
2	*	4924.574	34.44	11.37	45.81	54.00	-8.19	AVG

Page: 42 of 77

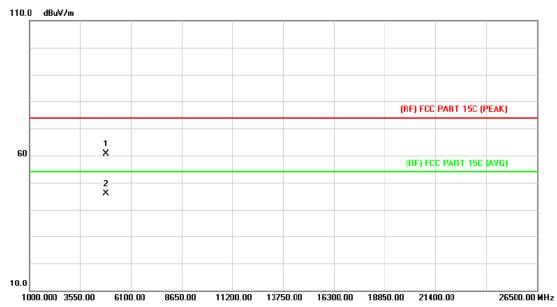
	Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage: AC 120V/60HZ							
	Ant. Pol.	ol. Horizontal					
	Test Mode:	TX N(HT20) Mode 2412MF	-lz				
	Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the			



No	o. Mk	c. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.292	53.27	11.09	64.36	74.00	-9.64	peak
2	*	4824.292	38.45	11.09	49.54	54.00	-4.46	AVG

Page: 43 of 77

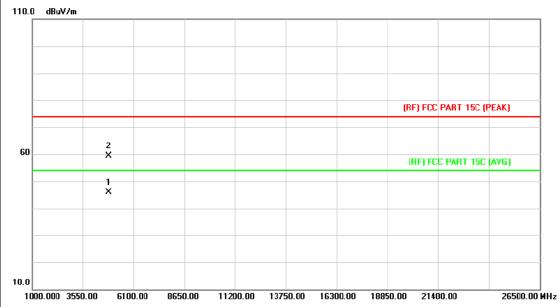
J. Marie
3
w the



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.154	53.39	11.09	64.48	74.00	-9.52	peak
2	*	4824.354	38.45	11.09	49.54	54.00	-4.46	AVG

Page: 44 of 77

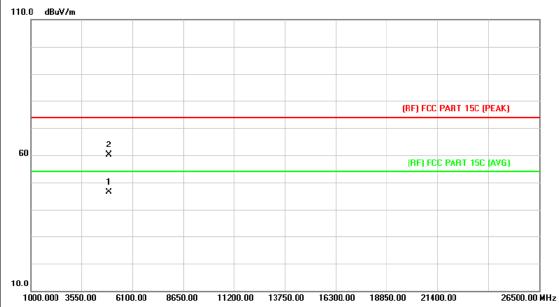
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		- W
Ant. Pol.	Horizontal		
Test Mode:	TX N(HT20) Mode	2437MHz	
Remark:	No report for the e prescribed limit.	mission which more than 10 dE	3 below the



No.	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.502	49.32	11.23	60.55	74.00	-13.45	peak
2	*	4874.878	34.65	11.23	45.88	54.00	-8.12	AVG

Page: 45 of 77

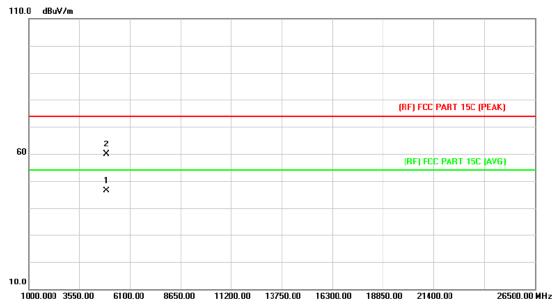
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60HZ						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode	2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
	prescribed limit.		103				



No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4874.476	34.66	11.23	45.89	54.00	-8.11	AVG
2		4874.786	48.12	11.23	59.35	74.00	-14.65	peak

Page: 46 of 77

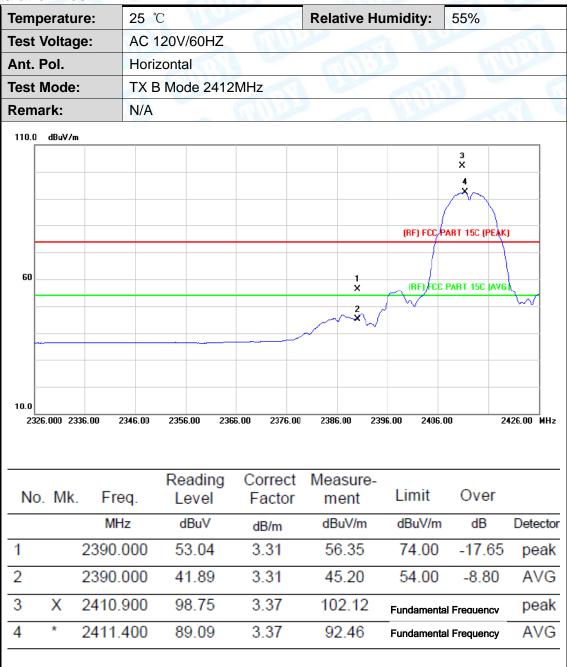
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT20) Mode 2462M	lHz				
Remark: No report for the emission which more than 10 dB below the prescribed limit.						



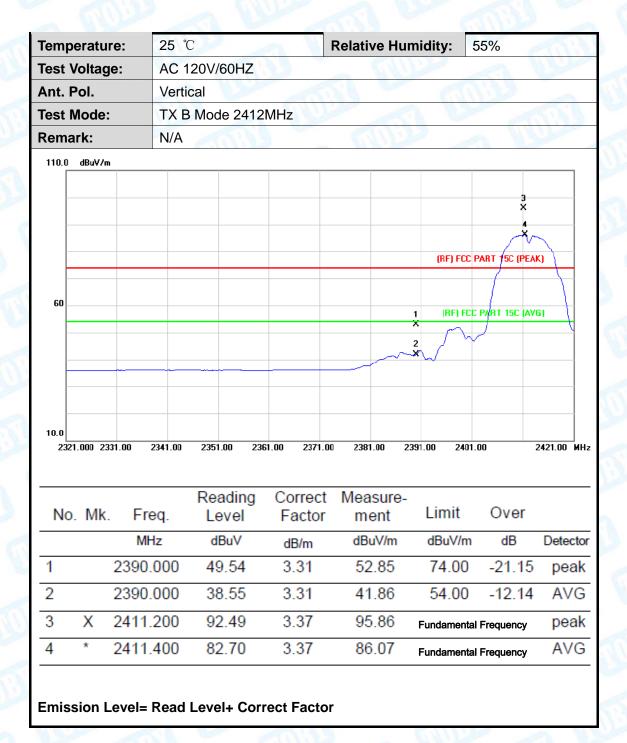
No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4924.274	34.89	11.37	46.26	54.00	-7.74	AVG
2		4924.548	48.69	11.37	60.06	74.00	-13.94	peak

Page: 47 of 77

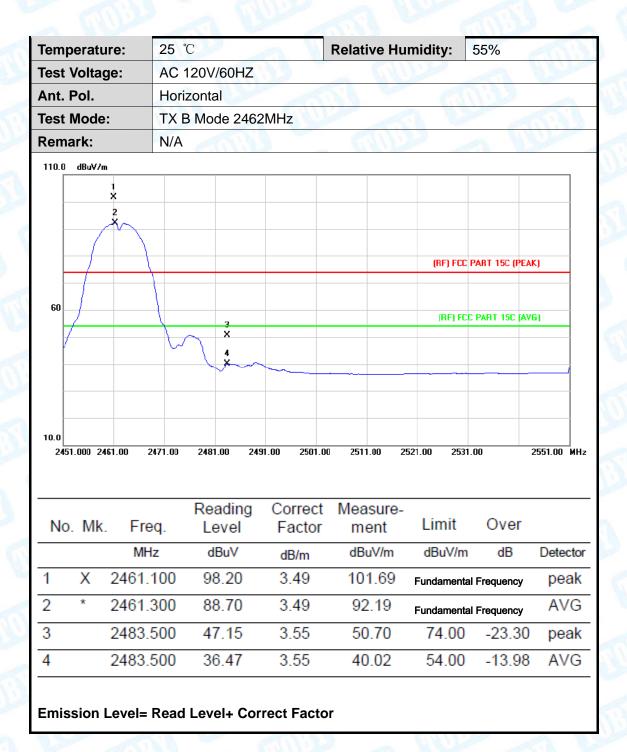
Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2462	MHz				
Remark: No report for the emission which more than 10 dB below the prescribed limit.						


No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4923.464	34.90	11.37	46.27	54.00	-7.73	AVG
2		4924.274	48.57	11.37	59.94	74.00	-14.06	peak

Page: 48 of 77


Attachment C-- Restricted Bands Requirement Test Data

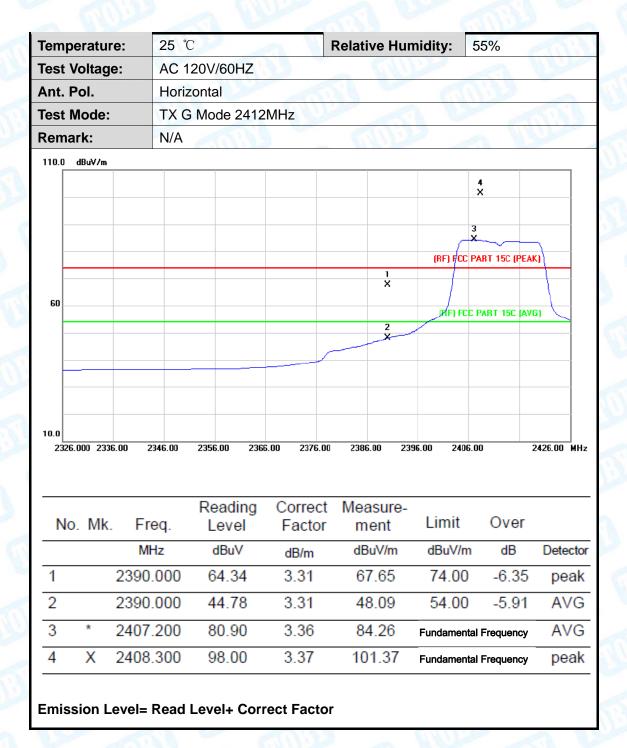
(1) Radiation Test



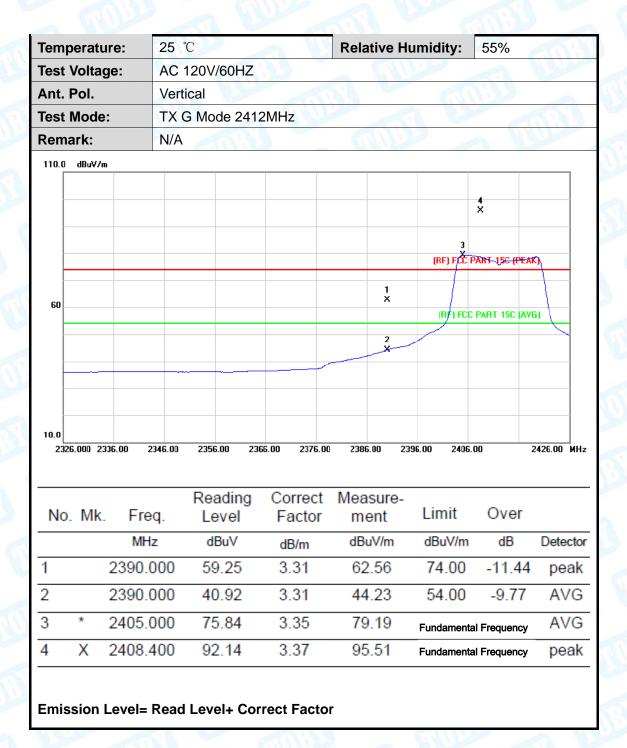
Page: 49 of 77



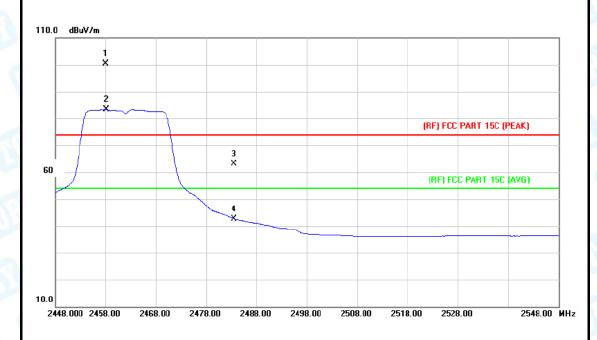
Page: 50 of 77



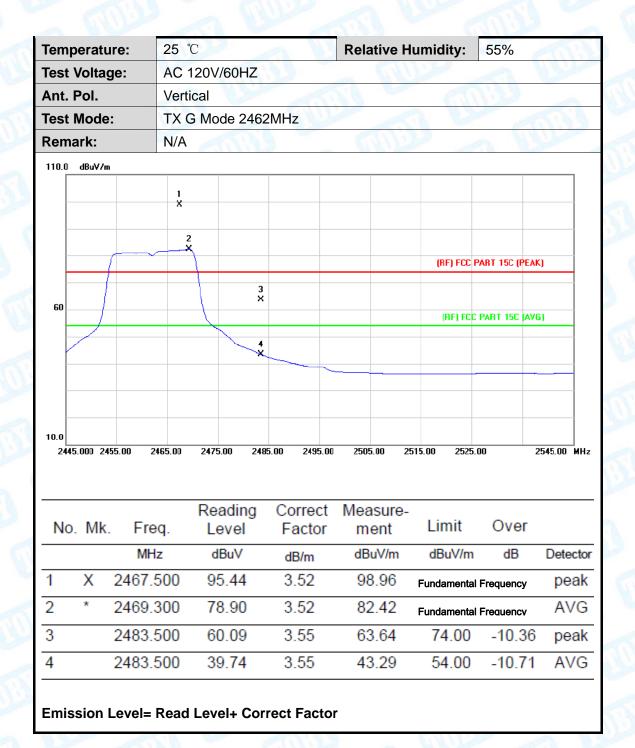
Page: 51 of 77



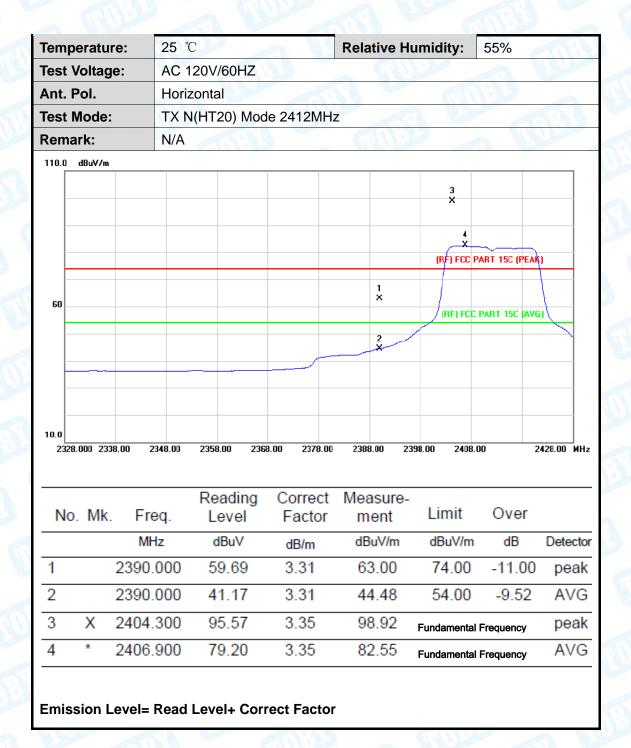
Page: 52 of 77


Page: 53 of 77

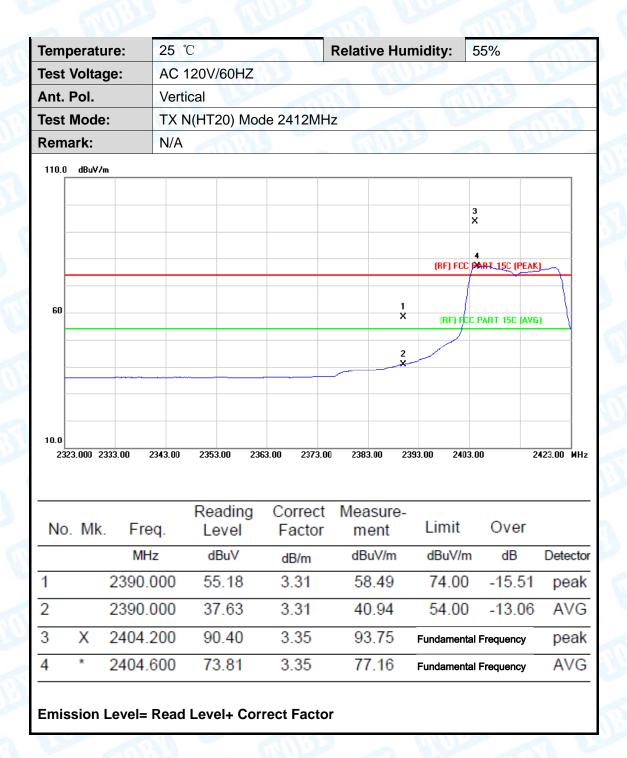
Page: 54 of 77


Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Ant. Pol.	Horizontal		
Test Mode:	TX G Mode 2462MHz		
Remark:	N/A		

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2458.100	96.91	3.48	100.39	Fundamental F	requency	peak
2	*	2458.200	79.92	3.48	83.40	Fundamental F	requency	AVG
3		2483.500	59.48	3.55	63.03	74.00	-10.97	peak
4		2483.500	39.20	3.55	42.75	54.00	-11.25	AVG



Page: 55 of 77



Page: 56 of 77

Page: 57 of 77

Page: 58 of 77

Temperature:	25 ℃	Relative	Humidity: 55%			
Test Voltage:	AC 120V/60HZ	AC 120V/60HZ				
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT20) Mode 2	2462MHz				
Remark:	N/A			N. C.		
110.0 dBuV/m						
1 X						
2 X			(RF) FCC PART 15C (I	PEAK)		
60	3 X		(RF) FCC PART 15C	(AVG)		
	4					
10.0						
2447.000 2457.00	2467.00 2477.00 2487.00	2497.00 2507.00	2517.00 2527.00	2547.00 MHz		
No. Mk. Fi	_	orrect Measure Factor ment	- Limit Over	·		
M	lHz dBuV	dB/m dBuV/m	dBuV/m dB	Detector		
1 X 2460	0.500 94.94	3.49 98.43	Fundamental Frequency	peak		

Emission Level= Read Level+ Correct Factor

78.11

53.32

37.26

3.49

3.55

3.55

81.60

56.87

40.81

Fundamental Frequency

74.00

54.00

-17.13

-13.19

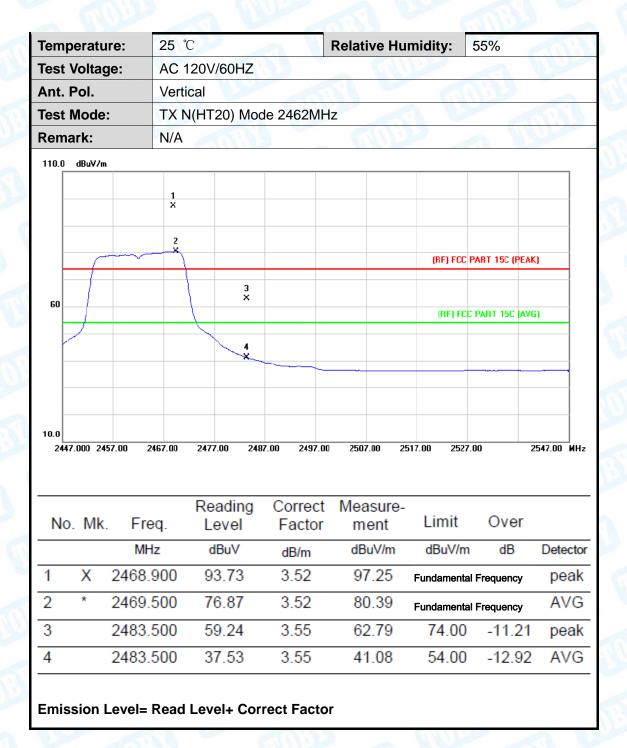
2460.700

2483.500

2483.500

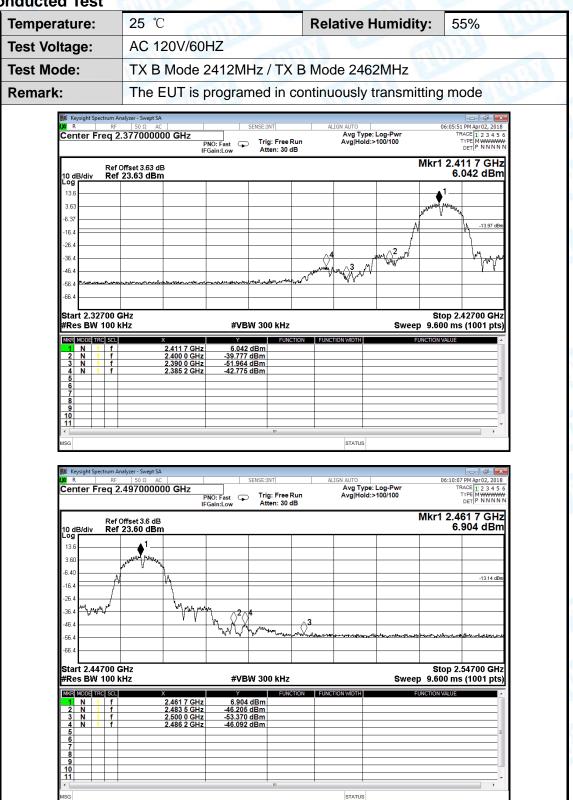
3

4

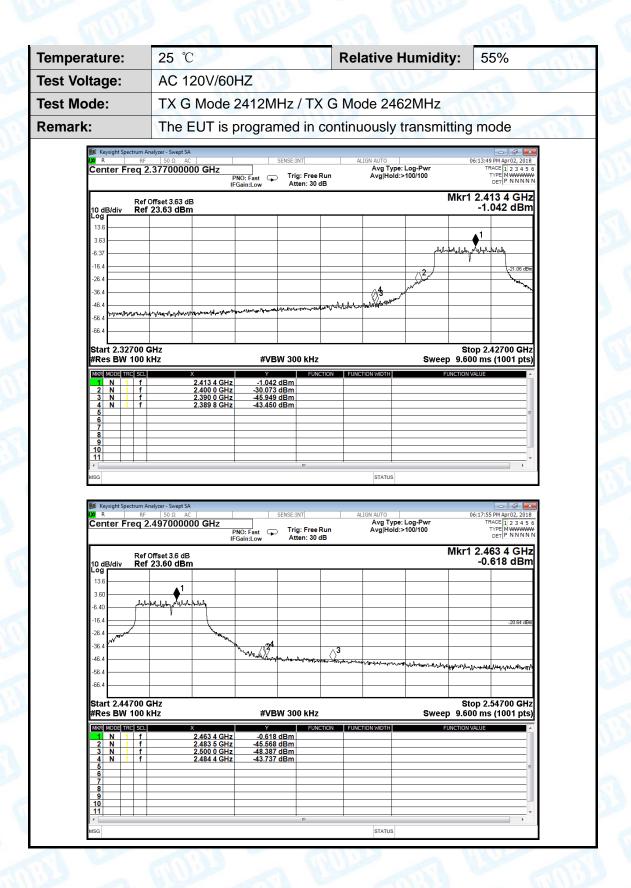

AVG

peak

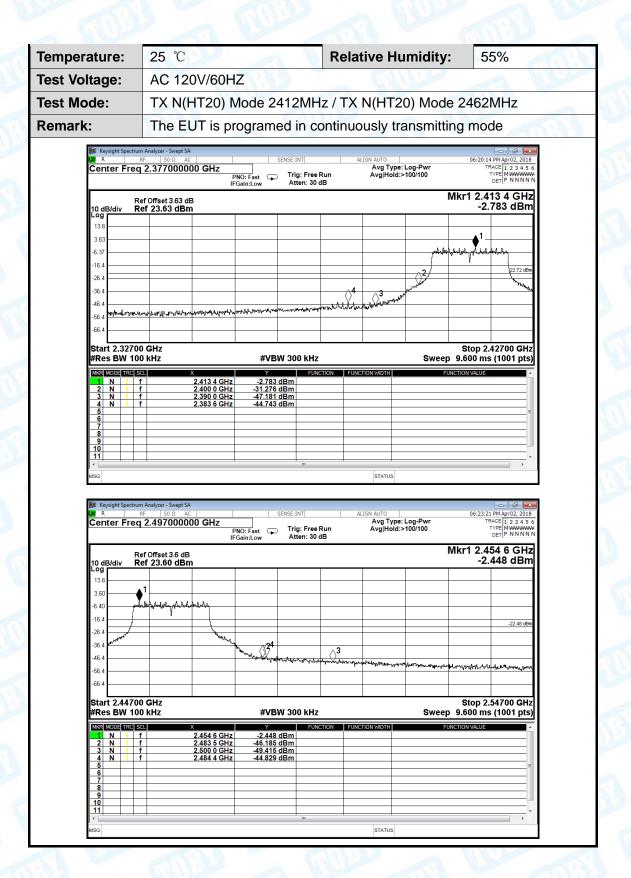
AVG


Page: 59 of 77

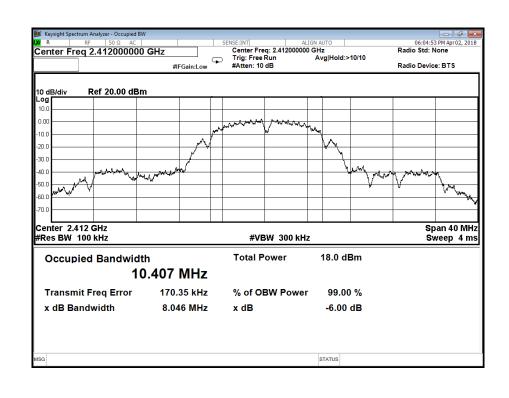
Report No.: TB-FCC159118 Page: 60 of 77


(2) Conducted Test

Page: 61 of 77

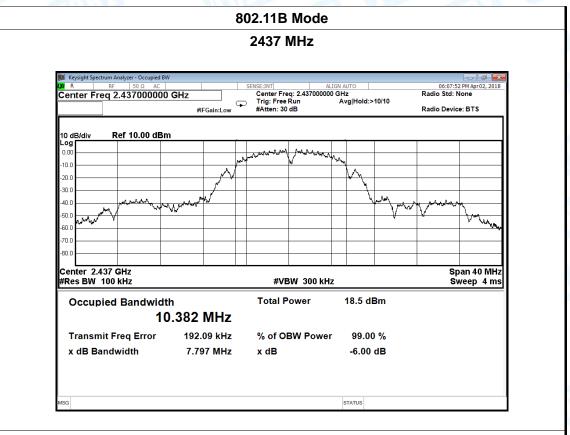


Page: 62 of 77

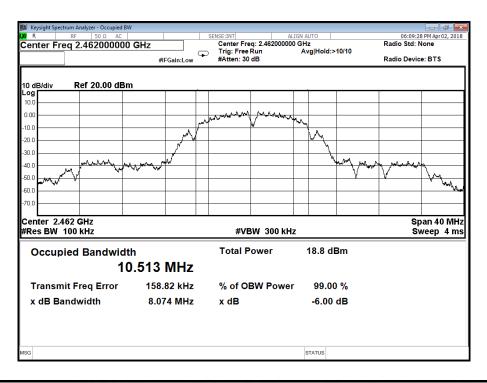


Page: 63 of 77

Attachment D-- Bandwidth Test Data


Temperature:	: 25	5 ℃	Relative Humidity:	55%		
Test Voltage:	A	AC 120V/60HZ				
Test Mode:	T	X 802.11B Mode				
Channel frequency 6dB Bandwidth		99% Bandwidth	Limit			
(MHz)		(MHz)	(MHz)	(MHz)		
2412		8.046	10.407			
2437		2437 7.797 10.382		>=0.5		
2462		8.074	10.513			
l.						

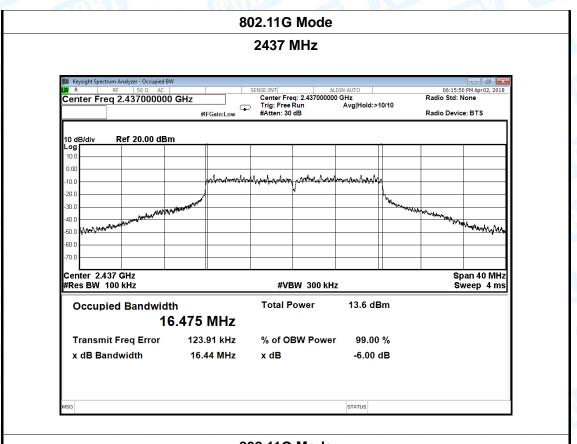
802.11B Mode



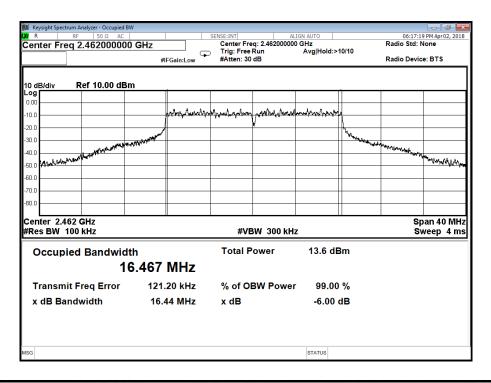
Page: 64 of 77

802.11B Mode

Page: 65 of 77

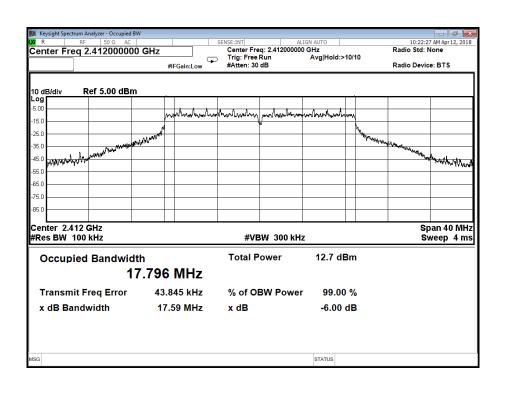

Temperature:	25 ℃ Relative Humidity: 55%			
Test Voltage:	AC 120V/60HZ			
Test Mode:	TX 802.11G Mode			
Channel frequency 6dB Bandwidth 99% Bandwidth Limit				
(MHz)	(MHz)	(MHz)	(MHz)	
2412	16.34	16.494		
2437	16.44	16.475	>=0.5	
2462 16.44		16.467		
	•		•	

802.11G Mode

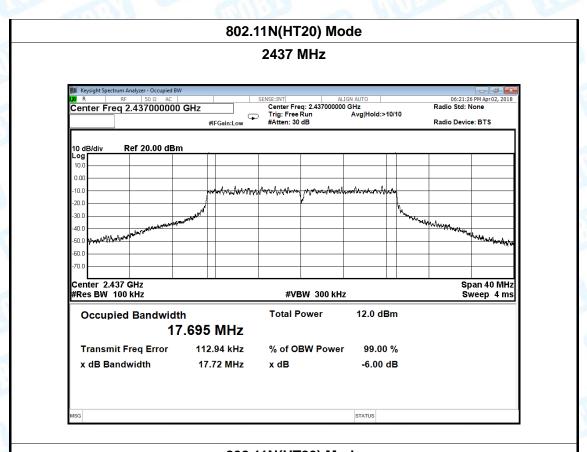


Page: 66 of 77

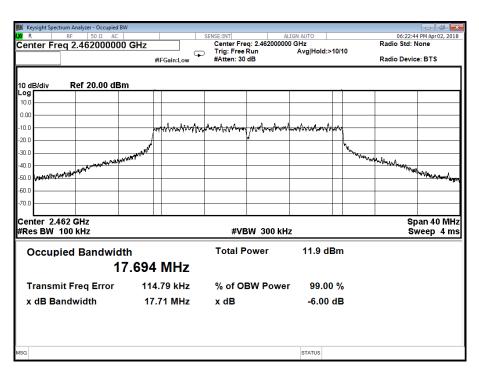
802.11G Mode



Page: 67 of 77


Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60HZ			
Test Mode:	TX 802.11N(HT20) Mode			
Channel frequence	uency 6dB Bandwidth 99% Bandwidth Limit			
(MHz)	(MHz)	(MHz)	(MHz)	
2412 17.59		17.796		
2437	17.72	17.695	>=0.5	
2462 17.71		17.694		
	000 44N/UT0	D) Mada	1	

802.11N(HT20) Mode

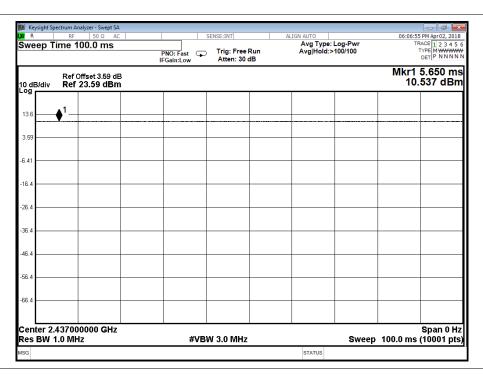


Report No.: TB-FCC159118
Page: 68 of 77

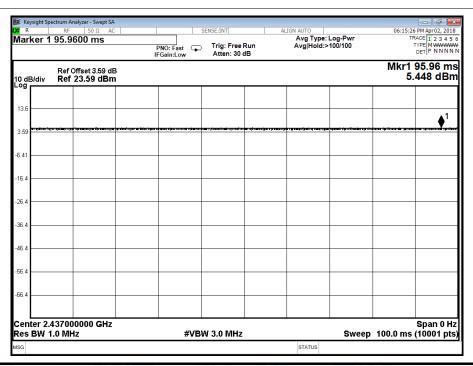
802.11N(HT20) Mode

Page: 69 of 77

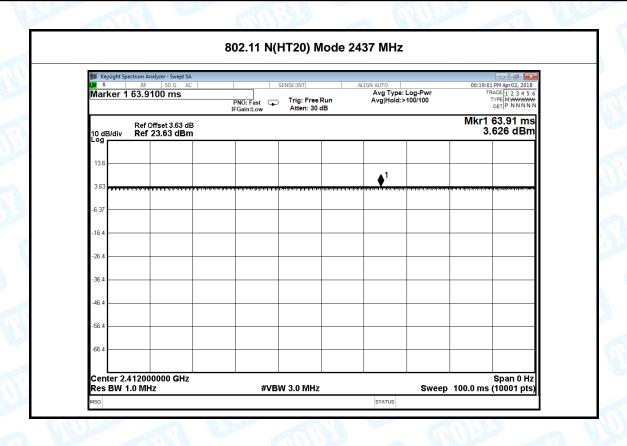
Attachment E-- Peak Output Power Test Data


Test Conditions			
Temperature:	25 ℃	25 ℃ Relative Humidity	
Test Voltage:	AC 120V/60HZ	William I	TO I
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	17.07	
802.11b	2437	17.20	
	2462	17.65	
	2412	15.88	
802.11g	2437	16.44	30
	2462	16.30	
802.11n (HT20)	2412	14.27	
	2437	14.84	
	2462	14.70	
	Resu	ult: PASS	

Duty Cycle						
Mode	Mode Channel frequency (MHz)					
	2412					
802.11b	2437					
	2462					
	2412					
802.11g	2437	>98%				
	2462					
000 44 m	2412					
802.11n (HT20)	2437					
	2462					

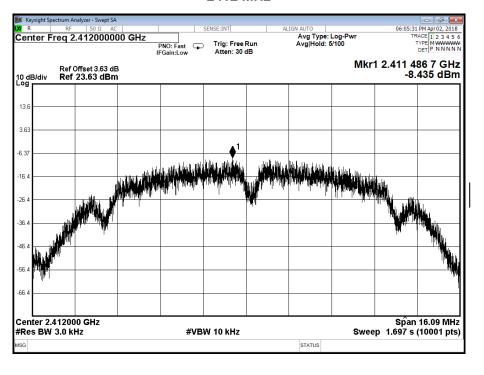


Page: 70 of 77



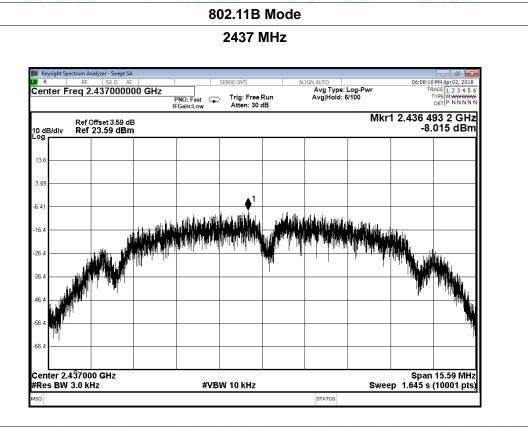
802.11 G Mode 2437 MHz

Page: 71 of 77

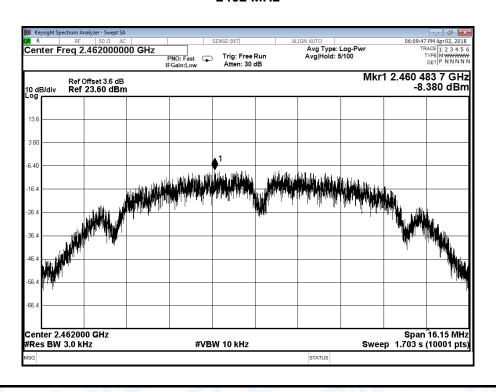


Page: 72 of 77

Attachment F-- Power Spectral Density Test Data

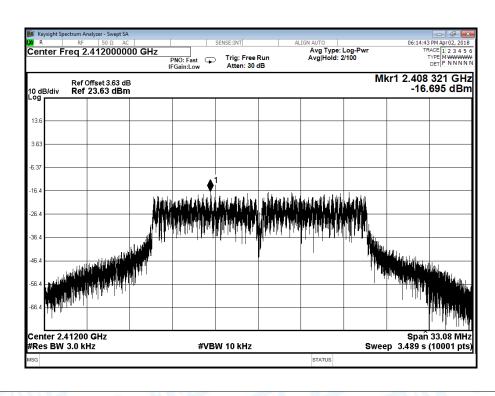

Temperature:	25 ℃	F	Relative Humidity:	55%	
Test Voltage:	AC 120V	AC 120V/60HZ			
Test Mode:	TX 802.11B Mode				
Channel Frequency Power Density Limit			Limit		
(MHz)		(dBm/3 kHz)		(dBm)	
2412		-8.435			
2437		-8.015		8	
2462		-8.380			

802.11B Mode



Page: 73 of 77

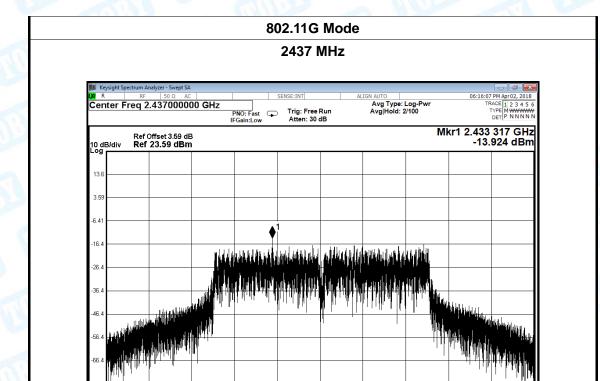
802.11B Mode



Page: 74 of 77

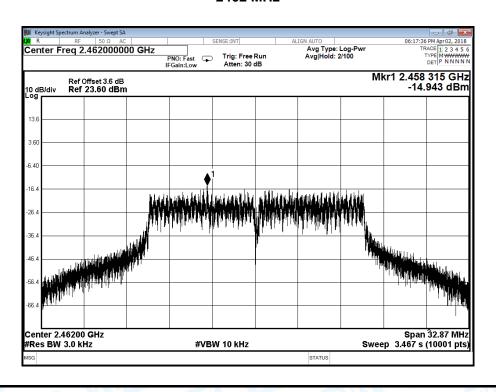
25 ℃		Temper	ature:	25 ℃	
AC 120V/60HZ					
TX 802.11G Mode					
Channel Frequency Power Density		r Density		Limit	
(MHz)		(dBm/3 kHz)		(dBm)	
2412		6.695	95		
2437		-13.924		8	
2462		4.943			
	AC 120V/ TX 802.11	AC 120V/60HZ TX 802.11G Mode uency Powe (dBr -1	AC 120V/60HZ TX 802.11G Mode uency Power Density (dBm/3 kHz) -16.695	AC 120V/60HZ TX 802.11G Mode uency Power Density (dBm/3 kHz) -16.695 -13.924	AC 120V/60HZ TX 802.11G Mode uency

802.11G Mode



Center 2.43700 GHz #Res BW 3.0 kHz Report No.: TB-FCC159118

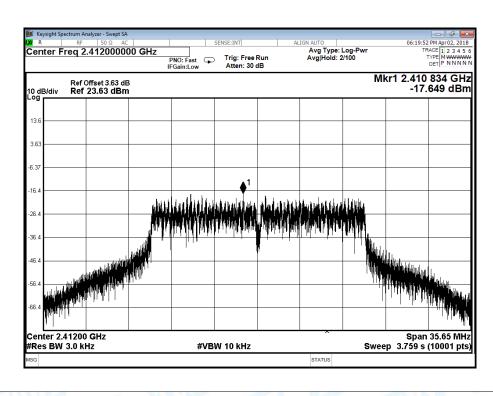
Page: 75 of 77


Span 32.89 MHz Sweep 3.468 s (10001 pts)

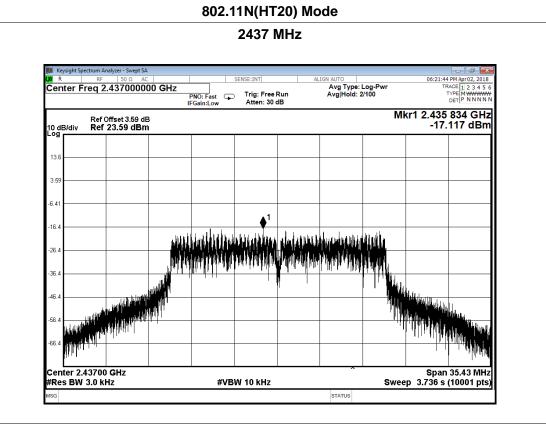
802.11G Mode

STATUS

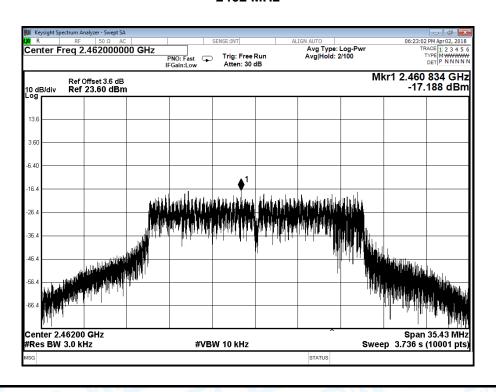
#VBW 10 kHz



Page: 76 of 77


25 ℃		Temperature:	25 ℃	
AC 120V/60HZ				
TX 802.11N(HT20) Mode				
Channel Frequency Power Density Limi			Limit	
(MHz)		kHz)	(dBm)	
	-17.64	19		
2437		7	8	
2462		-17.188		
	AC 120V/ TX 802.11	AC 120V/60HZ TX 802.11N(HT20) Mode uency Power De (dBm/3) -17.64	AC 120V/60HZ TX 802.11N(HT20) Mode Liency Power Density (dBm/3 kHz) -17.649 -17.117	

802.11N(HT20) Mode



Page: 77 of 77

802.11N(HT20) Mode

2462 MHz

----END OF REPORT----