T	rì si	boration with D C A G ATION LABORATORY	中国认可 国际互认 校准
Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	istrict, Beijing, 100191, China +86-10-62304633-2504 ://www.chinattl.cn Certificate No:	CALIBRATIO CALIBRATIO CNAS L0570
CALIBRATION C		TE	
			na n
Object	D2450	0V2 - SN: 817	
Calibration Procedure(s)		1-2-003-01 ation Procedures for dipole validation kits	
Calibration date:	May 3	1, 2016	
pages and are part of the contract of the cont		the closed laboratory facility: environm	ent temperature(22±3) [.] C and
All calibrations have been humidity<70%. Calibration Equipment used	n conducted in I (M&TE critical f	for calibration)	
All calibrations have been humidity<70%.	n conducted in		
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	n conducted in I (M&TE critical f	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	n conducted in I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	n conducted in I (M&TE critical f ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibration Jun-16 Jun-16 3) Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	n conducted in I (M&TE critical f ID # 101919 101547 SN 7307	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16	Scheduled Calibration Jun-16 Jun-16 3) Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	n conducted in I (M&TE critical f ID # 101919 101547 SN 7307 SN 771	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16 02-Feb-16(CTTL-SPEAG,No.Z16-97011	Scheduled Calibration Jun-16 Jun-16 6) Feb-17) Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical f 10 # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-16 Jun-16 3) Feb-17) Feb-17 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	Conducted in (M&TE critical f 10 # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893)	Scheduled Calibration Jun-16 Jun-16 3) Feb-17) Feb-17 Scheduled Calibration Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	n conducted in (M&TE critical f ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb10 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894)	Scheduled Calibration Jun-16 Jun-16 6) Feb-17) Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	n conducted in I (M&TE critical f ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894)	Scheduled Calibration Jun-16 Jun-16 6) Feb-17) Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by:	n conducted in I (M&TE critical f ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader	Scheduled Calibration Jun-16 Jun-16 6) Feb-17) Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	n conducted in I (M&TE critical f ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan Lu Bingsong	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb10 02-Feb-16(CTTL-SPEAG,No.Z16-97011 Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 28-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader	Scheduled Calibration Jun-16 Jun-16 3) Feb-17) Feb-17 Scheduled Calibration Jan-17 Jan-17 Signature XH/ N 403 TA n 2, 2016

Report No .: C161230R02-B-SF

In Collaboration with pe а

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97077

Page 2 of 8

Report No .: C161230R02-B-SF

In Collaboration with

pea <u>S</u>____ \boldsymbol{g} CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		
R result with Hoad TSI			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.15 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	52.7	1.95 mho/m
(22.0 ± 0.2) °C	53.2 ± 6 %	1.94 mho/m ± 6 %
<1.0 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 52.7 (22.0 ± 0.2) °C 53.2 ± 6 %

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.07 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW /g ± 20.4 % (k=2)

Certificate No: Z16-97077

Page 3 of 8

Report No .: C161230R02-B-SF

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0Ω+ 4.41jΩ
Return Loss	- 27.0dB

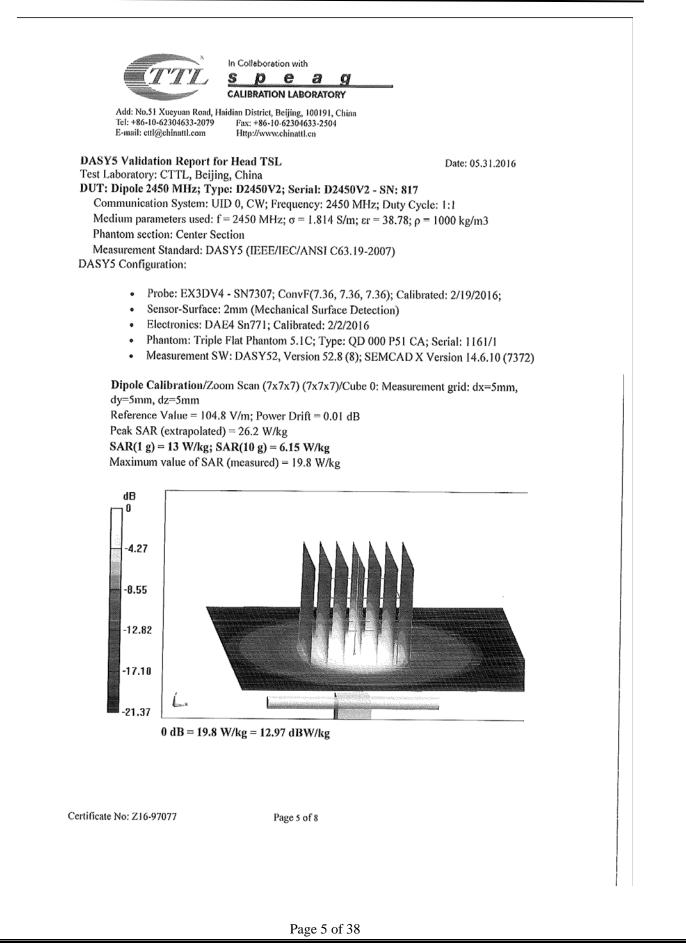
Antenna Parameters with Body TSL

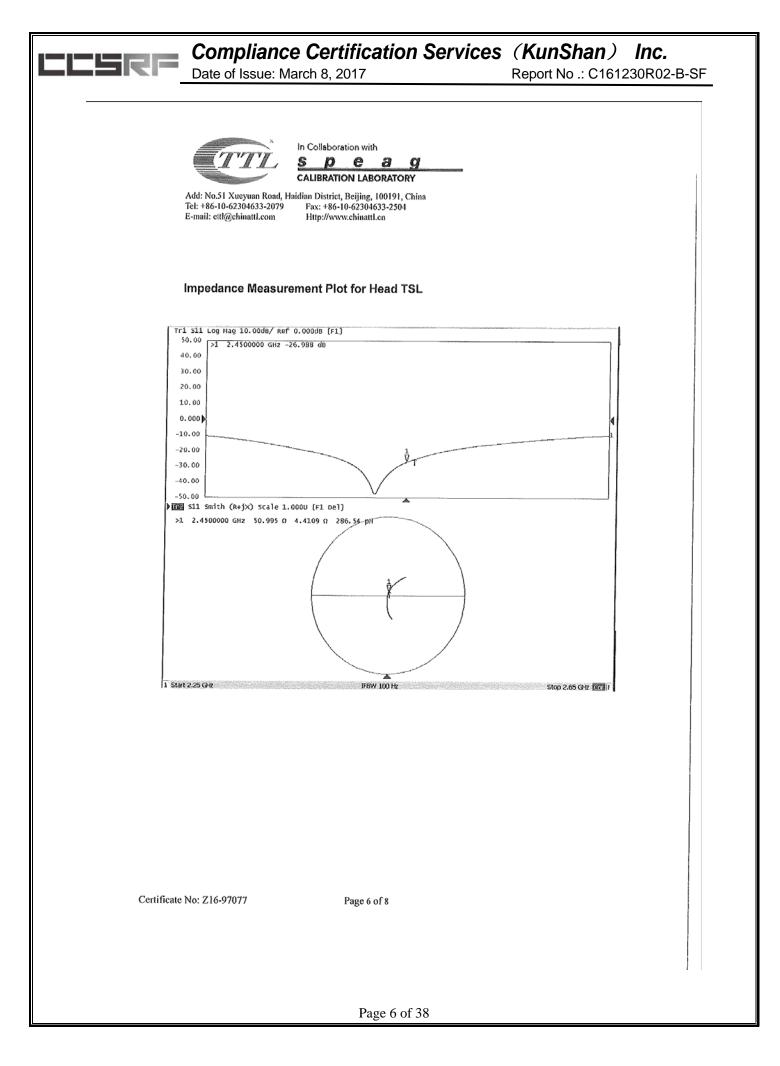
Impedance, transformed to feed point	47.7Ω+ 4.00jΩ
Return Loss	- 26.6dB

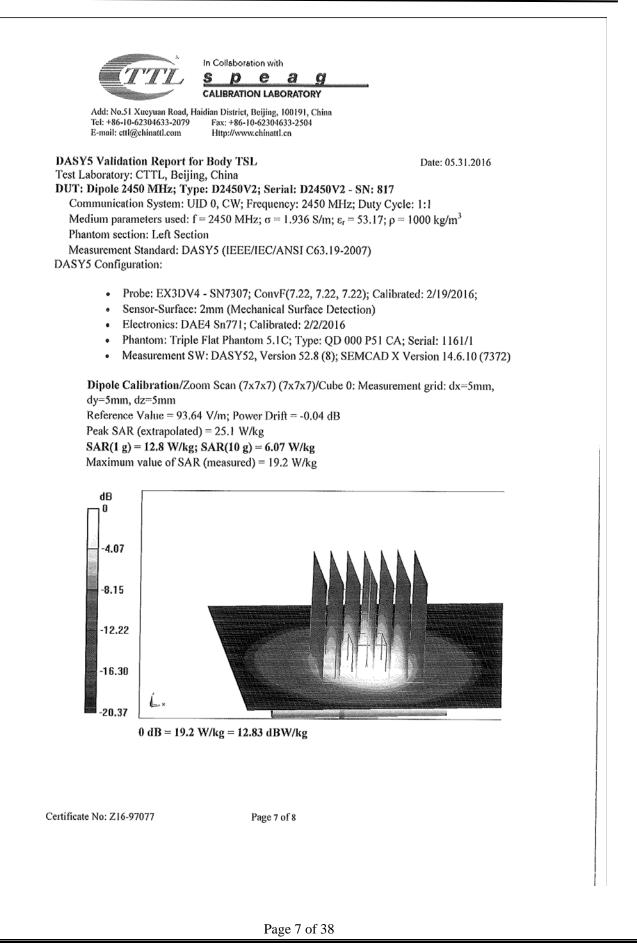
General Antenna Parameters and Design

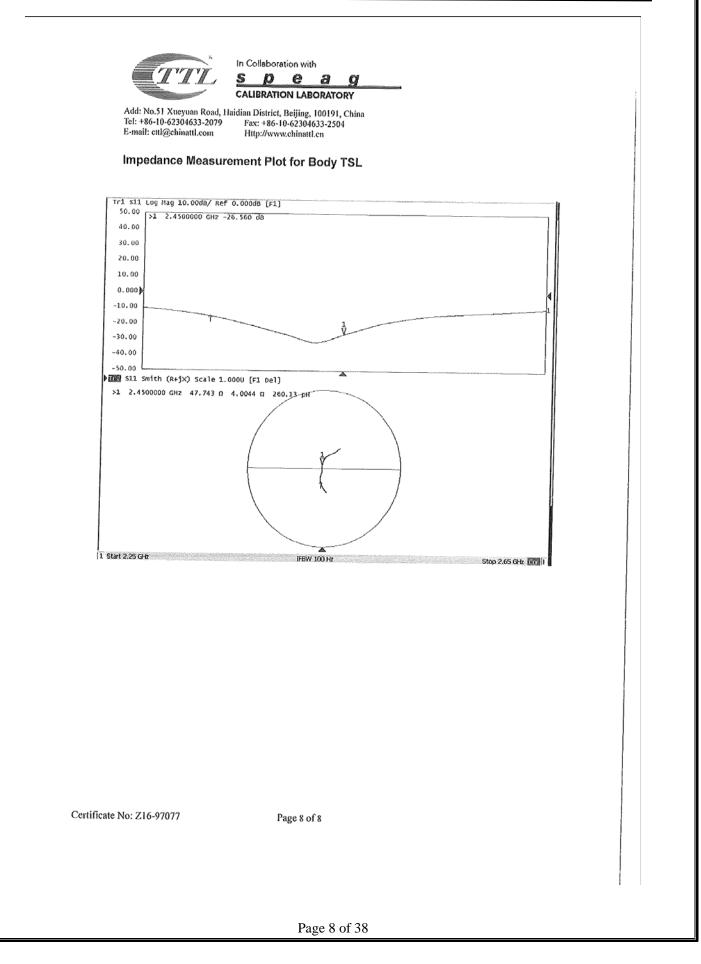
ſ	Electrical Delay (one direction)	1.269 ns
•		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data


- 1		
	Manufactured by	SPEAG


Certificate No: Z16-97077

Page 4 of 8

Tel: +86-10-6230	uan Road, Haidian D 4633-2079 Fax:	oration with e a g STION LABORATORY istrict, Beijing, 100191, China +86-10-62304633-2504	中国认可 国际互认 校准 CALIBRATION CNAS L0570
E-mail: cttl@chin Client CC	attl.com <u>Http</u>	Certificate No: Z	16-97078
CALIBRATION C	ERTIFICA	TE	
Object	D5GH	IzV2 - SN: 1095	
Calibration Procedure(s)		1-2-003-01 ation Procedures for dipole validation kits	
Calibration date:	May 2	5, 2016	
pages and are part of the c	ertificate.	I the uncertainties with confidence probability the closed laboratory facility: environmen	
Calibration Equipment used	I (M&TE critical f	for calibration)	
Calibration Equipment used	I (M&TE critical f	for calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16 Jun-16
Primary Standards Power Meter NRP2	ID # 101919	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4	ID # 101919 101547 SN 7307	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Jun-16 Jun-16 Feb-17 Feb-17
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4	ID # 101919 101547 SN 7307 SN 771	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Jun-16 Jun-16 Feb-17
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards	ID # 101919 101547 SN 7307 SN 771 ID #	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.)	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893)	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894)	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17 Signature
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 ReferenceProbe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C Calibrated by: Reviewed by: Approved by:	ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing Qi Dianyuan Lu Bingsong	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer SAR Project Leader	Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17 Signature KEI M. WARK 31,2016

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay*: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97078

Page 2 of 16

Compliance Certification Services (KunShan) Inc.

Date of Issue: March 8, 2017

Report No .: C161230R02-B-SF

реа 9

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Measurement Conditions

SRF

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.8 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	77.9 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 3 of 16

Report No .: C161230R02-B-SF

In Collaboration with pe а \boldsymbol{g}

5 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 Http://www.chinattl.cn E-mail: cttl@chinattl.com

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.71 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	81.0 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.91 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.4 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 4 of 16

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	5.01 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.19 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.4 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	5.17 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 <i>cm</i> ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.83 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.1 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 5 of 16

Report No .: C161230R02-B-SF

,

In Collaboration with peag

CALIBRATION LABORATORY
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

s

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6 %	5.39 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5200 MHz

SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 22.2 % (k=2)
SAR measured	100 mW input power	2.14 mW / g
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR for nominal Body TSL parameters	normalized to 1W	74.5 mW /g ± 23.0 % (k=2)
SAR measured	100 mW input power	7.47 mW / g
SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.3 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 6 of 16

Report No .: C161230R02-B-SF

In Collaboration with

S P C 2 G CALIBRATION LABORATORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.58 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.1 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.36 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.7 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.70 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 <i>cm</i> ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.97 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.8 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.26 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 7 of 16

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@ehinattl.com
 Http://www.chinattl.cn

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.93 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

а

q

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.71 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.2 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.17 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97078

Page 8 of 16

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.2Ω - 5.46jΩ
Return Loss	- 25.1dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2Ω - 3.86jΩ
Return Loss	- 26.2dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	53.4Ω - 5.61jΩ
Return Loss	- 23.9dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.6Ω - 1.04jΩ	
Return Loss	- 24.0dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.0Ω - 6.28jΩ
Return Loss	- 23.4dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.5Ω - 3.51jΩ
Return Loss	- 29.0dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.7Ω - 1.89jΩ	
Return Loss	- 30.4dB	

Certificate No: Z16-97078

Page 9 of 16

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	54.0Ω - 3.83jΩ
Return Loss	- 25.5dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	59.3Ω + 0.88jΩ	
Return Loss	- 21.4dB	

Antenna Parameters with Body TSL at 5800 MHz

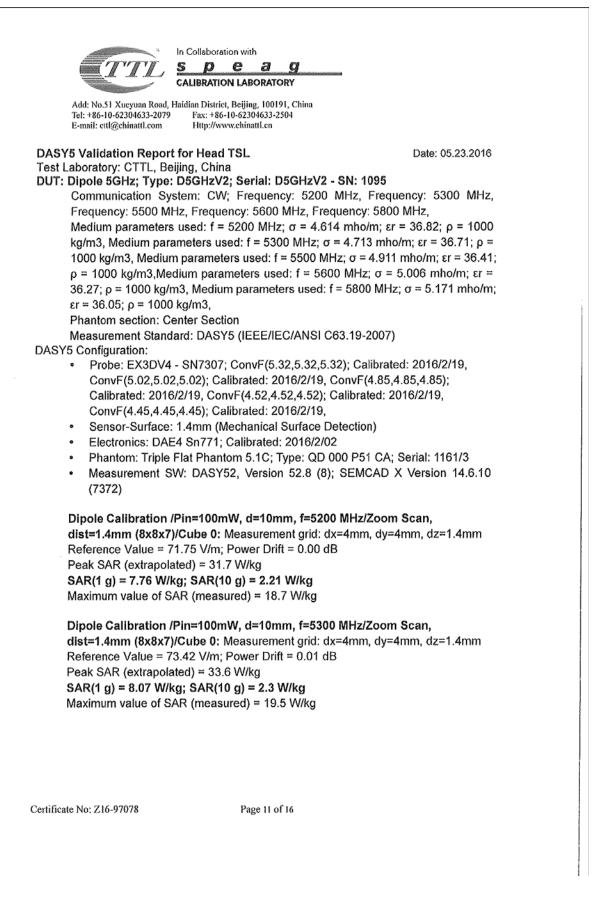
Impedance, transformed to feed point	55.1Ω - 6.15jΩ	
Return Loss	- 22.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.308 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
Manufactured by	

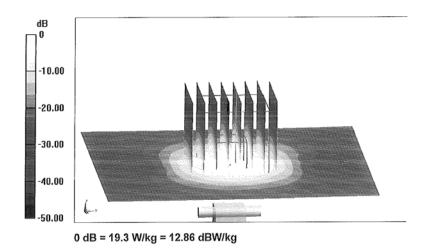
Certificate No: Z16-97078

Page 10 of 16

Page 18 of 38

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

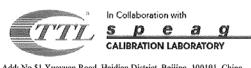

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.44 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 36.1 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.62 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 34.9 W/kg SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.7 W/kg

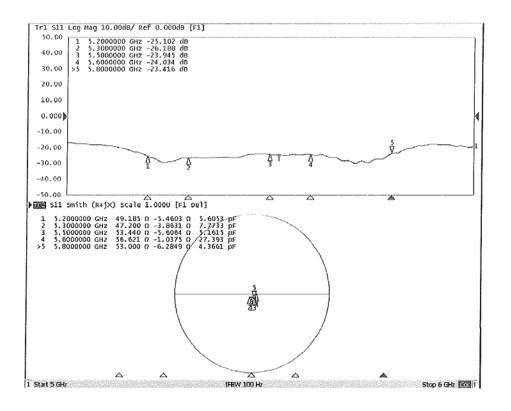
Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.13 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.3 W/kg



Certificate No: Z16-97078

Page 12 of 16

Report No .: C161230R02-B-SF

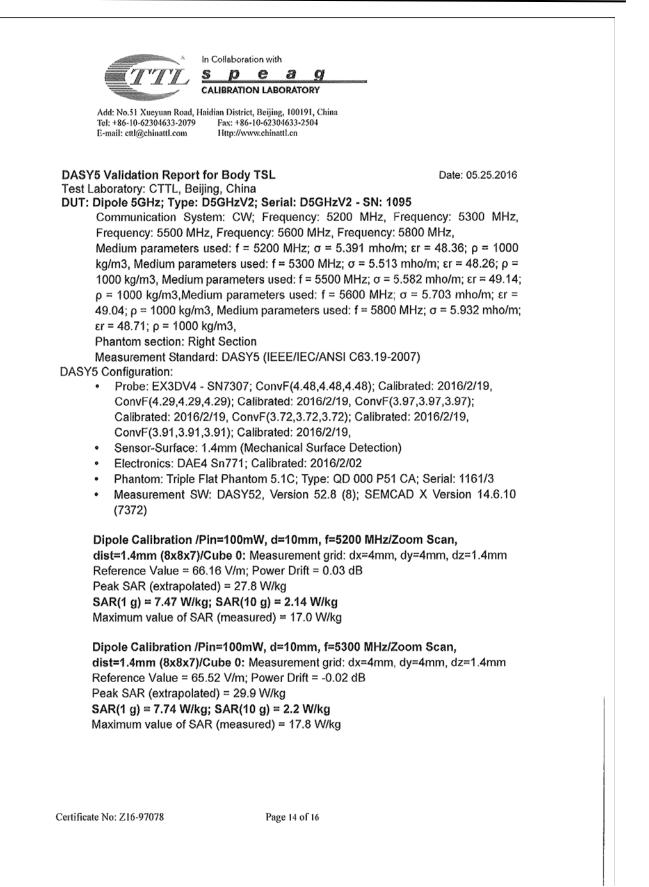


 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL


Certificate No: Z16-97078

Page 13 of 16

Page 21 of 38

Compliance Certification Services (KunShan) Inc.

Date of Issue: March 8, 2017

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

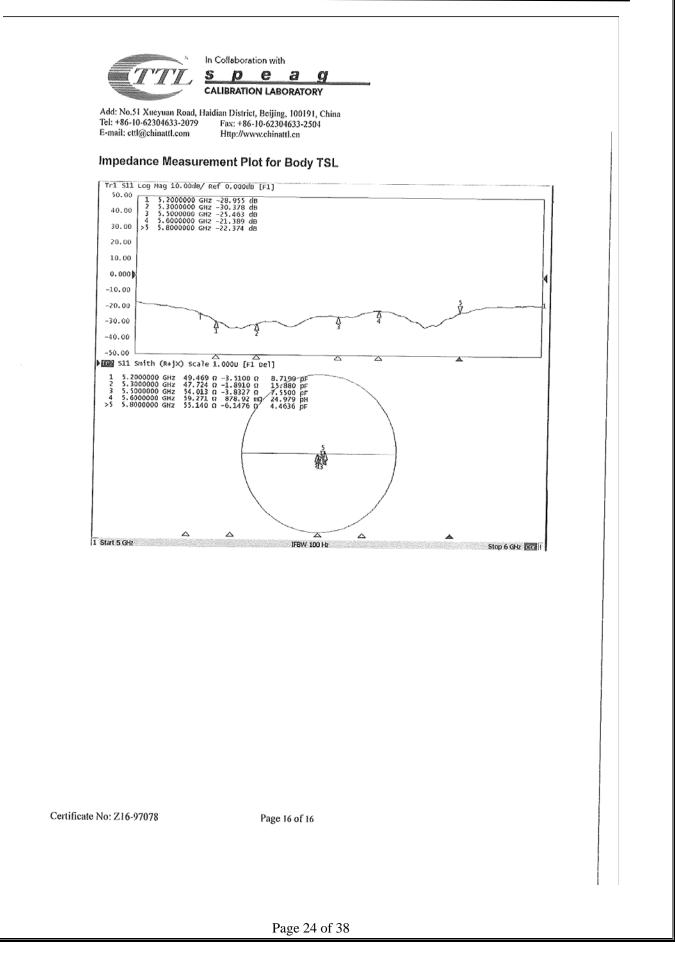

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.84 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.68 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.8 W/kg SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.24 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.2 W/kg



0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: Z16-97078

Page 15 of 16

Tel: +86-10-6	Xneyuun Road, Haidian District, Beijing, 100191, China 62304633-2218 Fax: +86-10-62304633-2209 Cehinattl.com Hatelwww.chinattl.co
Client : C	CS Certificate No: Z16-97117
CALIBRATION	I CERTIFICATE
Object	DAE4 - SN: 1245
Calibration Procedure(s	s) FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)
Calibration date:	July 26, 2016
100000 1970 1970 NO.	
humidity<70%.	been conducted in the closed laboratory facility: environment temperature(22±3)°C and used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration
humidity<70%. Calibration Equipment u	used (M&TE critical for calibration)
humidity<70%. Calibration Equipment u Primary Standards	Used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 27-June-16 (CTTL, No:J16X04778) June-17
humidity<70%. Calibration Equipment u Primary Standards	used (M&TE critical for calibration) ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration
humidity<70%. Calibration Equipment u Primary Standards Process Calibrator 753	ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 27-June-16 (CTTL, No:J16X04778) June-17 Name Function Signature Yu Zongying SAR Test Engineer Signature
humidity<70%. Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by:	ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 27-June-16 (CTTL, No:J16X04778) June-17 Name Function Signature Yu Zongying SAR Test Engineer Signature
humidity<70%. Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 1971018 27-June-16 (CTTL, No:J16X04778) June-17 Name Function Signature Yu Zongying SAR Test Engineer June-10 Qi Dianyuan SAR Project Leader Same

Page 25 of 38

Report No .: C161230R02-B-SF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattLeon Http://www.chinattLen

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z16-97117

Page 2 of 3

Report No .: C161230R02-B-SF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail; cttl@chinattl.com
 Http://www.chinattl.com

DC Voltage Measurement

-SRF

 A/D - Converter Resolution nominal High Range:
 1LSB =
 6.1μV
 full range =
 -100...,+300 mV

 Low Range:
 1LSB =
 61nV
 full range =
 -1......+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	405.977 ± 0.15% (k=2)	404.701 ± 0.15% (k=2)	405.834 ± 0.15% (k=2)
Low Range	4.00398 ± 0.7% (k=2)	3.9852 ± 0.7% (k=2)	4.02608 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	-30.5° ± 1 °

Certificate No: Z16-97117

Page 3 of 3

T		Diration with	中国 に 和 国 际 当 校 准 CALIBR
Add: No.51 Xue Tel: +86-10-6230 E-mail: ettl@chit	04633-2218 Fax:	strict, Beijing, 100191, China +86-10-62304633-2209 //www.chinaul.en	CNAS L
Client CC	CS	Certificate No: Z16-	97118
CALIBRATION C	ERTIFICAT	ΓE	
Object	EX3D\	/4 - SN:3798	
Calibration Procedure(s)			
Summer (2)		1-2-004-01	
	Calibra	tion Procedures for Dosimetric E-field Probes	5
Calibration date:	July 27	, 2016	
All calibrations have been	ertificate.	the uncertainties with confidence probability	
All calibrations have been humidity<70%. Calibration Equipment used	ertificate.	the closed laboratory facility: environment	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	ertificate. n conducted in t d (M&TE critical fo ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.)	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. n conducted in t d (M&TE critical fo ID # 101919	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777)	temperature(22±3)°C and Scheduled Calibration Jun-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. n conducted in t d (M&TE critical fo ID # 101919 101547	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ertificate. n conducted in t d (M&TE critical fo ID # 101919 101547 101548	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. n conducted in t d (M&TE critical fo ID # 101919 101547 101548	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL,No.J16X01547)	temperature(22±3)℃ and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	ertificate. n conducted in 1 d (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777)	temperature(22±3)℃ and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	ertificate. n conducted in 1 d (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	ertificate. n conducted in 1 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.DAE4-1331_Jan16)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	ertificate. n conducted in 1 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16 (CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. n conducted in 1 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID #	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG, No.DAE4-1331_Jan16)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	ertificate. n conducted in 1 d (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776)	temperature(22±3)°C and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	ertificate. n conducted in 1 d (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16(CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894)	temperature(22±3)*c and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator/MG3700A Network Analyzer E5071C Calibrated by: Reviewed by:	ertificate. n conducted in 1 1 (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16 (CTTL, No.J16X01547) 13-Mar-16 (CTTL, No.J16X01548) 26-Aug-15 (SPEAG, No.DAE4-1331_Jan16) 21-Jan-16 (SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function	temperature(22±3)*c and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Calibrated by:	ertificate. n conducted in 1 d (M&TE critical fo ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying	the closed laboratory facility: environment or calibration) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 13-Mar-16 (CTTL, No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Aug-15(SPEAG,No.EX3-3617_Aug15) 21-Jan-16(SPEAG, No.DAE4-1331_Jan16) Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer	temperature(22±3)*c and Scheduled Calibration Jun-17 Jun-17 Jun-17 Mar-18 Mar-18 Aug-16 Jan -17 Scheduled Calibration Jun-17 Jan -17

Report No .: C161230R02-B-SF

 Add: No.51 Xueywan Road, Haidian District. Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ctt/@chinattl.com
 Http://www.chinattl.com

Glossary:

TSL	tissue simulating liquid
NORMx, y, z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i
	θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97118

Page 2 of 11

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinaitl.cn

Probe EX3DV4

SN: 3798

Calibrated: July 27, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z16-97118

Page 3 of 11

Page 30 of 38

Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Http://www.chinattl.en

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3798

Basic Calibration Parameters

And the second second second	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^	0.52	0.50	0.60	±10.8%
DCP(mV) ^B	101.1	100.8	99.8	110.0%

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	201.2	±2.1%	
		Y	0.0	0.0	1.0		194.5	1.22.170
		Z	0.0	0.0	1.0		207.0	1

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

LRF

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinattl.com
 Http://www.chinattl.com

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3798

Calibration Parameter Determined In Head Tissue Simulating Media

f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	41.5	0.90	9.17	9.17	9.17	0.13	1.57	±12%
900	41.5	0.97	9.15	9.15	9.15	0.15	1.48	±12%
1810	40.0	1.40	7.62	7.62	7.62	0.18	1.47	±12%
1900	40.0	1.40	7.65	7.65	7.65	0.19	1.48	±12%
2450	39.2	1.80	7.02	7.02	7.02	0.61	0.70	±12%
5200	36.0	4.66	5.33	5.33	5.33	0.40	1.45	±13%
5300	35.9	4.76	5.04	5.04	5.04	0.40	1.45	±13%
5500	35.6	4.96	4.80	4.80	4.80	0.40	1.40	±13%
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.45	±13%
5800	35.3	5.27	4.77	4.77	4.77	0.40	1.50	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target fissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97118

Page 5 of 11

LSRF

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.com

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3798

Callbration Parameter Determined in Body Tissue Simulating Media

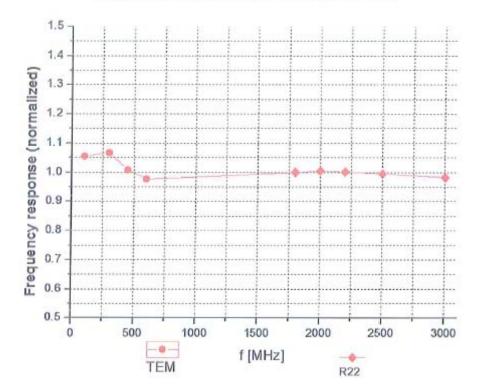
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
835	55.2	0.97	9.09	9.09	9.09	0.17	1.46	±12%
900	55.0	1.05	9.08	9.08	9.08	0.22	1.26	±12%
1810	53.3	1.52	7.55	7.55	7.55	0.17	1.63	±12%
1900	53.3	1.52	7.43	7.43	7.43	0.16	1.85	±12%
2450	52.7	1.95	7.07	7.07	7.07	0.65	0.71	±12%
5200	49.0	5.30	4.77	4.77	4.77	0.50	1.40	±13%
5300	48.9	5.42	4.60	4.60	4.60	0.50	1.40	±13%
5500	48.6	5.65	4.23	4.23	4.23	0.50	1.50	±13%
5600	48.5	5.77	4.18	4.18	4.18	0.50	1.50	±13%
5800	48.2	6.00	4.34	4.34	4.34	0.52	1.50	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

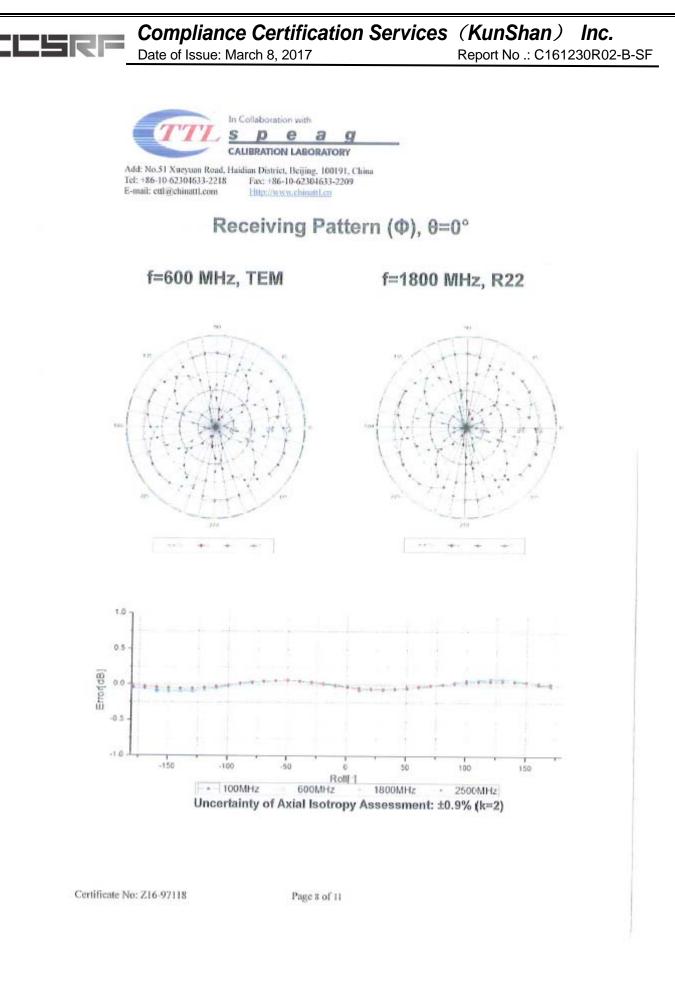
Certificate No: Z16-97118


Page 6 of 11

드느로

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattLeom Http://www.chinattl.en

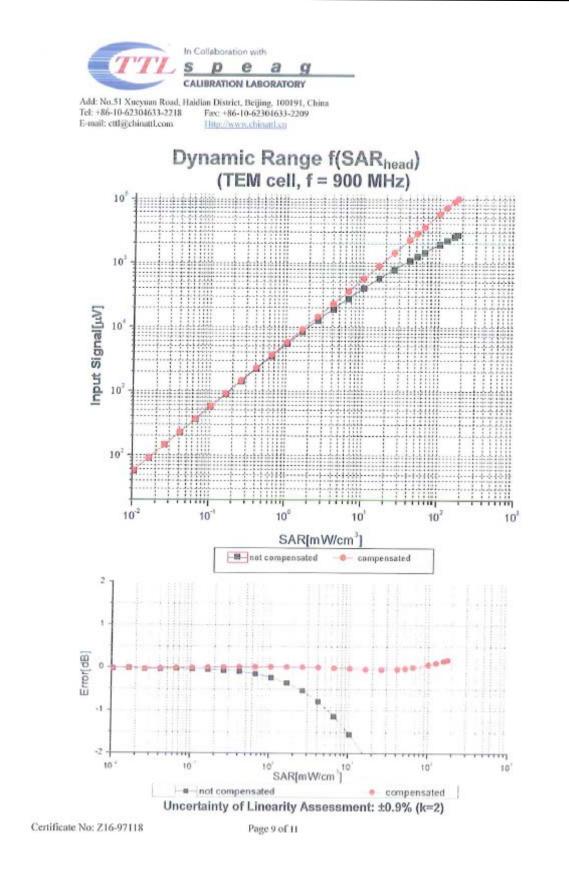
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z16-97118

Page 7 of 11

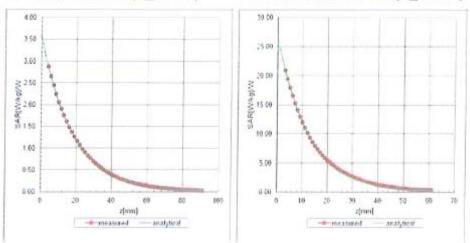

Page 34 of 38

Page 35 of 38

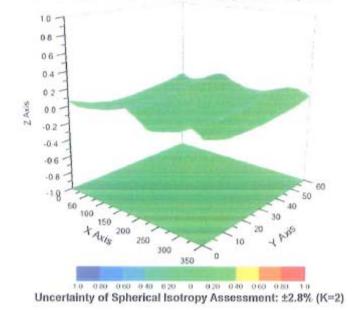
Report No .: C161230R02-B-SF

Page 36 of 38

Report No .: C161230R02-B-SF



Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.ehinaitl.en


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1810 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z16-97118

Page 10 of 11

Page 37 of 38

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62301633-2218 Fax: +86-10-62304633-2209 E-mail: cut@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3798

Other Probe Parameters

ELSRF

Sensor Arrangement	Triangular			
Connector Angle (°)	140.7			
Mechanical Surface Detection Mode	enabled			
Optical Surface Detection Mode	disable			
Probe Overall Length	337mm			
Probe Body Diameter	10mm			
Tip Length	9mm			
Tip Diameter	2.5mm			
Probe Tip to Sensor X Calibration Point	1mm			
Probe Tip to Sensor Y Calibration Point	1mm			
Probe Tip to Sensor Z Calibration Point	1mm			
Recommended Measurement Distance from Surface	1.4mm			

Certificate No: Z16-97118

Page 11 of 11

Page 38 of 38